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 Penetration is the basic element of designing protective concrete structure 
against the local impact of hard projectile. Conventional, un-conventional, 
and sensitive structures should have to be designed as self-protective 
structures in order to resist natural disaster, consciously engendered 
unpleasant incidents, or/and against accidently occur incidents in nuclear 
plants, local industries etc.. When hard projectile collides with concrete 
wall, it is the critical impact energy of the projectile that deforms 
concrete wall. Critical impact energy is the dominant cause of penetration 
in concrete structures. Therefore, it is vital to study critical impact energy 
that causes penetration. An analytical model is developed to predict the 
required critical impact energy for spalling and tunneling and maximum 
penetration without rear effects in concrete walls when it is impacted with 
hard projectile. The newly developed analytical model is examined for CRH 
=2.0, 3.0. It was found that the predicted results from analytical model are in 
close relation with experimental data with less than (8%) and (17%) error in 
case of CRH =2.0 and 3.0. Furthermore, Chen and Li nose shape factor is 
modified as (Ni), with introduction of empirical frictional factor (Nf). It was 
found that the predicted results from analytical model with proposed nose 
shape (Ni) are in close relation with experimental data in all cases as 
compared to predicted results with traditional Li and Chen nose shape (N*). 
In general, the analytical model generates encouraging prediction which is 
consistent and follows a general trend of experimental results. Therefore, it is 
suggested that the proposed analytical model is conservative. 
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1. INTRODUCTION 

Concrete is a common material for constructing protective structures to resist impact and explosive 
loads both in civil and military applications. Such as power plants, weapon industries, weapons storage 
places, water retaining structures, highway structures, and nuclear industry design need to be considered to 
produce more efficient protection against impact by kinetic projectile, generated both accidentally or 
deliberately or by natural disasters, in various impact and blast scenarios (e.g. failure of a pressurized vessel, 
failure of a turbine blade or other high speed rotating machines, aircraft crashes, fragments generated by 
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accidental explosions, etc.). Hard projectile impact can create local damage to the structure around the 
contact zone and overall dynamic response of the structure. The projectile may be classified as ‘Hard’ and 
‘Soft’ depending upon deformability of projectile with respect to target’s deformation. Deformation of hard 
projectile is considerable smaller or negligible compared with target’s deformation [6, 11-13,19-25]. Almost 
in all cases hard projectiles are considered as non – deformable or rigid. However, ‘Soft’ projectile deforms 
itself considerably well as compared to target’s deformation [6,11-13,19-25]. Penetration process is briefly 
explained below: 
 

 
Figure 1. Explains the local impact phenomena caused by hard projectile. (a) Radial cracking, (b) Spalling 

and Spall crater, (c) Penetration. 
 
Radial Cracking: When projectile colloids with concrete slab with certain velocity, it results radial cracks 
originated from the point of impact within the slab in every direction [6,12,19-25]. 
Spalling: The ejection of material of slab from front face (impacted face) due to impact of hard projectile is 
called spalling. Spalling produces spall crater in the surrounding area of impact. Spall crater is the total 
damaged portion of peeling off material from slab on impacted face [6,11,12,19-25]. 
Tunneling: The digging of projectile into the concrete wall afar from the thickness of spall crater. The 
lengthwise measurement of dig is called tunneling depth [12]. 
Penetration: Penetration is complete process including spalling and tunneling of concrete slab. The total 
penetration depth can be defined as the depth of spall crater and tunneling. [6,11,12,19-25]. 

Critical impact energy is the dominant cause of penetration in concrete slabs [11,12,19,20]. When a 
hard projectile impact with concrete slab, the critical impact energy of the projectile is the main reason that 
makes concrete wall deforms. In general, the critical impact energy of hard projectile penetrating in to 
concrete slab can be studied in three ways, (i) Empirical Studies (predict empirical formula based on 
experimental data), (ii) Analytical Studies (create formula based on physical laws), and (iii) Numerical 
Simulation (based on computer based material model). Analytical modeling approach offers the most 
economical and most efficient way of predicting the penetration. Once the underpinning of mechanics of 
penetration of hard projectile on concrete slab understood well, the accurate analytical model can provide 
almost infinite extent range of validity. In this paper, an analytical model is developed to predict the required 
critical impact energy for spalling, tunneling, and for maximum penetration without rear effects in concrete 
walls subjected to impact of hard projectile. Furthermore, a nose shape factor (Ni) with introduction of 
empirical frictional factor (Nf) as modification in Chen and Li nose shape (N*) is proposed to determine the 
effect of nose shape on required critical impact energy which causes the spalling, tunneling, and maximum 
penetration in to concrete walls against the impact hard projectile. 
 
 
2. LITERATURE REVIEW 

The penetration of hard projectile in to concrete structures have been studied since the mid of 17th 
century because of continuous military interest in designing high performance projectile and high 
performance protective barriers [6,12,19-25]. A review of previous research work exposed that peak studies 
on penetration of concrete structures against dynamic loading were conducted from the early 1940s [6,14,19-
25]. However, most of the research work ceased shortly after World War – II and were not resumed until 
1960s [6,14,19-25]. The intensive study on concrete walls against penetration of hard projectile in the nuclear 
industry re-initiated since three and half decades ago. Various analytical studies were conducted to specify 
the penetration of hard projectile on concrete structures, a review of these studies were discussed intensively 
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in previous publications, Kennedy (1976), Bangash (1993), Williams (1994), Corbett et al. (1996), Q.M Li 
(2005), Bangash (2009), Ismail et al. (2010), and Zaidi et al. (2010) [6,12,19-25].  

Kennedy (1976), proposed impact force time history theory for the penetration of hard projectile on 
concrete slabs at velocity ranging from 200 to 1500 ft/sec based on assumption of plastic impact. He 
suggested formula for influence of slab deformability on hard projectile by using reduced effective projectile 
calibre density, which is function the ratio of actual projectile weight and effective concrete slab weight [11].  

(Forrestal et al. 1994), they developed an analytical model for penetration of ogive-nose projectiles 
in to concrete slabs at normal impact with single dimensionless empirical constant (S) depends on unconfined 
compressive strength (fc) of the concrete. Predictions were in good agreement within the striking velocities 
between 250 m/s and 800m/s [1]. 

(Jones and Rule 2000) suggested the optimal nose geometry model for normal impact penetration 
including the effects of pressure-dependent friction. They found that at low velocities the more friction need 
sharper nose to achieve maximum depth. However, for higher impact velocities, sharpening of nose only 
produce excessive friction. For modest friction, the optimal nose geometry was very close to that predicted in 
the frictionless case [16]. 

(Chen and Li 2002) developed a non-dimensional formula based on the dynamic cavity-expansion 
model to predict deep penetration of a non-deformable projectile with different geometrical characteristics 
into several mediums subjected to a normal impact. The proposed formula depends on two dimensionless 
numbers (N) and (I), and shows good agreement with penetration results on metal, concrete and soil for a 
range of nose shapes and impact velocities as long as projectile keeps rigidity [17]. 

(Li and Chen 2003) developed a dimensionless formula of penetration depth for a hard projectile 
impacting small, medium, and deep concrete slabs based on dimensional analysis. They found that (X/d) is 
more dependent on (I) than (N), especially when (I/N) is small [5].  

(Chen et al. 2004 and 2008) suggested the penetration of a rigid projectile into concrete and 
reinforced concrete slab when the impact at normal and obliquity direction. A general model, i.e., initial 
cratering, and tunnelling were developed for concrete slabs based on dynamic cavity expansion theory. The 
proposed formulae are consistent with other empirical formulae and correlate well with experimental data 
[7,8]. 

(Li et al. 2006) developed a model for critical impact energy for scabbing and perforation of 
concrete slabs when impacted with flat nose hard projectile. The predicted results of model were encouraging 
when compared with NDRC and UMIST formulae and with experimental results [15]. 

(Guirgis et al. 2009) They suggested a dimensionless semi-analytical formula for the penetration 
depth of a rigid projectile in a concrete slab based on the volumetric crushing energy density. The results of 
penetration depth compare with Modified NDRC formula on experimental data of Forrestal et al. (1994 and 
2003) [18]. 

Review of previous analytical work reveals that only limited researchers investigated the spalling, 
tunneling and penetration phenomena of hard projectile on concrete slabs with the vision of critical impact 
energy. Therefore, an analytical study has been carried out to explore and further improve the prognostic 
analytical models for spalling, tunneling and penetration of hard projectile on concrete slabs footed on critical 
impact energy. 
 
 
3. PROPOSED ANAYTICAL MODEL 

Consider a rigid projectile having mass (m), diameter (d) with general nose shape (Fig. 2), impacting 
on a concrete slab having thickness (H) at initial velocity of (Vo) at normal direction.  

 

 
Figure 2. General nose shape. 
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Figure 3. Spalling crater and tunnelling region (penetration) of concrete slab. 

 
As projectile colloids with concrete slab, an initial cavity conical crater region known as spall crater 

formed due to the surface effect. The spall crater is approximately assumed as equal to the 2 times of 
diameter of projectile in size [1,2,20]. Using dynamic cavity expansion theory spall crater is assumed as a 
cone with axial depth of (kd). Where (k) is dimensionless parameter and (d) is diameter of projectile. 
Forrestal et al. in [2,3], and in [4] suggested (k =2.0). However later on, (Li and Chen in 2002 and 2003) 
suggested that k = (0.707 + h/d) based on slip-line field theory, in which (h) is the nose length of projectile as 
shown in (fig. 2) [5]. The tunnelling region starts from the end of spall crater and continues up to final 
penetration. 

The dynamic cavity expansion theory used to calculate normal stress and axial resistance force on 
projectile nose. Since the deceleration of projectile is considered as linear, when the interface friction 
between the projectile nose and concrete slab is neglected, the axial resistance force on the nose of projectile 
during spalling is [1]: 
 

  k
d

x
forcxFR <=       (1) 

and during tunnelling: 
 

  ( ) k
d

x
forVNSf

d
F cR ≥+= 2*

2

4
ρπ

      (2) 
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by (Chen et al., 2004 and 2008) in terms of (N) and (I) [7,8]: 
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5.072 −= cfS         (8) 

 
Where (fc) is in MPa. When (N » I) and (N » 1), it is further deduced as [8]: 
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The final penetration depth is given by (Li et al. 2005) [12]: 
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(Li and Chen 2003) modified the equation (10) and (11) for penetration depth by dimensional 

analysis of non dimensional numbers in terms of (N) and (I) [5]: 
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When (k = 2), equation (13) and (14) provides penetration depth same as in equation (10) and (11). 

According to (Li and Chen 2003) in practical cases (N) is normally much greater than unity; equation (13) 
and (14) can be simplified as [5]: 
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When (I/N « 1), equation (15) and (16) can be further simplified as (Li and Chen 2003) [5]: 
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Therefore, the critical impact energy for spall crater can be calculated by: 
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The residual impact energy at the end of spall crater which is main reason of causing tunnelling or in 

other words, the critical impact energy required for tunnelling is based on equation (12) and (11) 
respectively: 
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The critical impact energy required to penetrate a concrete slab can be find by using Newton’s 

second law of motion:  
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Integrating equation (22) from (V1) to (0) and (kd) to (x) leads the required critical impact energy to penetrate 
a concrete slab: 
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From equation (13) and (14) the critical impact energy for spall crater and penetration can be 

calculated by: 
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In practical cases when (N) is normally much greater than unity; the critical impact energy for spall 

crater and penetration equation (24) and (25) can be simplified as: 
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When (I/N « 1), the critical impact energy for spall crater and penetration equation (26) and (27) can be 
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further simplified as: 
 

k
d

x
for

kd

Sx

df

E

c

csp <=
2

2

3 8

π              (28) 

 

k
d

x
for

k

d

xS

df

E

c

cp ≥






 −=
243

π
     (29) 

 
 
3.1.  Proposed Empirical Nose Shape Factor (Ni) and (Nf)  

The effect of nose shape of rigid projectile on local impact effects especially in penetration is 
important and has been considered in many of the empirical and analytical formulae. However, the 
definitions of the nose shape factor in each formula are different and without frictional factor.  

 

 
Figure 4. Nose shape factors and formulae. 

 
There are number of frictional forms may can be analyzed during local impact effects of hard 

projectile. In this research we assume the friction, proportional to the normal pressure as an empirical 
frictional factor by modifying the Li and Chen [5] ogive nose shape formula. The ogive nose shape formula 
[5]: 
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Where (Ψ) is the CRH ratio, which is equal to (S/d). (S) is ogive radius and (d) is shank diameter of 
projectile. Therefore, we assume that nose shape factor is equal to: 



      �          ISSN: 2252-8814 

IJAAS Vol. 1, No. 2, June 2012 :  53 – 64 

60

 

  fi NNN += *
       (31) 

 
Where (N*) for ogive nose projectile from eq. (30). And the (Nf) frictional factor of ogive nose projectile is 
assumed as:   
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Therefore, (Ni) for ogive nose rigid projectile is equal to:  
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Therefore eq. (34), and (35) can be used as nose shape factor for required critical impact energy on 

maximum penetration of a concrete slab without rear effects subjected to the impact of hard projectile. 
 
 
4. RESULTS AND ANALYSIS 

The study on required critical impact energy for maximum penetration of concrete slab is conducted 
for thick concrete slabs (x/d > k) without generating rear effects, on the experimental data of Forrestal et al. 
([1], [3], [4], [9], [10]). It is shown that the proposed analytical models are consistently predict the closer 
bound of experimental results and produced a similar general trend of experimental results in the whole range 
of experiments presented in Figure (5, and 6).  

 

 
Figure 5. Comparison of results of Eq. (23) by using N* and Ni, and Eq. (29) predictions, and experimental 

data of the critical impact energy of ogive nose projectile having CRH=2.0 for penetration. 
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In case of CRH ratio = 2.0, the analytical model eq. (23) with nose shape factor (Ni) is able to 
generate more accurate results with error less than (8%). On the other hand, the analytical model eq. (23) 
with traditional Chen and Li (N*) generates lower bound less accurate results with error less than (14%). The 
analytical model based on Chen and Li [5] formulation eq. (29) generates lower bound results with maximum 
error of (27%) at high velocities. 

 

 
Figure 6. Comparison of results of Eq. (23) by using N* and Ni, and Eq. (29) predictions, and experimental 

data of the critical impact energy of ogive nose projectile having CRH=3.0 for penetration. 
 
In case of CRH ratio = 3.0, the analytical model eq. (23) with nose shape factor (Ni) generates more 

accurate results with error less than (17%). While the analytical model eq. (23) with traditional Chen and Li 
(N*) generates results with error less than (22%), and the analytical model based on Chen and Li formulation 
eq. (29) generates lower bound results with error of (37%) at high velocities.  
 
 
5. CONCLUSION 

The analytical model is developed to predict the required critical impact energy to penetrate 
concrete slab impacted with ogive nose hard projectile. Nose shape factor (Ni) has been introduced for CRH 
= 2.0, and 3.0, and compared with traditional Li and Chen nose shape factor (N*) to know the influence of 
nose shape factor over the critical impact energies, by comparing analytical predictions with experimental 
data. The newly developed analytical model is examined for CRH =2.0, and 3.0. It was found that the 
predicted results from analytical model are in close relation with experimental data with less than (8%) and 
(17%) error in case of CRH =2.0, and 3.0. Furthermore, a nose shape factor (Ni) with introduction of 
empirical frictional factor (Nf) as modification in Chen and Li nose shape (N*) is proposed. It was found that 
the predicted results from analytical model with nose shape (Ni) are in close relation with experimental data 
in all cases as compared to predicted results with traditional Li and Chen nose shape (N*). Generally, the 
analytical model generates encouraging prediction which is consistent and follows a general trend of 
experimental results. It is observed in all cases that the error in results of eq. (29) increases with increase in 
velocity. Therefore, it is suggested that the proposed analytical model eq. (23) is conservative.  
 
NOMENCLATURE 

d  (cylindrical) projectile shank diameter. 
Ect Critical impact energy of projectile for tunnelling process. 
Ecsp Critical impact energy of the projectile for spalling. 
Ecp Critical impact energy of the projectile for penetration. 
Ers Residual impact energy of the projectile for spalling. 
M Mass of the projectile. 
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Vo Impact velocity of projectile. 
x  Penetration Depth. 
ρ  Density of concrete wall.  
H Nose shape length of projectile. 
Fr Axial resistance force on projectile nose. 
N* Chen and Li Nose shape factor 
V1 Impact velocity of projectile for tunnelling. 
Nf Empirical nose shape frictional factor. 
Ni Nose shape factor (Ismail and Imran) 
Ψ CRH ratio (S/d). 
N Geometry function. 
I  Impact function. 
H  Thickness of concrete slab. 
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