Real power loss reduction by dolphin swarm algorithm

Kanagasabai Lenin
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India

Article Info

ABSTRACT

In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. Dolphins have numerous remarkable natural distinctiveness and living behavior such as echolocation, information interactions, collaboration, and partition of labor. Merging these natural distinctiveness and living behavior with swarm intelligence has been modeled to solve the reactive power problem. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

Keywords:
Optimal reactive power
Transmission loss
Spinner dolphin

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Kanagasabai Lenin,
Department of EEE,
Prasad V. Potluri Siddhartha Institute of Technology,
Chalasani Nagar, Kanuru, Vijayawada, Andhra Pradesh 520007, India.
Email: gklenin@gmail.com

1. INTRODUCTION

Reactive power problem plays a key role in secure and economic operations of power system. Optimal reactive power problem has been solved by variety of types of methods [1-6]. Nevertheless, numerous scientific difficulties are found while solving problem due to an assortment of constraints. Evolutionary techniques [7-16] are applied to solve the reactive power problem, but the main problem is many algorithms get stuck in local optimal solution & failed to balance the Exploration & Exploitation during the search of global solution. In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. The whole process of dolphin’s predation consists of three stages. In the primary phase, every dolphin separately takes benefit of sounds to explore for close by preys and to assess the nearby environment using echoes. In the second phase, dolphins swap their information. When dolphins received information then it moves towards the prey and it has been surrounded by other dolphins. In the final phase, the prey is encircled by the dolphins to consume the food; it indicates that predation is accomplished. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

2. PROBLEM FORMULATION

Objective of the problem is to reduce the true power loss

\[ F = P_L = \sum_{k \in \text{Nbr}} g_k (V_i^2 + V_j^2 - 2V_iV_j \cos \theta_{ij}) \] (1)

Voltage deviation given as follows

\[
F = P_L + \omega_x \times \text{Voltage Deviation} \tag{2}
\]

Voltage deviation given by

\[
\text{Voltage Deviation} = \sum_{i=1}^{Npq} |V_i - 1| \tag{3}
\]

Constraint (Equality)

\[
P_G = P_D + P_L \tag{4}
\]

Constraints (Inequality)

\[
P_{\text{min}} \leq P_{\text{g slack}} \leq P_{\text{max}} \tag{5}
\]

\[
Q_{\text{g}}^{\text{min}} \leq Q_{\text{g}} \leq Q_{\text{g}}^{\text{max}}, i \in N_g \tag{6}
\]

\[
V_i^{\text{min}} \leq V_i \leq V_i^{\text{max}}, i \in N \tag{7}
\]

\[
T_i^{\text{min}} \leq T_i \leq T_i^{\text{max}}, i \in N_T \tag{8}
\]

\[
Q_{\text{c}}^{\text{min}} \leq Q_{\text{c}} \leq Q_{\text{c}}^{\text{max}}, i \in N_C \tag{9}
\]

3. SPINNER DOLPHIN SWARM ALGORITHM

Spinner Dolphin Swarm Algorithm (SDSA) is employed primarily by replicating the natural features and living behaviour by a dolphin. In this work \(DOLPHIN_i = \{x_1, x_2, \ldots, x_D\}^T i = (1,2,\ldots,N)\), where \(N\) is the number of dolphins and \(x_j (j = 1,2,\ldots,D)\) component to be optimized [17].

Individual optimal solution (indicated as \(L\)) and neighbourhood optimal solution (indicated as \(K\)) are two variables connected with the dolphin. For each \(DOLI_i\) \((i=1,2,\ldots,N)\), there are two corresponding variables \(L_i\) and \(K_i\), where \(L_i\) symbolize the optimal solution that \(DOLI_i\) finds in a distinct time and \(K_i\) the optimal solution of what \(DOLI_i\) locate by itself.

In the proposed algorithm, there are three types of distances are utilized as in sum. The primary is the distance between \(DOLI_i\) and \(DOLI_j\) named \(DD_{i,j}\) which is designed as follows

\[
DD_{i,j} = \|DOLI_i - DOLI_j\| \quad i,j = 1,2,\ldots,N, i \neq j \tag{10}
\]

\[
DK_i = \|DOLI_i - K_i\| \quad i = 1,2,\ldots,N \tag{11}
\]

\[
DKL_i = \|L_i - K_i\| \quad i = 1,2,\ldots,N \tag{12}
\]

In exploration phase, every dolphin explores its close proximity area by creation of sounds towards \(M\) arbitrary directions

\[
X_{ij} = DOLI_i + V_{ij} \tag{13}
\]

Fitness value is computed as follows,

\[
E_{ij} = \text{Fitness value} (x_{ij}) \tag{14}
\]

When,

\[
E_{tab} = \text{Minimum}_{j=1,2,\ldots,M; t=1,2,\ldots,T} E_{ij} \tag{15}
\]

Individual solution is determined by

\[
L_i = X_{tab} \tag{16}
\]
\[ \text{Fitness value } L_i < \text{Fitness value } K_i \]  
(17)

\[ TS_{ij} = 0 \]  
(18)

\[ \text{Fitness value } K_i > \text{Fitness value } K_j \]  
(19)

Transmission time matrix TS will be modernized as follows

\[ TS_{ij} > \left[ \frac{DD_{ij}}{A \times \text{speed}} \right] \]  
(20)

Modernized by

\[ TS_{ij} = \left[ \frac{DD_{ij}}{A \times \text{speed}} \right] \]  
(21)

Search radius is represented by

\[ R_1 = T_1 \times \text{speed} \]  
(22)

\[ DK_i \leq R_1 \]  
(23)

Encircling radius can be computed by

\[ R_2 = \left( 1 - \frac{2}{e} \right) DK_i, e > 2 \]  
(24)

\[ \text{New DOI}_i = K_i + \frac{DOI_i - K_i}{DK_i} R_2 \]  
(25)

Updated value known by

\[ DK_i > R_1 \]  
(26)

\[ DK_i \geq DKL_i \]  
(27)

The encircling radius \( R_2 \) can be computed as follows

\[ R_2 = \left[ 1 - \frac{DK_i}{\text{Fitness value } (K_i)} \right] \frac{DK_i - DKL_i}{e \times DK_i \times \text{Fitness value } (K_i)} DK_i, e > 2 \]  
(28)

\[ R_2 = \left[ 1 - \frac{DK_i}{\text{Fitness value } (K_i)} \right] \frac{DK_i - DKL_i}{e \times DK_i \times \text{Fitness value } (K_i)} DK_i, e > 2 \]  
(29)

New-fangled positions of \( \text{New DOI}_i \) after obtaining the encircling radius,

\[ \text{New DOI}_i = K_i + \frac{\text{random}}{\|\text{random}\|} R_2 \]  
(30)

\[ DK_i < DKL_i \]  
(31)

For new position the fitness value can be calculated by,

\[ \text{Fitness value (new DOI)}_i < \text{Fitness value } K_i \]  
(32)

Step 1: initialize arbitrarily and consistently engender the preliminary of dolphin swarm \( \text{Dol} = \{ \text{Dol}_1, \text{Dol}_2, \ldots, \text{Dol}_N \} \) in the D-dimensional space. Compute the fitness value for every dolphin, and acquire Fitness value of \( \{ \text{Fitness value } K_1, \text{Fitness value } K_2, \ldots, \text{Fitness value } K_N \} \).

Step 2: commencement of loop

While the stop condition is not satisfied do
Step 2.1: exploration phase

\[ E_{ij} = \text{fitness value} (DOI_i + V_j t) \]

Fitness value \( L = \{\min \{E_{1j}\}, \min \{E_{2j}\}, \ldots, \min \{E_{nj}\}\} \)

\[ \text{Fitness value}_{K,i} = \begin{cases} \text{Fitness value}_{L,i} & \text{if fitness value}_{L,i} < \text{fitness value}_{K,i} \\ \text{Fitness value}_{K,i} & \text{otherwise} \end{cases} \]

Step 2.2: call phase

\[ TS_{i,j} = \begin{cases} \frac{DD_{L,i}}{A.\text{speed}} \text{ if fitness value}_{k,j} < \text{fitness value}_{k,i} \text{ and } TS_{i,j} > \frac{DD_{L,i}}{A.\text{speed}} \\ TS_{i,j} \text{ otherwise} \end{cases} \]

Step 2.3: reaction phase \( TS_{i,j} \) reduce one unit time

\[ \text{Fitness value}_{k,i} = \begin{cases} \text{Fitness value}_{k,i} \text{ if } TS_{i,j} = 0 \text{ and } \text{fitness value}_{k,j} < \text{fitness value}_{k,i} \\ \text{Fitness value}_{k,i} \text{ otherwise} \end{cases} \]

Step 2.4: predation phase

Compute \( DK_i \) and \( DKL_i \) if \( DK_i \leq R_i \)

\[ R_2 = \left(1 - \frac{1}{e}\right) DK_i, e > 2 \]

Else if \( DK_i \geq DKL_i \)

\[ R_2 = 1 - \frac{DK_i}{\text{Fitness value}_{K,i}} - \frac{DK_i - DKL_i}{\text{Fitness value}_{K,i}} DK_i, e > 2 \]

Else,

\[ R_2 = 1 - \frac{DK_i}{\text{Fitness value}_{K,i}} - \frac{DK_i - DKL_i}{\text{Fitness value}_{K,i}} DK_i, e > 2 \]

End if

\( DOI_i \) gets a new-fangled position, compute its fitness value, and modernize \( \text{Fitness value}_{K,i} \)

End While

Output the most excellent one of \( K_i \) (i=1, 2, ..., N)

4. SIMULATION RESULTS

At first in standard IEEE 14 bus system the validity of the proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested & comparison results are presented in Table 1.

<table>
<thead>
<tr>
<th>Control variables</th>
<th>ABCO [18]</th>
<th>IABCO [18]</th>
<th>SDSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1.06</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>V2</td>
<td>1.03</td>
<td>1.05</td>
<td>1.02</td>
</tr>
<tr>
<td>V3</td>
<td>0.98</td>
<td>1.03</td>
<td>1.00</td>
</tr>
<tr>
<td>V6</td>
<td>1.05</td>
<td>1.05</td>
<td>1.03</td>
</tr>
<tr>
<td>V8</td>
<td>1.00</td>
<td>1.04</td>
<td>0.90</td>
</tr>
<tr>
<td>Q9</td>
<td>0.139</td>
<td>0.132</td>
<td>0.100</td>
</tr>
<tr>
<td>T56</td>
<td>0.979</td>
<td>0.960</td>
<td>0.900</td>
</tr>
<tr>
<td>T47</td>
<td>0.950</td>
<td>0.950</td>
<td>0.900</td>
</tr>
<tr>
<td>T49</td>
<td>1.014</td>
<td>1.007</td>
<td>1.000</td>
</tr>
<tr>
<td>Ploss (MW)</td>
<td>5.92892</td>
<td>5.50031</td>
<td>4.0192</td>
</tr>
</tbody>
</table>
REFERENCES


Table 2. Comparison of real power loss

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLOSS (MW)</td>
<td>646.2998</td>
<td>650.6027</td>
<td>635.8942</td>
<td>613.1010</td>
</tr>
</tbody>
</table>

5. CONCLUSION

In this work Spinner Dolphin Swarm Algorithm (SDSA) has been successfully solved the optimal reactive power problem. The biological characteristics of spinner dolphin and its living behaviour have been imitated to model the algorithm; which are explore phase, call phase, reaction phase, and predation phase. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

Then IEEE 300 bus system [19] is used as test system to validate the performance of the Spinner Dolphin Swarm Algorithm (SDSA). Table 2 shows the comparison of real power loss obtained after optimization.