
International Journal of Advances in Applied Sciences (IJAAS)
Vol. 7, No. 2, June 2018, pp. 177~190
ISSN: 2252-8814, DOI: 10.11591/ijaas.v7.i2.pp177-190 177

Journal homepage: http://iaescore.com/online/index.php/IJAAS

On the High Dimentional Information Processing in
Quaternionic Domain and its Applications

Sushil Kumar, Bipin Kumar Tripathi

Department of Computer Science and Engineering, Harcourt Butler Technical University, Kanpur, India

Article Info ABSTRACT
Article history:

Received Des 28, 2017
Revised Apr 12, 2018
Accepted May 11, 2018

 There are various high dimensional engineering and scientific applications in
communication, control, robotics, computer vision, biometrics, etc.; where
researchers are facing problem to design an intelligent and robust neural
system which can process higher dimensional information efficiently. The
conventional real-valued neural networks are tried to solve the problem
associated with high dimensional parameters, but the required network
structure possesses high complexity and are very time consuming and weak
to noise. These networks are also not able to learn magnitude and phase
values simultaneously in space. The quaternion is the number, which
possesses the magnitude in all four directions and phase information is
embedded within it. This paper presents a well generalized learning machine
with a quaternionic domain neural network that can finely process magnitude
and phase information of high dimension data without any hassle. The
learning and generalization capability of the proposed learning machine is
presented through a wide spectrum of simulations which demonstrate the
significance of the work.

Keyword:

3D imaging
3D motion
Quaternion
Quaternionic domain neural
network

Copyright © 2018 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Sushil Kumar,
Department of Computer Science and Engineering,
Harcourt Butler Technical University, Kanpur, India
Email: sushil0402k5@gmail.com

1. INTRODUCTION

The high dimensional information processing through neural network is emerging as a fascinating
but challenging field of research in the second generation neurocomputing. The recent researches in high
dimensional neural networks have established their superiority [1], [2], [3], [4] over real-valued or first
generation neural networks. Although, real-valued neural networks (RVNN) have been used to process high
dimensional data, but the network needs to employ too many neurons resulting huge structure and slow
learning. The RVNN can also not process phase information during learning and generalization of mapping
on the plane [2], [5], [6]. The complex-valued neural networks (CVNN) can promptly process two
dimensional information with phase as a single number, which leads to a drastic reduction in the complexity
of the network along with better performance. But, neural network of three dimensional information still
needs an exhaustive investigation. The applications with three dimensional information are popular in
computer vision, robotics, biometrics, bioinformatics etc. The few researchers attempted machine learning
with three dimensional information considering it as a vector [7], [8]. The corresponding learning algorithms
have restrictions on weight matrix and a vector does not provide freedom like a complex number, as in
CVNN [8]. Thus, it is very demanding to have neural network, which may promptly process different high
dimensional parameters as numbers and can be simply incorporated in various applications of intelligent
machine design, like CVNN [9], [2]-[3]. In the enhancement of higher order number systems the complex
numbers (2D), quaternions (4D), octaves (8D), sedenions (16D) were developed by mathematicians in the
past but there is no number system in three dimensions [10]. The researches [1-3, 6]also elaborate that the

 ISSN: 2252-8814

IJAAS Vol. 7, No. 2, June 2018: 177 – 190

178

CVNN has outperformed over RVNN even for real-valued problems, therefore we propose to exploit
quaternions in neural network to process three dimensional problems.

The neurocomputing with high dimensional number systems will definitely overcome from learning
and generalization of huge conventional neural network and lead to lower complexity. The quaternion is one
of the hypercomplex number introduced by Iris mathematician Hamilton [11] which has been extensively
employed in the field of quantum mathematics, physics, computer graphics, signal processing and
control [12-13, 18-17]. This number system has recently popped up in neural network through quaternionic
neurons, as complex or real -valued neurons, to develop efficient machine learning in higher dimensions.
Few attempts have been made in this direction, the orthogonal decision boundary of single quaternionic
neuron has been utilized to solve 4-bit parity problem in [14]; quaternionic MLPs proposed in [15] has the
problem of existence of singularities; quaternion-valued algorithms are proposed for adaptive filtering [18].
[17]; a basic work for quaternionic-valued neural network with sigmoidal activation function is presented in
[18, 19]. In this paper, we present not only simple, straightforward, but potential machine learning algorithm
for sufficient general structure of the quaternionic domain neural network (QDNN) but also demonstrate the
evaluation over the wide spectrum of applications, like function approximation, motion interpretation and
recognition in space. The parameters in QDNN, like synaptic weights, biases, inputs-outputs signals and
internal potentials are quaternions and represented as quaternion matrix, in multilayer neural network.
Although, Hamilton proposed quaternionic numbers (𝒒 = 𝑞0 + 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌) for 4D number system
[11], but it can also bring into play any 3D information in the space after equating its real part zero. The
presented learning algorithm based on the error backpropagation for QDNN can efficiently solve any typical
class of problems in 3D and 4D. The analytic [1, 8] or split type [1], [5], [7] activation functions have been
chosen for complex-valued neuron which have their own issues concerning boundedness and analyticity.
Therefore, selection of suitable activation function for neuron dealing with quaternion is one of the important
concerns. The split type function may not be appropriate when analyticity is concerned, similarly the analytic
function is not suitable when the singularity arises. The presented QDNN prefer boundednes over analyticity
and use “split-type” activation function. The QDNN outperform with lesser number of neurons and faster
learning where conventional real-valued neural network (RVNN) lacks. The quaternionic-valued neural
network (QDNN) has an ability to learn and generalize 3D motion of objects and recognition of the point
cloud object, but RVNN cannot, because QDNN has ability to capture and maintain phase information of
each point during the learning and generalization.

This paper investigates the general structure of QDNN with learning algorithm through simulation
on various benchmark problems of different sphere of influence. The sections and sub-sections of the paper
are organized as follows: The section 2, presents a complete machine learning framework with pseudo code
of learning in quaternionic domain. Section 3 evaluates the learning and generalization capability through
function approximations, linear transformations and 3D face recognition. Section 4 presents the final
conclusion and future scope of the work.

2. MACHINE LEARNING IN QUATERNIONIC DOMAIN

A quaternionic number system is the straightforward extension of real and complex number system,
where four components are incorporated in single number; the first component acts as real and other three as
imaginary with unit vectors (𝒊, 𝒋, 𝒌). These imaginary components overlie on the axes in three dimensional
space [11, 12]. A quaternionic variable (𝒒 = 𝑞0 + 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌) consists of a real component (𝑞0) and
three imaginary components (𝑞1,𝑞2,𝑞3). Its bases (𝒊, 𝒋,𝒌) are orthogonal special vectors. Thus, they follow
the properties as 𝒊2 = 𝒋2 = 𝒌2 = −1 and cross product properties as 𝒊 × 𝒋 = −(𝒋 × 𝒊) = 𝒌, 𝒋 × 𝒌 = −(𝒌 ×
𝒋) = 𝒊, 𝒌 × 𝒊 = −(𝒊 × 𝒌) = 𝒋. In a prominent representation, a quaternion (𝒒) can be expressed in the form
of a matrix (quaternionic matrix):

𝒒 = �

𝑞0
−𝑞1
−𝑞2
−𝑞3

𝑞1
𝑞0
𝑞3
−𝑞2

𝑞2
−𝑞3
𝑞0
𝑞1

𝑞3
𝑞2
−𝑞1
𝑞0

�.

(1)

The bold type letter denotes quaternionic variable or quaternionic matrix. The conjugate of

quaternionic variable (𝒒∗ = 𝑞0 − 𝑞1𝒊 − 𝑞2𝒋 − 𝑞3𝒌) is similar to complex conjugate and the conjugate of
quaternionic matrix denotes the transpose of the quaternionic matrix, defined as:

IJAAS ISSN: 2252-8814

On the High Dimentional Information Processing in Quaternionic Domain… (Sushil Kumar)

179

𝒒∗ = 𝒒𝑇 = �

𝑞0
−𝑞1
−𝑞2
−𝑞3

𝑞1
𝑞0
𝑞3
−𝑞2

𝑞2
−𝑞3
𝑞0
𝑞1

𝑞3
𝑞2
−𝑞1
𝑞0

�

𝑇

= �

𝑞0
𝑞1
𝑞2
𝑞3

−𝑞1
𝑞0
−𝑞3
𝑞2

−𝑞2
𝑞3
𝑞0
−𝑞1

−𝑞3
−𝑞2
𝑞1
𝑞0

�.

(2)

The machine learning optimization technique incorporates the basic operations of quaternion

algebra [11, 12]. The addition and subtraction of two quaternionic matrices 𝒒 and 𝒓 cab be obtained simply
as matrix operations. The multiplication of two quaternionic matrices 𝒒 and 𝒓 does not follow the
commutative property (𝒒𝒓 ≠ 𝒓𝒒). The inner product of two quaternionic matrices 𝒒 and 𝒓 is expressed by:

𝒒⊙ 𝒓 = �

𝑞0
−𝑞1
−𝑞2
−𝑞3

𝑞1
𝑞0
𝑞3
−𝑞2

𝑞2
−𝑞3
𝑞0
𝑞1

𝑞3
𝑞2
−𝑞1
𝑞0

� ⊙ �

𝑟0
−𝑟1
−𝑟2
−𝑟3

𝑟1
𝑟0
𝑟3
−𝑟2

𝑟2
−𝑟3
𝑟0
𝑟1

𝑟3
𝑟2
−𝑟1
𝑟0

� = �

𝑞0𝑟0
𝑞1𝑟1
𝑞2𝑟2
𝑞3𝑟3

𝑞1𝑟1
𝑞0𝑟0
𝑞3𝑟3
𝑞2𝑟2

𝑞2𝑟2
𝑞3𝑟3
𝑞0𝑟0
𝑞1𝑟1

𝑞3𝑟3
𝑞2𝑟2
𝑞1𝑟1
𝑞0𝑟0

�.

(3)

The norm of quaternionic matrix 𝒒 is expressed as:

‖𝒒‖ =
1
2
��𝑑𝑑𝑑𝑑(𝒒𝒒𝑇) = �𝑞02 + 𝑞12 + 𝑞22 + 𝑞32

(4)

2.1. Learning in Quaternionic Domain Neural Networks

Let a three layer (𝐿 −𝑀 −𝑁) QDNN possesses L inputs; M and N quaternionic neurons in hidden
and output layers respectively. All inputs, outputs, weights and biases signals are considered as quaternionic
matrices, as represented in Eq. (1). The derivation of optimization technique incorporates the basic operations
of quaternion algebra which present the compact and the generalized derivation of the backpropagation
algorithm (QDBP) of three-layer network. The bold letters denote the quternionic matrix or matrix containing
quaternionic matrices as elements.

2.1.1. Forward Pass

Let us consider 𝐼𝑙𝑟, 𝐼𝑙𝑥, 𝐼𝑙
𝑦, 𝐼𝑙𝑧 be the 4D quaternionic input of 𝑙𝑡ℎ(𝑙 = 1 … 𝐿) neuron in the input layer

of the network. The quaternionic input can be expressed as a quaternionic matrix (𝑰𝑙):

𝑰𝑙 =

⎣
⎢
⎢
⎢
⎡
𝐼𝑙𝑟

−𝐼𝑙𝑥

−𝐼𝑙
𝑦

−𝐼𝑙𝑧

𝐼𝑙𝑥

𝐼𝑙𝑟
𝐼𝑙𝑧

−𝐼𝑙
𝑦

𝐼𝑙
𝑦

−𝐼𝑙𝑧
𝐼𝑙𝑟

𝐼𝑙𝑥

𝐼𝑙𝑧

𝐼𝑙
𝑦

−𝐼𝑙𝑥

𝐼𝑙𝑟 ⎦
⎥
⎥
⎥
⎤
.

(5)

The matrix of inputs (𝑰) at the input layer of the network is defined by: 𝑰 = [𝑰1 𝑰2 𝑰3 ⋯ 𝑰𝐿]𝑇

 (6)

The initialization of synaptic connection weights 𝒘𝑚𝑙 and 𝒔𝑛𝑚 are defined for 𝑙𝑡ℎ input to 𝑚𝑡ℎ(𝑚 =
1 …𝑀) hidden neuron pair and for 𝑚𝑡ℎ hidden to 𝑛𝑡ℎ(𝑛 = 1 …𝑁) output neuron pair of network
respectively. These weights are presented in quaternionic matrices containing a real and other three
imaginary components as follows:

𝒘𝑚𝑙 =

⎣
⎢
⎢
⎢
⎡
𝑤𝑚𝑙𝑟

−𝑤𝑚𝑙𝑥

−𝑤𝑚𝑙
𝑦

−𝑤𝑚𝑙𝑧

𝑤𝑚𝑙𝑥

𝑤𝑚𝑙𝑟
𝑤𝑚𝑙𝑧

−𝑤𝑚𝑙
𝑦

𝑤𝑚𝑙
𝑦

−𝑤𝑚𝑙𝑧
𝑤𝑚𝑙𝑟

𝑤𝑚𝑙𝑥

𝑤𝑚𝑙𝑧

𝑤𝑚𝑙
𝑦

−𝑤𝑚𝑙𝑥

𝑤𝑚𝑙𝑟 ⎦
⎥
⎥
⎥
⎤
.

(7)

𝒔𝑛𝑚 =

⎣
⎢
⎢
⎡
𝑠𝑛𝑚𝑟
−𝑠𝑛𝑚𝑥

−𝑠𝑛𝑚
𝑦

−𝑠𝑛𝑚𝑧

𝑠𝑛𝑚𝑥
𝑠𝑛𝑚𝑟
𝑠𝑛𝑚𝑧

−𝑠𝑛𝑚
𝑦

𝑠𝑛𝑚
𝑦

−𝑠𝑛𝑚𝑧
𝑠𝑛𝑚𝑟
𝑠𝑛𝑚𝑥

𝑠𝑛𝑚𝑧

𝑠𝑛𝑚
𝑦

−𝑠𝑛𝑚𝑥
𝑠𝑛𝑚𝑟 ⎦

⎥
⎥
⎤
.

(8)

Similarly, the initialization of biases 𝜶𝑚 and 𝜷𝑛 are defined for 𝑚𝑡ℎ hidden and 𝑛𝑡ℎ output neuron of

network:

 ISSN: 2252-8814

IJAAS Vol. 7, No. 2, June 2018: 177 – 190

180

𝜶𝑚 =

⎣
⎢
⎢
⎡
𝛼𝑚𝑟
−𝛼𝑚𝑥

−𝛼𝑚
𝑦

−𝛼𝑚𝑧

𝛼𝑚𝑥
𝛼𝑚𝑟
𝛼𝑚𝑧

−𝛼𝑚
𝑦

𝛼𝑚
𝑦

−𝛼𝑚𝑧
𝛼𝑚𝑟
𝛼𝑚𝑥

𝛼𝑚𝑧

𝛼𝑚
𝑦

−𝛼𝑚𝑥
𝛼𝑚𝑟 ⎦

⎥
⎥
⎤
.

(9)

𝜷𝑛 =

⎣
⎢
⎢
⎡
𝛽𝑛𝑟
−𝛽𝑛𝑥

−𝛽𝑛
𝑦

−𝛽𝑛𝑧

𝛽𝑛𝑥
𝛽𝑛𝑟
𝛽𝑛𝑧

−𝛽𝑛
𝑦

𝛽𝑛
𝑦

−𝛽𝑛𝑧
𝛽𝑛𝑟
𝛽𝑛𝑥

𝛽𝑛𝑧

𝛽𝑛
𝑦

−𝛽𝑛𝑥
𝛽𝑛𝑟 ⎦

⎥
⎥
⎤

(10)

The internal potential matrix 𝑼, for neurons (1 .. M) at hidden layer of the network is defined as:

𝑼 = 𝑾𝑰 + 𝜶.

(11)

⎣
⎢
⎢
⎢
⎡
𝑼1
𝑼2
𝑼3
⋮
𝑼𝑀⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝒘11
𝒘21
𝒘31
⋮

𝒘𝑀1

𝒘12
𝒘22
𝒘32
⋮

𝒘𝑀2

𝒘13
𝒘23
𝒘33
⋮

𝒘𝑀3

…
…
…

…

𝒘1𝐿
𝒘2𝐿
𝒘3𝐿
⋮

𝒘𝑀𝐿⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑰1
𝑰2
𝑰3
⋮
𝑰𝐿⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
𝜶1
𝜶2
𝜶3
⋮
𝜶𝑀⎦

⎥
⎥
⎥
⎤
.

(12)

where, elements of weight matrix 𝑾 contains corresponding weights between input to hidden neurons and
elements of bias matrix 𝜶 contains biases of hidden neurons. Let 𝑓 be an activation function and 𝑓′ be its
derivative. The output matrix (𝑶) is obtained by split-type activation function over internal potential matrix
(𝑼) at hidden layer:

O=f(U).

(13)

[𝑶1 𝑶2 … 𝑶𝑚⋯𝑶𝑀]𝑇 = [𝑓(𝑼1) 𝑓(𝑼2) … 𝑓(𝑼𝑚)⋯𝑓(𝑼𝑀)]𝑇 . (14)

where,

𝑶𝑚 = 𝑓(𝑼𝑚) =

⎣
⎢
⎢
⎡
𝑓(𝑈𝑚𝑟)
𝑓(−𝑈𝑚𝑥)
𝑓(−𝑈𝑚

𝑦)
𝑓(−𝑈𝑚𝑧)

𝑓(𝑈𝑚𝑥)
𝑓(𝑈𝑚𝑟)
𝑓(𝑈𝑚𝑧)
𝑓(−𝑈𝑚

𝑦)

𝑓(𝑈𝑚
𝑦)

𝑓(−𝑈𝑚𝑧)
𝑓(𝑈𝑚𝑟)
𝑓(𝑈𝑚𝑥)

𝑓(𝑈𝑚𝑧)
𝑓(𝑈𝑚

𝑦)
𝑓(−𝑈𝑚𝑥)
𝑓(𝑈𝑚𝑟) ⎦

⎥
⎥
⎤
.

(15)

The internal potential matrix 𝑽 at output layer of the network is defined as:

𝑽 = 𝑺𝑶 + 𝜷. (16)

⎣
⎢
⎢
⎢
⎡
𝑽1
𝑽2
𝑽3
⋮
𝑽𝑁⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝒔11
𝒔21
𝒔31
⋮
𝒔𝑁1

𝒔12
𝒔22
𝒔32
⋮
𝒔𝑁2

𝒔13
𝒔23
𝒔33
⋮
𝒔𝑁3

…
…
…

…

𝒔1𝑀
𝒔2𝑀
𝒔3𝑀
⋮

𝒔𝑁𝑀⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑶1
𝑶2
𝑶3
⋮
𝑶𝑀⎦

⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
𝜷1
𝜷2
𝜷3
⋮
𝜷𝑁⎦

⎥
⎥
⎥
⎤

.

(17)

where, elements of weight matrix 𝑺 possesses strength of synaptic connections between hidden and output
neurons and column vector 𝜷 possesses all quaternionic biases of respective output neurons. The output
matrix (𝒀) is obtained by applying split-type activation function over internal potential matrix (𝑽) at the
output layer:

𝒀 = 𝑓(𝑽).

(18)

[𝒀1 𝒀2 𝒀3⋯𝒀𝑁]𝑇 = [𝑓(𝑽1) 𝑓(𝑽2) 𝑓(𝑽3)⋯𝑓(𝑽𝑁)]𝑇 . (19)

IJAAS ISSN: 2252-8814

On the High Dimentional Information Processing in Quaternionic Domain… (Sushil Kumar)

181

where,

𝒀𝑛 = 𝑓(𝑽𝑛) =

⎣
⎢
⎢
⎡
𝑓(𝑉𝑛𝑟)
𝑓(−𝑉𝑛𝑥)
𝑓(−𝑉𝑛

𝑦)
𝑓(−𝑉𝑛𝑧)

𝑓(𝑉𝑛𝑥)
𝑓(𝑉𝑛𝑟)
𝑓(𝑉𝑛𝑧)
𝑓(−𝑉𝑛

𝑦)

𝑓(𝑉𝑛
𝑦)

𝑓(−𝑉𝑛𝑧)
𝑓(𝑉𝑛𝑟)
𝑓(𝑉𝑛𝑥)

𝑓(𝑉𝑛𝑧)
𝑓(𝑉𝑛

𝑦)
𝑓(−𝑉𝑛𝑥)
𝑓(𝑉𝑛𝑟) ⎦

⎥
⎥
⎤
.

(20)

2.1.2. Backward Pass

In order to develop a QDNN based learning machine, we present the derivation of the error
backpropagation learning algorithm in quaternion domain (QDBP) through minimization of average mean
square error (𝐸) of the network:

𝐸 =
1

8𝑁
�𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑𝑑𝑛𝑑𝑙𝑚𝑑𝑑𝑟𝑑𝑑(𝒆)𝑑𝑑𝑑𝑑𝑑𝑛𝑑𝑙𝑚𝑑𝑑𝑟𝑑𝑑(𝒆∗)�
4𝑁

𝑛=1

=
1

8𝑁
�𝑑𝑑𝑑𝑑

⎝

⎜⎜
⎛
𝑑𝑑𝑑𝑑𝑑𝑛𝑑𝑙𝑚𝑑𝑑𝑟𝑑𝑑

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
𝒆1
𝒆2
𝒆3
⋮
𝒆𝑁⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞
𝑑𝑑𝑑𝑑𝑑𝑛𝑑𝑙𝑚𝑑𝑑𝑟𝑑𝑑

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
𝒆1∗
𝒆2∗
𝒆3∗
⋮
𝒆𝑁∗ ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞

⎠

⎟⎟
⎞4𝑁

𝑛=1

=
1

8𝑁
�𝑑𝑑𝑑𝑑

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
𝒆1

0

𝒆2

𝒆3

 ⋱

0

 𝒆𝑁⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡𝒆1

∗

0

𝒆2∗

𝒆3∗

 ⋱

0

 𝒆𝑁∗ ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞

4𝑁

𝑛=1

.

(21)

where, ∗ denotes quaternionic conjugate (as defined in Eq. (2)) and the output error matrix (𝒆) presents the
difference between actual (𝒀) and desired (𝒀𝑫) output at output layer, defined as:

𝒆 = 𝒀 − 𝒀𝑫.

(22)

⎣
⎢
⎢
⎢
⎡
𝒆1
𝒆2
𝒆3
⋮
𝒆𝑁⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝒀1
𝒀2
𝒀3
⋮
𝒀𝑁⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡𝒀1

𝐷

𝒀2𝐷

𝒀3𝐷
⋮
𝒀𝑁𝐷⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝒀1 − 𝒀1𝐷

𝒀2 − 𝒀2𝐷

𝒀3 − 𝒀3𝐷
⋮

𝒀𝑁 − 𝒀𝑁𝐷⎦
⎥
⎥
⎥
⎤

.

(23)

The update equations of weight and bias matrices are obtained by employing a gradient decent

optimization approach on MSE, mean square error (𝐸). The weight update matrix (∆𝑺) between hidden-
output layers and bias update matrix (∆𝜷) at the output layer of the network are presented as follows:

∆𝜷 =

⎣
⎢
⎢
⎢
⎡
∆𝜷1
∆𝜷2
∆𝜷3
⋮

∆𝜷𝑁⎦
⎥
⎥
⎥
⎤

=
𝜂
𝑁

⎣
⎢
⎢
⎢
⎡ 𝒆1 ⊙ 𝑓′(𝑽1)
𝒆2 ⊙ 𝑓′(𝑽2)
𝒆3 ⊙ 𝑓′(𝑽3)

⋮
𝒆𝑁 ⊙ 𝑓′(𝑽𝑁)⎦

⎥
⎥
⎥
⎤

.

(24)

∆𝑺 =

⎣
⎢
⎢
⎢
⎡
∆𝒔11
∆𝒔21
∆𝒔31
⋮

∆𝒔𝑁1

∆𝒔12
∆𝒔22
∆𝒔32
⋮

∆𝒔𝑁2

∆𝒔13
∆𝒔23
∆𝒔33
⋮

∆𝒔𝑁3

…
…
…

…

∆𝒔1𝑀
∆𝒔2𝑀
∆𝒔3𝑀
⋮

∆𝒔𝑁𝑀⎦
⎥
⎥
⎥
⎤

=
𝜂
𝑁

⎣
⎢
⎢
⎢
⎡ 𝒆1 ⊙ 𝑓′(𝑽1)
𝒆2 ⊙ 𝑓′(𝑽2)
𝒆3 ⊙ 𝑓′(𝑽3)

⋮
𝒆𝑁 ⊙ 𝑓′(𝑽𝑁)⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑶1
∗

𝑶2
∗

𝑶3
∗

⋮
𝑶𝑁
∗ ⎦
⎥
⎥
⎥
⎤
𝑇

.

(25)

 ISSN: 2252-8814

IJAAS Vol. 7, No. 2, June 2018: 177 – 190

182

where, 𝜂 ∈ ℝ+ denotes a learning rate and ⊙ denotes element-wise multiplication of two
quaternionic matrices (as defined in Eq. (3)). Similarly, weight update matrix (∆𝑾) between input-hidden
layers and bias update matrix (∆𝜶) at hidden layer of the network are presented as follows:

∆𝜶 =

⎣
⎢
⎢
⎢
⎡
∆𝜶1
∆𝜶2
∆𝜶3
⋮

∆𝜶𝑀⎦
⎥
⎥
⎥
⎤

=
𝜂
𝑁

⎝

⎜⎜
⎛

⎣
⎢
⎢
⎢
⎡
∆𝒔11
∆𝒔21
∆𝒔31
⋮

∆𝒔𝑁1

∆𝒔12
∆𝒔22
∆𝒔32
⋮

∆𝒔𝑁2

∆𝒔13
∆𝒔23
∆𝒔33
⋮

∆𝒔𝑁3

…
…
…

…

∆𝒔1𝑀
∆𝒔2𝑀
∆𝒔3𝑀
⋮

∆𝒔𝑁𝑀⎦
⎥
⎥
⎥
⎤
𝑇

⎣
⎢
⎢
⎢
⎡ 𝒆1 ⊙ 𝑓′(𝑽1)
𝒆2 ⊙ 𝑓′(𝑽2)
𝒆3 ⊙ 𝑓′(𝑽3)

⋮
𝒆𝑁 ⊙ 𝑓′(𝑽𝑁)⎦

⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞
⊙

⎣
⎢
⎢
⎢
⎡𝑓

′(𝑼1)
𝑓′(𝑼2)
𝑓′(𝑼3)

⋮
𝑓′(𝑼𝑀)⎦

⎥
⎥
⎥
⎤

.

(26)

∆𝑾 =

⎣
⎢
⎢
⎢
⎡
∆𝒘11
∆𝒘21
∆𝒘31
⋮

∆𝒘𝑀1

∆𝒘12
∆𝒘22
∆𝒘32
⋮

∆𝒘𝑀2

∆𝒘13
∆𝒘23
∆𝒘33
⋮

∆𝒘𝑀3

…
…
…

…

∆𝒘1𝐿
∆𝒘2𝐿
∆𝒘3𝐿
⋮

∆𝒘𝑀𝐿⎦
⎥
⎥
⎥
⎤

=
𝜂
𝑁

⎝

⎜
⎜
⎛

⎝

⎜⎜
⎛

⎣
⎢
⎢
⎢
⎡
∆𝒔11
∆𝒔21
∆𝒔31
⋮

∆𝒔𝑁1

∆𝒔12
∆𝒔22
∆𝒔32
⋮

∆𝒔𝑁2

∆𝒔13
∆𝒔23
∆𝒔33
⋮

∆𝒔𝑁3

…
…
…

…

∆𝒔1𝑀
∆𝒔2𝑀
∆𝒔3𝑀
⋮

∆𝒔𝑁𝑀⎦
⎥
⎥
⎥
⎤
𝑇

⎣
⎢
⎢
⎢
⎡ 𝒆1 ⊙ 𝑓′(𝑽1)
𝒆2 ⊙ 𝑓′(𝑽2)
𝒆3 ⊙ 𝑓′(𝑽3)

⋮
𝒆𝑁 ⊙ 𝑓′(𝑽𝑁)⎦

⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞
⊙

⎣
⎢
⎢
⎢
⎡𝑓

′(𝑼1)
𝑓′(𝑼2)
𝑓′(𝑼3)

⋮
𝑓′(𝑼𝑀)⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎞

⎣
⎢
⎢
⎢
⎡
𝑰1∗
𝑰2∗
𝑰3∗
⋮
𝑰𝐿∗⎦
⎥
⎥
⎥
⎤
𝑇

.

(27)

2.2. Learning algorithm in quaternionic domain

For the sake of simplicity and better understanding, we further present an algorithm
QDNN_TRAIN(.) for training of quaternionic domain neural network (QDNN), which is elaborated by
procedures QDNN_INIT(.), QDNN_FORWARD(.) and QDNN_BACKWARD(.). The learning and
generalization ability of a three-layered neural structure is obtained through optimization of mean square
error. The procedure QDNN_INIT(.) randomly initializes the weight and bias matrices in considered
network. It calls the RANDOM_QM(a, b) procedure which randomly generates the quaternionic matrix of
each interconnection weight and bias of neuron in the range from a to b. The QDNN_FORWARD(.)
procedure is intended to implement forward pass of QDNN, hence generate internal potentials (𝑼,𝑽) and
hence outputs (𝑶,𝒀) matrices at respective layers. The ACTIVATION_FUNCTION(.) limits the output of
corresponding neuron of the network. For updates weight and bias matrices, QDNN_BACKWARD(.) is
developed for the backward pass of QDNN. All required procedures are presented in pseudo code are as
follows:

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 QDNN_TRAIN(𝑰,𝒀𝑫, 𝜂, 𝜖)
𝐛𝐩𝐛𝐛𝐛
 QDNN_INIT(𝐿,𝑀,𝑁);
 𝐰𝐰𝐛𝐰𝐩 𝐸𝑇 > 𝜖 𝐩𝐩
 𝐟𝐩𝐩 𝑑 ← 1 𝐩𝐛𝐮𝐛𝐰 𝑆 = 𝑙𝑙𝑛𝑑𝑑ℎ (𝑰) 𝐩𝐩
 𝑼,𝑶,𝑽,𝒀 ← QDNN_FORWARD(𝑾,𝜶,𝑺,𝜷, 𝑰);
 𝒆 ← 𝒀 − 𝒀𝑫;
 𝐸𝑖 ← 1

8𝑁
∑ 𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑛𝑑𝑙𝑚𝑑𝑑𝑟𝑑𝑑(𝒆)𝑑𝑑𝑑𝑑𝑑𝑛𝑑𝑙𝑚𝑑𝑑𝑟𝑑𝑑(𝒆∗)); 4𝑁
𝑛=1

 QDNN_BACKWARD(𝑾,𝜶,𝑼,𝑶,𝑺,𝜷,𝑽,𝒀, 𝜂, 𝒆)
 𝐸𝑇 ←

1
𝑆
∑ 𝐸𝑖;𝑆
𝑖=1

𝐩𝐛𝐩

IJAAS ISSN: 2252-8814

On the High Dimentional Information Processing in Quaternionic Domain… (Sushil Kumar)

183

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 QDNN_INIT(𝐿,𝑀,𝑁)
𝐛𝐩𝐛𝐛𝐛
 𝐟𝐩𝐩 𝑚 ← 1 𝐩𝐛𝐮𝐛𝐰 𝑀 𝐩𝐩
 𝐟𝐩𝐩 𝑙 ← 1 𝐩𝐛𝐮𝐛𝐰 𝐿 𝐩𝐩
 𝒘𝑚𝑙 ← RANDOM_QM(𝑑, 𝑏);
 𝜶𝑚 ← RANDOM_QM(𝑑, 𝑏);
 𝐟𝐩𝐩 𝑛 ← 1 𝐩𝐛𝐮𝐛𝐰 𝑁 𝐩𝐩
 𝐟𝐩𝐩 𝑚 ← 1 𝐩𝐛𝐮𝐛𝐰 𝑀 𝐩𝐩
 𝒔𝑛𝑚 ← RANDOM_QM(𝑑, 𝑏);
 𝜷𝑛 ← RANDOM_QM(𝑑, 𝑏);
𝐩𝐛𝐩

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 QDNN_FORWARD(𝑾,𝜶,𝑺,𝜷, 𝑰)
𝐛𝐩𝐛𝐛𝐛
 𝑼 ← 𝑾𝑰 + 𝜶;
 𝑶 ← ACTIVATION_FUNCTION(𝑼);
 𝑽 ← 𝑺𝑶 + 𝜷;
 𝒀 ← ACTIVATION_FUNCTION(𝑽);
𝐩𝐛𝐩

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 QDNN_BACKWARD(𝑾,𝜶,𝑼,𝑶,𝑺,𝜷,𝑽,𝒀, 𝜂, 𝒆)
𝐛𝐩𝐛𝐛𝐛
 ∆𝜷 ← (𝜂/𝑁)𝒆⊙ DER_ACTIVATION(𝑽);
 ∆𝑺 ← (𝜂/𝑁)(𝒆⊙ DER_ACTIVATION(𝑽))𝑶∗𝑇;

 ∆𝜶 ← (𝜂/𝑁)(𝑺𝑇(𝒆⊙ DER_ACTIVATION(𝑽))) ⊙ DER_ACTIVATION(𝑼);
 ∆𝑾 ← (𝜂/𝑁)((𝑺𝑇(𝒆⊙ DER_ACTIVATION(𝑽))) ⊙ DER_ACTIVATION(𝑼))𝑰∗𝑇;

 𝜷 ← 𝜷 + ∆𝜷;
 𝑺 ← 𝑺 + ∆𝑺;
 𝜶 ← 𝜶 + ∆𝜶;
 𝑾 ←𝑾 + ∆𝑾;
𝐩𝐛𝐩

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 RANDOM_QM(𝑑,𝑏)
𝐛𝐩𝐛𝐛𝐛
 𝑞0 ← [𝑑 + (𝑏 − 𝑑)]RAND(1);
 𝑞1 ← [𝑑 + (𝑏 − 𝑑)]RAND(1);
 𝑞2 ← [𝑑 + (𝑏 − 𝑑)]RAND(1);
 𝑞3 ← [𝑑 + (𝑏 − 𝑑)]RAND(1);

 𝒒 ← �

𝑞0
−𝑞1
−𝑞2
−𝑞3

𝑞1
𝑞0
𝑞3
−𝑞2

𝑞2
−𝑞3
𝑞0
𝑞1

𝑞3
𝑞2
−𝑞1
𝑞0

� ;

𝐩𝐛𝐩

𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 ACTIVATION_FUNCTION(𝒒)
𝐛𝐩𝐛𝐛𝐛
 𝑸 = 𝑓(𝒒);
𝐩𝐛𝐩

3. PERFORMANCE EVALUATION OF LEARNING MACHINE THROUGH BENCHMARK

PROBLEMS
In this section, we evaluate the effectiveness of learning machine through a wide spectrum of

benchmark problems: function approximations, linear transformations, and 3D face recognition. The
components of all quaternionic weights and biases are randomly initialized in the range -1 to 1. The
quaternionic variable 𝒒0 = 1 + 𝒊 + 𝒋 + 𝒌 is assumed as bias input and the hyperbolic tangent function is used

 ISSN: 2252-8814

IJAAS Vol. 7, No. 2, June 2018: 177 – 190

184

as activation function. A comparative performance between first generation ‘real-valued neural network’ and
second generation ‘quaternionic-valued neural network’ with respective algorithms real-valued
backpropagation (RVBP) and quaternionic-domain backpropagation (QDBP) is thoroughly evaluated for
function approximations by statistical parameters like error variance, correlation, and AIC [20]. Another class
of benchmark problems, the learning of linear transformations (rotation, scaling, and translation and their
combinations), is promising one as training is performed through a few sets of point lying on the line and
trained network is able to generalize over complicated 3D geometric structures. In last subsection, two
primary experiments are presented for 3D face recognition; surely it will be stepping stone for prospective
researchers to extend this novel technique over a large data set. In last two experiments, each point is
represented by a quaternion which contains intended components along with phase information embedded
within a number, therefore RVNN is not able to perform such experiments.

3.1. Function Approximations
3.1.1. The Lorenz System

The dynamics of the Lorenz system [21] is presented by the system of three differential equations
which shows the chaotic behavior depending on its parameter values.

dx/dt=σ(y-x)
dy/dt=x(ρ-z)-y

 dz/dt=xy-βz

(28)

where, the symbols 𝜎, 𝜌 and 𝛽 are parameters of the Lorenz’s system. On the basis of its parameters

(𝜎 = 15, 𝜌 = 28 and 𝛽 = 8/3), this system (Eq. (28)) generates 6537 terms of the time series with initial
condition (𝑑 = 0.7, 𝑦 = 0.1, 𝑧 = 0.1) using fourth order Runge-Kutta method. Each term can be considered
in the form of quaternionic input as 0 + 𝑑𝒊 + 𝑦𝒋 + 𝑧𝒌. Further, the normalization is performed in the range
from -0.8 to 0.8. The first 500 terms of the time series have been used for training and rest for testing of
three-layered RVNN (3-11-3) and QDNN networks (1-3-1) separately. Experiments demonstrate that the
second network requires a lesser number of training cycles to achieve the desired MSE, as presented in Table
1. Figure. 1 shows the testing results of the networks trained by QDBP for prediction of time series of Lorenz
system. Table 1 demonstrates the significant outperformance of QDNN in terms of network topology,
training cycles, testing MSE, error variance, correlation and AIC.

Figure. 1. 3D plot of the Lorenz system tested by the QDNN network trained through QDBP

Table 1. Comparison of training and testing performance for Lorenz system
Neuron Type Real-valued Quaternionic-valued
Algorithm RVBP QDBP
Network Topology 3-11-3 1-3-1
MSE Training 0.0015 0.0006
Average Epoch 15000 9000
MSE Testing 0.0042 0.0012
Error Variance 0.0026 0.0009
Correlation 0.87327 0.9323
AIC -6.3329 -7.4503

IJAAS ISSN: 2252-8814

On the High Dimentional Information Processing in Quaternionic Domain… (Sushil Kumar)

185

3.1.2. The Chua’s Circuit
Chua’s circuit is the simplest autonomous electronic circuit containing registers, capacitors and

inductors that exhibit the chaotic behavior under specific parametric conditions [22]. This circuit satisfies the
chaotic criterion which contains one or more non-linear elements, one or more active registers and three or
more energy storage devices. It uses the one chua’s diode as non-linear element, one locally active register
and two capacitors and one inductor as energy storage devices. The dynamics of Chua’s circuit are governed
by three state equations as

𝑑𝑥
𝑑𝑡

= 𝛼[𝑦 − 𝑑 − ℎ(𝑑)]

 𝑑𝑦
𝑑𝑡

= 𝑑 − 𝑦 + 𝑧

 𝑑𝑧

𝑑𝑡
= −𝛽𝑦 − 𝛾𝑧

(29)

where, ℎ(𝑑) presents the electrical response of non-linear register defined as

 ℎ(𝑑) = 𝑚1𝑑 + 1

2
(𝑚0 −𝑚1)(|𝑑 + 1| − |𝑑 − 1|)

and 𝛼, 𝛽, 𝛾, 𝑚0 and 𝑚1 are the constant parameters. The symbols 𝑑, 𝑦 and 𝑧 are voltages across two
capacitors and an inductor respectively, and their combinations show the chaotic attractor in three
dimensions. The double scrolled chaotic attractor [22] is obtained with the parameters 𝛼 = 15.6, 𝛽 = 28,
𝛾 = 0, 𝑚0 = −1.143 and 𝑚1 = −0.714. The chaotic time series has been obtained from the simulation of
the system (Eq. 29) with time step 0.1 Sec and initial voltages 𝑑=0.1, 𝑦 = 0.1 and 𝑧 = 0.1 by using fourth
order Runge-Kutta method. The normalization of input-output imaginary quaternions is done in -0.8 to 0.8
(real part is zero and imaginary parts (𝑑, 𝑦, 𝑧) present corresponding voltages). A time series containing 500
terms obtained from simulated system has been used to train RVNN and QDNN. The training results of both
networks, in Table 2, demonstrate that QDNN trained by the QDBP algorithm requires a significantly smaller
number of average epochs to achieve the threshold training error than RVBP. The next 500 terms of that time
series have been tested through networks trained by both algorithms. Figure. 2 shows the 3D patterns of
desired and actual data for chaotic behavior of Chua’s circuit. The testing results shown in Table 2 in terms
of error, variance, correlation, and AIC again infer the superiority of QDNN over real-valued neural network.

Figure 2. Testing result of QVNN network trained by QDBP for Chua’s circuit

Table 2. Comparison of training and testing performance for Chua’s circuit
Neuron Type Real-valued Quaternionic-valued

Algorithm RVBP QDBP
Network
Topology 3-12-3 1-3-1

MSE Training 0.0012 0.0008
Average Epoch 10000 7000
MSE Testing 0.0025 0.0017

Error Variance 0.0020 0.0008
Correlation 0.9734 0.9874

AIC -6.5332 -7.0101

 ISSN: 2252-8814

IJAAS Vol. 7, No. 2, June 2018: 177 – 190

186

3.2. Linear Transformations
 In order to evaluate the performance of QDNN, we have considered a three layer neural structure

(2-M-2). This section presents the learning of linear transformations (rotation, scaling, and translation and
their combinations) by QDNN through a few sets of points on the line and generalization over complicated
3D objects. Each quaternionic variable 𝒒𝒊 = 0 + 𝑑𝑖𝒊 + 𝑦𝑖𝒋 + 𝑧𝑖𝒌 undergoes a transformation function (𝑇) and
correspondingly yields a transformed quaternionic variable 𝒒𝒊′ = 0 + 𝑑𝑖′𝒊 + 𝑦𝑖′𝒋 + 𝑧𝑖′𝒌 represented in the
quaternionic matrix as follows:

𝒒𝒊′ = 𝑇(𝒒𝒊) = 𝒂𝒒𝒊 + 𝒃 �𝑑 = 1, 2, 3, …𝑛𝑝�

⎣
⎢
⎢
⎡

0
−𝑑𝑖′

−𝑦𝑖′

−𝑧𝑖′

𝑑𝑖′
0
𝑧𝑖′

−𝑦𝑖′

𝑦𝑖′

−𝑧𝑖′
0
𝑑𝑖′

𝑧𝑖′

𝑦𝑖′

−𝑑𝑖′
0 ⎦
⎥
⎥
⎤

= �

0
−𝑑𝑥
−𝑑𝑦
−𝑑𝑧

𝑑𝑥
0
𝑑𝑧
−𝑑𝑦

𝑑𝑦
−𝑑𝑧

0
𝑑𝑥

𝑑𝑧
𝑑𝑦
−𝑑𝑥

0

� �

0
𝑑𝑖
−𝑦𝑖
−𝑧𝑖

𝑑𝑖
0
𝑧𝑖
−𝑦𝑖

𝑦𝑖
−𝑧𝑖

0
𝑑𝑖

𝑧𝑖
𝑦𝑖
−𝑑𝑖

0

� + �

0
−𝑏𝑥
−𝑏𝑦
−𝑏𝑧

𝑏𝑥
0
𝑏𝑧
−𝑏𝑦

𝑏𝑦
−𝑏𝑧

0
𝑏𝑥

𝑏𝑧
𝑏𝑦
−𝑏𝑥

0

�

where 𝑛𝑝 denotes the number of points that lies on the surface of 3D objects and 𝒂 and 𝒃 are quaternions
such that norm of 𝒂 𝑑. 𝑙. ‖𝒂‖ = �02 + 𝑑12 + 𝑑22 + 𝑑32 denotes the scaling factor. Argument of 𝒂 yields
rotation in 𝒒 while 𝒃 performs translation of 3D object in the distance (‖𝒃‖). The combinations of
transformations facilitate the viewing of 3D objects from different orientations, interpretation of their motion,
etc.

For training on a three layered 2-6-2 QDNN, all experiments consider a straight line in space
containing few input data points (21 points) on line and a reference point (𝑚𝑑𝑑 𝑝𝑑𝑑𝑛𝑑). The set of point
(𝑑,𝑦, 𝑧) lying on line goes to the first input and a second input passes the reference point (𝑑𝑟 ,𝑦𝑟 , 𝑧𝑟). The
incorporation of the reference point provides more information to learning a system which yields better
accuracy. Similarly, the first and second output neurons of output layer result the transformed point
(𝑑′,𝑦′, 𝑧′) on line and transformed reference point (𝑑′𝑟 ,𝑦′𝑟 , 𝑧′𝑟) respectively. The learning of the
transformation is achieved by learning the algorithm presented in section 2.2 with a suitable learning rate.
The trained QDNN is able to generalize over huge number of points cloud data of complicated geometrical
structure like sphere, cylinder, torus and this ability of the network presents the 3D motion interpretation of
objects. It is worthwhile to mention here that learning of phase information is not possible by RVNN hence
such transformation is not possible through RVNN; therefore this section only presents the result obtained by
QDNN.

3.2.1. Similarity Transformation

The learning of QDNN (2-6-2 model) is performed for similarity transformation, through input-
output mapping for scaling factor ½ over the line containing 21 points, referenced in (0,0,0), as shown in
Figure. 3(a). Convergence of mean square error (Figure. 3(b)) shows the smart learning capability of the
proposed network. The training of QDNN with 0.00005 learning rate converges to MSE = 1.005567e-05
after 20000 iterations. The trained network is able to generalize over many complicated standard geometric
structures like sphere (4141 data points), cylinder (2929 data points), and torus (10201 data points) which is
presented in Figure. 4(a), 4(b), and 4(c) respectively.

(a) (b)

Figure 3. (a) Training input-output mapping for scaling with scaling factor ½;
(b) Convergence of mean square error

IJAAS ISSN: 2252-8814

On the High Dimentional Information Processing in Quaternionic Domain… (Sushil Kumar)

187

c
(a) (b) (c)

Figure. 4. Testing results from similarity transformation over (a) sphere, (b) cylinder, and (c) torus.

(a) (b)

Figure 5. (a) Training patterns: input-output mapping shows transformation with scaling factor 1/2, followed

by translation with 0.3 units in positive y-direction (b) Convergence of mean square error

3.2.2. Scaling and translation
The learning of 2-6-2 QDNN is performed in combination of scaling (scaling factor 1/2) and

translation (0.3 unit in positive y-direction), through input-output mapping over the line (21 data points) and
referenced in (0,0,0), as shown in Figure. 5(a). The convergence of QDNN in Figure. 5(b), with learning rate
0.00005, up to 2.58514e-05 mean square error shows the smart learning capability of the proposed learning
machine after 20000 iterations. The trained network is able to generalize well over many complicated
standard geometric structures like sphere (4141 data points), cylinder (2929 data points), and torus (10201
data points) as shown in Figure. 6(a), 6(b), and 6(c) respectively.

(a) (b) (c)

Figure 6. Testing results from similarity transformation through (a) sphere, (b) cylinder, and (c) torus

 ISSN: 2252-8814

IJAAS Vol. 7, No. 2, June 2018: 177 – 190

188

3.2.3. Scaling, translation and rotation
 The learning of QDNN for general linear transformation (scaling factor 1/2, counterclockwise
rotation about the x-axis by 𝜋/2 radian, and translation by (0,0,0.3)) is performed for, through input-output
mapping over straight line and reference (0,0,0), as shown in Figure. 7(a). The 2-6-2 QDNN model is used
for training of these transformations through 21 data points in a straight line. Convergence of mean square
error 1.0e-04 after 20000 iterations is achieved with the 0.00005 learning rate, as shown in Figure. 7(b). The
trained network is also able to generalize over many complicated standard geometric structures like sphere
(4141 data points), cylinder (4141 data points), and torus (10201 data points) as shown in Figure. 8(a), 8(b),
and 8(c) respectively.

(a) (b)

Figure 7. (a) Training mapping patterns through straight line (scaling factor 1/2, counterclockwise rotated

about the x-axis by 𝜋/2 radian, and translated by (0,0,0.3)); (b) Square error during training of straight line
pattern

All transformation experiments promise the intelligent behavior of QDNN for motion interpretation of
3D objects. Further, this novel experiment provides a direction to generalize the motion for intelligent system
design for a variety of operations.

(a) (b) (c)

Figure 8. Generalization of a linear transformation (scaling factor 1/2, counterclockwise rotated about the x-

axis by 𝜋/2 radian, and translated by (0, 0, 0.3) over (a) sphere, (b) cylinder, and (c) torus

3.3. 3D face recognition

This section presents a basic experiment, though with a small data set but its implication is wide for
the applicability of proposed learning machine for 3D recognition. Our method has a great deal to perform
successful recognition in variable head position, orientation, and facial expressions. Two experiments are
conducted here to learn and classify point cloud data of 3D faces using proposed quaternionic domain
backpropagation algorithm. A simple structure of (1-2-1) QDNN with single input-output performs
experiments using only two quaternionic neurons at hidden layer.

IJAAS ISSN: 2252-8814

On the High Dimentional Information Processing in Quaternionic Domain… (Sushil Kumar)

189

Figure. 9. Five 3D faces of same person with different orientation and poses.

The first experiment is performed on a dataset containing 05 faces of the same person (4654 points
cloud data) with different orientation and poses; the learning of QDNN is made with one face (Figure. 9(a))
and testing over all faces. Table 3 presents the testing MSE (mean square error) of all five faces which are
comparable, hence demonstrate that they are faces of same person irrespective of variations in face
orientation and poses. It infers straightforward learning and generalization ability of a simple QDNN which is
not possible by RVNN.

Table 3. Comparison of testing MSE of faces of same person with different orientation
(MSE Training=0.0001)

S. No. Face (Figure) Test error
1. 9(a) 2.4842e-04
2. 9(b) 3.5431e-03
3. 9(c) 5.1153e-03
4. 9(d) 4.5212e-04
5. 9(e) 3.9148e-04

Similarly, the second experiment is performed on a dataset containing 05 faces of different people
(6397 points cloud data); the learning of QDNN is made with one face (Figure. 10(a)) and testing over all
faces. Table 4 presents the testing MSE of each face obtained from trained network, which shows that the
MSE of other four faces are much higher in comparison to the face (Figure. 10(a)) used in training. This
demonstrates that the simple QDNN correctly classifies the faces of same or different person. It again reveals
the learning and generalization capability of a proposed learning machine where real-valued neural network
lacks.

(a) (b) (c) (d) (e)

Figure. 10. Five 3D faces of different persons

Table 4. Comparison of testing MSE of faces of different person (MSE Training = 0.0001)
S. No. Face (Figure) Test error

1. 10(a) 1.8214e-04
2. 10(b) 8.1344e-01
3. 10(c) 3.5709e-00
4. 10(d) 6.2814e-02
5. 10(e) 3.1738e-01

3. CONCLUSION

In this paper, we present an efficient and generalized learning machine for high dimensional
problems and evaluate it with variety of problems of different areas. The proposed neural network with
learning algorithm in quaternionic domain directly process three or four dimension data without the hassle of

 ISSN: 2252-8814

IJAAS Vol. 7, No. 2, June 2018: 177 – 190

190

its different components and phase information among them. The quaternion is the number which possesses
the magnitude of intended components and phase information of each component is embedded in it. Thus,
quaternionic domain neural network (QDNN) leads to simple network structure, efficient learning and better
performance; whereas conventional real-valued neural network (RVNN) deals with individual components
hence need huge topology, slow learning and poor performance. Apart from that RVNN does not work for
problems where it is required to learn and generalize phase information like object recognition and motion or
transformation of objects in space. It is worth to mention here again that proposed machine learns the
composition of transformations through input-output mapping over a line containing a small set of points and
generalize this motion over complex geometrical structure such as sphere, cylinder, and torus. Although, the
problem presented for recognition in 3D imaging is small and basic but it is very encouraging for prospective
researcher due to network simplicity, faster convergence and the result.

REFERENCES
[1] Tripathi BK (2016) On the complex domain deep machine learning for face recognition. Applied Intelligence,

Springer, ISSN: 0924-669X, DOI 10.1007/s10489-017-0902-7.
[2] Nitta T (1997) An extension of the back-propagation algorithm to complex numbers. Neural Networks 10(8):1391–

1415
[3] Muezzinoglu MK, Guzelis C, Zurada JM (2003) A new design method for complex-valued multistate Hopfield

associative memory. IEEE Transaction Neural Networks 14(4):891–899
[4] Nitta T (1992) 3D vector version of the back-propagation algorithm. Int Joint Conf on Neural Networks 2:511–516
[5] Hirose A (2006) Complex-valued neural networks. Springer-Verlag, New Yark
[6] Tripathi BK, Kalra PK (2011) Complex generalized-mean neuron model and its applications. Applied Soft

Computing, Elsevier Science 11(01):768–777
[7] Tripathi BK, Kalra PK (2011) On the learning machine in three dimensional mapping. Neural Computing and

Applications 20:105–111
[8] Tripathi BK, Kalra PK (2011) On efficient learning machine with root power mean neuron in complex domain.

IEEE Transaction on Neural Networks 22(05):727–738
[9] Tripathi BK (2014) High dimensional neurocomputing : growth, appraisal and applications. Springer, London
[10] Hamilton WR (1853) Lectures on quaternions. Hodges and Smith: Dublin, Ireland
[11] Kuipers JB (1998) Quaternions and rotation sequences: a primer with applications to orbits, aerospace and virtual

Reality. Princeton University Press: Princeton, NJ, USA
[12] Hoggar SG (1992) Mathematics for computer graphics. Cambridge University Press: Cambridge, MA, USA
[13] Ujang BC, Took CC, Mandic DP (2011) Quaternion-valued nonlinear adaptive filtering. IEEE Transaction on

Neural Networks 22(8):1193–1206
[14] Wang M, Took CC, Mandic DP (2011) A class of fast quaternion valued variable stepsize stochastic gradient

learning algorithms for vector sensor processes. IJCNN : 2783–2786
[15] Nitta T (2004) A solution to the 4-bit parity problem with a single quaternary neuron. Neural Inf Process Lett Rev

5(2):33–39
[16] Isokawa T1, Nishimura H, Matsui N (2012) Quaternionic multilayer perceptron with local analyticity. Information

3:756–770 doi:10.3390/info3040756
[17] Isokawa T, Kusakabe T, Matsui N, Peper F (2003) Quaternion neural network and its application. LNAI 2774:

318–324
[18] Foggel DB (1991) An information criterion for optimal neural network selection. IEEE Trans. Neural Netw

2(5):490-497
[19] Lorenz EN (1963) Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2):130-141
[20] Chua LO, Matsumoto T, Komuro M (1985) The Double Scroll. IEEE Transactions on Circuits and Systems CAS-

32(8):798-818

http://ci.louisville.edu/zurada/publications/muezzinoglu.tnn.2003.pdf
http://ci.louisville.edu/zurada/publications/muezzinoglu.tnn.2003.pdf

