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The goal of this paper is to generalize the main results of [1] and subsequent 

papers on metric Diophantine approximation with dependent quantities to the 

set-up of systems of linear forms. In particular, we establish “joint strong 

extremality” of arbitrary finite collection of smooth nondegenerate submani-

folds of ℝ𝑛. The proof was based on quantitative nondivergence estimates 

for quasi-polynomial flows on the space of lattices. 
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1. INTRODUCTION  
The theory of simultaneous Diophantine approximation is concerned with the following question: if 

Y is an 𝑚 × 𝑛 real matrix (interpreted as a system of 𝑚 linear forms is 𝑛 variables ), how smallin term of the 

size of 𝐪 ∈ ℤn ,can be the distance from Y𝐪  toℤn .This generalization of the classical theory of 

approximation of real numbers by rational numbers ,where 𝑚 = 𝑛 = 1. 

We start from 𝑚 = 𝑛 = 1 case. In this case,𝑌 = 𝑦,it is well known that for any y ∈ ℝ, thereexist 

infinitely many integers qi ’ s with integers pi’s satisfying the following : 

 

|qi y + pi|<qi
−1 ,  

 

or equivalently,  
 

|y +
pi

qi
|<qi

−2 

Here |⋅| denotes absolute value. This inequality means that we can approximate any real number 𝑦 

by a sequence of rational numbers and the distance between the real number 𝑦 and the rational number 
−pi

qi⁄  is much smaller than 𝑞𝑖
−2 𝑖. 𝑒  𝑞𝑖

−2−𝛿  .However, it turns out that many real numbers donot have such 

“better approximation” (so called “very well approximation”). In fact, it is known that for any 𝛿 > 0and for 

Lebesgue (later on we will extend this to other measures) almost every𝑦 ∈ ℝ, the following inequality: 

 

|qy + p| < q−(1+δ)  
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does not have infinitely many integer solutions of p, q. 

More generally, in the case that 𝑚 = 1 or, dually 𝑛 = 1, i. e. when 𝑌 = (𝑦1, ⋯ , 𝑦𝑛) or 𝑌 =
(𝑦1, ⋯ , 𝑦𝑚)

𝑇(here (⋅)𝑇 is the transpose of a vector or a matrix) the very well approximation property doesnot 

hold for almost every 𝑌 with respect to Lebesgue measure. Moreover, during recent years, significant 

progress has been made in showing that not very well approximation properties of vectors∕forms happen to be 

generic with respect to certain measures besides Lebesgue   measure. This circle of problems dates back to 

the 1930s, namely, to K. Mahler’s work on a classification of transcendental numbers. Let us introduce some 

definitions and notions order to state these results a clearer way.   

Denote by 𝑀𝑚,𝑛the space of real matrices with 𝑚 rows and 𝑛 columns. Dirrichlet’s theorem on    

simultaneous Diophantine approximation states that for any  𝑌 ∈ 𝑀𝑚,𝑛  (viewed as a system of  𝑚  linear 

forms in 𝑛 variables) and for any 𝑡 > 0 there exist 𝐪 = (𝑞1, ⋯ , 𝑞𝑛) ∈ ℤ
𝑛 \  {0} and 𝐩 =  (𝑝1, ⋯ , 𝑝𝑚) ∈ ℤ

𝑚  

satisfying the following system of inequalities:    

 

‖𝑌𝐪 + 𝐩‖∞ < 𝑒
−𝑡∕𝑚       and    ‖𝐪‖∞ ≤ 𝑒

𝑡∕𝑛 

 

Here and here after, unless otherwise specified, ‖ ⋅ ‖∞ stands for the maximal norm on ℝ𝑘 given by 

‖𝐱‖∞ = max1≤i≤k       |𝑥𝑖|  . Another way to state this theorem is the following: For any 𝑌 ∈ 𝑀𝑚,𝑛there are 

infinitely many 𝐪 ∈ ℤn{0} and 𝐩 = ℤ𝑚 such that  

 

 ‖𝑌𝐪 + 𝐩‖∞ < ‖𝐪‖∞
−𝑛∕𝑚

 .                           (1.1.3) 

 

Next, we say that Y is very well approximable  (to be abbreviated by VWM) if for some positive δ, 

 

∃∞ 𝑚𝑎𝑛𝑦 𝐪 ∈ ℤ𝑛 ∖ {0} and 𝐩 ∈ ℤ𝑚 with ‖Y𝐪 + 𝐩‖∞ < ‖𝐪‖∞
−n m⁄ −δ.                         (1.1.4) 

 

One can show that Lebesgue-a.e Y is not VWA by Borel-Cantelli lemma (we will introduce this 

lemma in our next section). Also note that by Khintchine’s Transference Principle, see e.g.  [8, Chapter V], 

Y  is VWM iff the transpose of Y is. 

With these definitions and notations, let us go back to one theorem conjectured by Mahler [9] in 

 1932  and proved three decades later by V. Sprindžuk, see [7, 6], which states that for λ –a.e. . 𝑥 ∈ ℝ, the 

row vector.      

 

𝐟(𝑥) = (𝑥, 𝑥2, ⋯ , 𝑥𝑛)                   (1.1.5)  

 

is not VWM. 

By extending this problem into a more general setting, that is, for 𝐱 ∈ ℝd, by definition: 

 

𝐟(x) = (f1(x),⋯ , fn(x)), 
 

With   𝑓𝑖’s continuous maps from ℝ𝑑 to ℝ, one ask whether or not for almost every x ∈ ℝd,  f(x) is 

not VWA, with respect to Lebesgue measure or some other measures. In this setting, [4] proved the result for 

Lebesgue Measure and nondegenerate map f and [1] proved the result for more general assumptions on 

measures and maps .Before we state result of [4], recall that a smooth map f from 𝑈 ⊂ ℝ𝑑 to ℝ𝑛 is called 

nondegenerate at 𝐱 ∈ U if partial derivatives of f at x span ℝ𝑛 and f is nondegenerate if it is nondegenerate at 

λ-a.e.x∈U.  

Theorem 1.1.1. Let  𝑣 be a Federer  measure on ℝd,U an open subset of ℝd‚ and F:U →𝑀𝑚,𝑛 a 

continuous map such that (DF ‚𝒱) is good and  nonplanar .Then for 𝑣-a.e  𝐱0𝛜U there exist  a ball  B ⊂ U  

centered at   𝐱0  and C ,  α > 0 such that for any 𝐭 =  (t1,∙ ∙ ∙‚tm,tm+1,⋅ ⋅ ⋅, tm+n)∈𝛂
+ and any  ε   >   0,  

 

𝑣({x ϵ B: 𝑔𝒕𝜏 ̅(F(x)) ∉ 𝐾𝜀 }) < C 𝜀𝛼 . 
 

We will prove this theorem later.  Next, let us introduce Borel- Cantelli lemma:  

Lemma 1.1.2(Borel- Cantelli).Let  𝑣 be a finite measureon B, i.e.  𝑣(B) <∞.  If 
 Ei i



1  is a sequence 

of sets in B such that. 
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


1i

v
(𝐸𝑖) < ∞, 

 

Then it follows that:  

𝑣(

suplim
i Ei ) =0 

 
Recall that 

 

Ei
i

suplim


      =      






1 1i j
iE , 

 

i.e. each element of the 
Eiisuplim

1  belong to infinitely many 𝐸𝑖’s.   

 

 

2. QUANTITATIVE NON DIVERGENCE 

In the section we will state Theorem 2.2.2 that has been proved in [1] and apply it to prove  

Theorem 1.1.1.In order to state  Theorem 2.2.2 we need to introduced some notations and definitions. 

Recall that {𝐞1, ⋯ , 𝐞𝑚,𝐯1, ⋯, 𝐯𝑛} is a standard basis of ℝ𝑚+𝑛 . Define 𝑀 ≝ {1, ⋯ ,𝑚} and 𝑁 ≝{1, 

⋯,𝑛}. The following notations will be introduced on the exterior algebra of ℝ𝑚+𝑛(⋀ (ℝ𝑚+𝑛)). 

Take  

 

I=  { 𝑖1,⋯,𝑖𝑟 } ⊂  M  with 𝑖1 <⋯<𝑖𝑟   and  J  = {𝑗1,⋯, 𝑗𝑠 }  ⊂  N  with  𝑗1 < …<𝑗𝑠                        (2.2.1) 

 

 and  denote  𝒆𝑰 ≝ 𝐞𝑖1∧, ⋯, ∧ 𝐞𝑖𝑟   and   𝐯𝐽 ≝ 𝐯𝑗1∧, ⋯, ∧𝐯𝑗𝑠  , with the convention 𝐞∅=𝐯∅=1. Denote 

by |𝐼| the cardinality of set I, so that 𝐞𝐼∧𝐯𝐽 ’s are the basis elements of ⋀|𝑰|+|𝑱|(ℝ𝑚+𝑛). We say that a subspace 

of ℝ𝑚+𝑛  is rational if it is spanned by vectors with rational coordinates or equivalently integer coordinates. 

Define: 𝒲  ≝  the set of nonzero rational subspaces of   ℝ𝑚+𝑛. 

For 𝑔 ∈ G (recall that G=S𝐿𝑚+𝑛(ℝ)) and W ∈ 𝒲, let { 𝐰1 ,⋯ , 𝐰𝑙  } be a generating set for ℤ𝑚+𝑛 ⋂ 

W, i. e .  ℤ𝑚+𝑛 ⋂ W = 𝑠𝑝𝑎𝑛 ℤ(𝒘1 , ⋯ , 𝒘𝑙), and define the g action on 𝐰1 ∧ . . . . ∧𝐰𝑙  by   
 

                 𝑔 ( 𝐰1∧  . . . . ∧𝐰𝑙)    ≝  𝑔 (𝒘1)  ∧. . . .∧  𝑔 ( 𝐰𝑙  ) 
 

We will write  w  = 𝐰1 ∧  . . . ∧𝐰𝑙   and  we  will say that  w  corresponds to the nonzero rational  

subspaces  W. Then define  ℓ𝑤(𝑔)  as the covolume of 𝑔𝑊 ∩ 𝑔ℤ𝑚+𝑛 in 𝑔𝑊, i.e. 
 

ℓ𝑤(g)  ≝ ‖𝑔(𝐰)‖=‖𝑔(𝐰1 ⋀⋯ ⋀𝐰𝑙)‖.                                                    (2.2.2) 
 

The norm ‖⋅‖ is an extension of Euclidean norm of  ℝ𝑚+𝑛 , i .e. if  𝐰ˊ  ϵ ⋀𝑙( ℝ𝑚+𝑛 ) can be written as   
 

w′ =  


 lJINJMI |||:|, 𝑎𝐼,𝐽 𝐞𝐼⋀𝐯𝐽 , 

 

where 𝑎𝐼 ,𝐽 ’s are coefficient and  I, J  are define in (1.2.1), then 
 

‖𝐰ˊ‖ =   


 lJI

JIa
||||

2

,

 . 

 

Note that ℓ𝑤(𝑔)  independent of the choice of a generating sets. Now, let us state Theorem 2.2.2 as 

follows: Theorem 2.2.2 (Theorem 4.3 of [1]). Let 𝐶′′′, D, α be positive constants .Suppose U⊂ℝ𝑑 is open, 𝑣 

is a measure  which is D - Federer on U ,h is a continuous   map U → G , 0 < ϱ ≤ 1 ,𝐱0 ∈ U ∩ supp 𝑣, and  B 

=B (𝐱0 , r) is a ball such that 𝐵̃ ≝ B(𝐱0 ,3𝑚+𝑛r) is continuous in U , for each W ∈ 𝒲 , 

 (1) The function ℓ𝑤 ∘ ℎ   is ( 𝐶′′′, α) -good on 𝐵̃ with respect to 𝑣, and 

 (2)  ‖ℓ𝑊  ∘ ℎ‖𝑣,𝐵 ≥ 𝜚, 
Then there exist  𝐶′′′>0 such that for any 0 <ε ≤ ϱ,  
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  𝑣 ({ 𝐱 ∈ B: π (ℎ(x)) ∉𝐾𝜀}) ≤ 𝑐′ (
𝜀

𝜚
)
𝛼

𝑣(B ). 

 

This theorem is known as nondivergence theorem.  

In [4, Theorem 5.2], D. Kleinbock and G. Margulis proved this result for Lebesgue measure λ, 

following the idea of [5, Main Lemma]. Another version which replaces condition (2) by weaker conditions 

appeared in [3] .The proof of Theorem 2.2.2 which assume 𝑣 is D-Federer  measure is in the paper [1]. 

Before applying The-orem 2.2.2 to prove this theorem 1.1.1, let us define expanding basis elements : Fix  t  ∈  

𝐚+, and say that basis element of   ⋀(  ℝ𝑚+𝑛)  ,𝐞𝐼  ∧𝐯𝑱  is expanded by 𝑔𝐭 (𝑔𝒕 is define as ) 

 

𝑔𝒕 = diag (𝑒𝑡1  , ⋯ , 𝑒𝑡𝑚 ,𝑒−𝑡𝑚+1 , ⋯ , 𝑒−𝑡𝑚+𝑛  ),  where t =( 𝑡1 ,. . .  , 𝑡𝔪+𝔫)  ∈𝐚
+ 

 
 

If  
 

‖𝑔𝐭( 𝐞𝐼  ∧  𝐯𝐽)‖ ≥ ‖𝐞𝐼  ∧  𝐯𝐽‖ . 

In this case we say that 𝒆𝐼∧𝐯𝐽 is an expanding basis element.Moreover, we say that 𝑔𝒕strictly  

expand 𝐞𝐼∧𝐯𝑱 if 
 

‖𝑔𝐭(𝐞𝐼 ∧ 𝐯𝐽)‖ > ‖𝒆𝐼 ∧ 𝐯𝐽‖. 

 

On other hand, we say that  𝑔𝐭 strictly contracts 𝐞𝑰 ∧𝐯𝑰  if it does not expand𝐞𝑰 ∧𝐯𝑱 .Let 𝑡𝐼 = ∑ 𝑡𝑖𝑖∈𝐼  

and 𝑡𝐽  = ∑ 𝑡𝑗+𝑚𝑗∈𝐽 .Clearly, 𝑔𝒕 strictly expands 𝐞𝐼∧  𝐯𝐽if  𝑡𝐼 −𝑡𝐽>0 since ‖𝑔𝐭(𝐞𝐼 ∧ 𝐯𝐽 )‖=𝑒𝑡𝐼−𝑡𝐽‖𝐞𝐼 ∧ 𝐯𝐽‖. In 

this case, we define the subspace of ⋀( ℝ𝑚+𝑛) generated by 𝐞𝐼∧𝐯𝐽’s with  𝑡𝐼 −𝑡𝐽> 0  as strictly expanding 

subspace ,and denote by 𝐸+.Similarly, the subspace generated by 𝐞𝐼∧𝐯𝐽’s with 𝑡𝐼−𝑡𝐽 = 0 is denoted by 𝐸0 and 

the subspace generated by 𝐞𝐼 ∧𝐯𝐽’s with 𝑡𝐼− 𝑡𝐽< 0 is denoted by 𝐸−. So we can decompose the space  ⋀ 

(ℝ𝑚+𝑛) = 𝐸+ ⊕ 𝐸0 ⊕𝐸− ,Where 𝑔𝐭 strictly expands the norm of the elements in 𝐸+ ,does not change the 

norm of elements  in  𝐸0and contracts the norm of elements  in  𝐸−. One fact is that𝐸+, 𝐸0and 𝐸−  are 
dependent on t so that different t give different   decomposition of ⋀(ℝ𝑚+𝑛 ). If w ∈ ⋀ (ℝ𝑚+𝑛) can be 

written as w = 𝐰1+ 𝐰2  where 𝐰1 ∈ 𝐸+⊕𝐸0 and 𝐰2 ∈ 𝐸−, then we say 𝒘1 is the expanding part of w and 

𝐰2 is the contracting part of w.Similarly, expanding part and contracting part are also dependent on t. We 

will use the definitions and notations above to solve theorem in this paper. 

 

 

3. PROOF OF MAIN RESULT  

𝐏𝐫𝐨𝐨𝐟 𝐨𝐟 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 1.1.1. Let h(x) = 𝑔𝑡(τ (F(x)) and for 𝑣–a.e. 𝐱0, take  

 

𝐵̃  = B (𝐱0 , 3𝑚+𝑛 r) ⊂ U 

 

such that (𝐷𝐹 ,𝑣) is (C , α)-good on 𝐵̃ for some C, α >0 and nonplanar on B = B (𝐱0 , r). To apply 

Theorem 2.2.2, we need to show that there exist 𝐶′′′, α >0 and some 0 < ϱ ≤ 1 such that for any W ∈ 𝒲 

where 𝒲 is the set of nonzero rational subspaces: ℓ𝑤∘h is (𝐶′′′, α)-good on 𝐵̃ with respect to 𝑣 (condition 

(1)) and  ‖ℓ𝑤  ∘ ℎ‖𝑣,𝐵   ≥ ϱ ( condition(2)).  
First, we want to show that there exist  𝐶′′′ , α > 0 such that for any W ∈ 𝒲, ℓ𝑤°h is (  𝐶′′′ , 𝛼 )-

good on 𝐵̃ with respect to 𝑣.That is, we want to show that for {  𝐰1 , . . ., 𝒘𝑙} a generating set of rational 

subspace W (we assume it is 𝑙  dimensional rational subspace) and for w = 𝐰1 ∧ . . . ∧𝐰𝑙  a homogeneous 

element of ∧𝑙 (ℝ𝑚+𝑛) corresponding to W, ‖𝑔𝐭 (𝜏(𝐹(𝐱)))(𝐰)‖ is (𝐶′′′ , α)-good on 𝐵̃ with respect to𝑣. The 

strategy is as follow: first, we want to apply τ(F(𝐱)) to w and calculate the result. After calculating τ (F(x)) 

(w), we will use it to show (‖𝑔𝐭  (𝜏(𝐹(𝐱))) (𝐰)‖ , 𝑣)is (𝐶′′′, α) -good on 𝐵̃.  

To calculate τ (F(𝐱))(𝐰), let us first apply τ(F(𝐱)) to basis elements of ⋀ (ℝ𝑚+𝑛). For reader’s 

convenience, we start by applying τ (F(x)) to basis elements of ⋀ (ℝ𝑚+𝑛) of dimension 1 and dimension 2:  

For dimension 1, apply τ (F (x)) to basis elements 𝐞𝑖 and 𝐯𝑗 for 𝑖 = 1,⋯ ,𝑚 and j=1,⋯ , 𝑛:  
 

τ (F(𝐱)) (𝐞𝑖)  =  𝐞𝑖  
 

 

for 𝑖 = 1,⋯ ,𝑚. 
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𝜏 (F(x))(𝐯𝑗) = 𝐯𝑗 = 𝑓1𝑗(x)𝐞1 + . . .  + 𝑓𝑚𝑗(x)𝐞𝑚 

 

for  j = 1, ⋯, 𝑛. 
So τ (F (x)) fixes 𝐞i and when applying τ (F(x)) to 𝐯𝑗 ,  one gets a linear combination of elements of  

dimension 1 and the coefficients in front of each element are either 1 or some components  𝑓𝑖𝑗(x)’ s in F(x). 

For dimension 2, there are three different types of basis elements, they are 𝐞𝑖∧ 𝐞j,𝐯𝑖∧ 𝐯𝑗 and 

𝐞i ∧  𝐯𝑗. We want to apply τ (F(x)) to all types of  basis  elements: 
 

𝜏 (F(x))(𝐞i∧𝐞j) = 𝐞𝑖∧ 𝐞j 
 

for any 1 ≤  𝑖 , 𝑗 ≤  𝑚. 
 

𝜏(F(x))(𝐯𝑖∧𝐯𝑗) = 𝐯𝑖∧𝐯𝑗 + 


m

l 1

𝑓𝑙𝑗(𝐱)𝐞𝑙 ∧𝐯𝑖−


m

l 1

𝑓𝑙𝑖(x)𝒆𝑙∧𝐯𝑗 + 
 mlk1

|
𝑓𝑘𝑖(𝐱) 𝑓𝑙𝑖(𝐱)
𝑓𝑘𝑗(𝐱) 𝑓𝑙𝑗(𝐱)

| 𝐞𝑘∧𝐞𝑙 

 

for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛.  
  

𝜏(F(x))(𝐞𝑖∧𝐯𝑗)  = 𝐞𝑖∧𝐯𝑗 + 


il
ml

  
1

𝑓𝑙𝑗 (𝐱)𝐞𝑙⋀𝒆𝑗 

 

for any 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛. 
Similarly as for dimension 1, we can conclude that the result of applying 𝜏(F(x) to any type of basis 

element is a linear combination of basis elements of dimension 2 with coefficient are 1, 𝑓𝑖𝑗(𝐱)s or the 

determinants of 2 by 2 submatrices of F(x). These observations lead us to the general l results: by applying 

𝜏(F(x)) to any basis elements of dimension ⋀𝑙(ℝ𝑚+𝑛), the result is a linear combination of basis elements of 

dimension ⋀𝑙(ℝ𝑚+𝑛) with the coefficients are 1or determinants of submatrices of 𝐹(𝐱). To prove this, let |I | 

be the cardinality of set I and 𝐞I∧𝐯𝐽 be a basis element of dimension 𝑙 = |𝐼| + |𝐽|. Applying 𝜏(𝐹(𝐱)) to 

𝐞𝐼 ∧𝐯𝐽, one has: 

 

𝜏(𝐹(𝐱)) (𝐞𝐼∧𝐯𝐽 ) = 
JS





SJLSK

IMK
\| ,|||
,\     

(−1)𝑚(𝐼,𝐾)𝑓𝐾,𝑆 (x) 𝐞𝐼∪𝐾∧𝐯𝐿                                   (2.2.3) 

 

Where  𝑓𝐾,𝐽(x)’s defined as: 
 

𝑓𝐼,𝐽 ≝ |
𝑓𝑖1,𝑗1  ⋯ 𝑓𝑖1,𝑗𝑟
𝑓𝑖𝑟,𝑗1

⋯ 𝑓𝑖𝑟,𝑗𝑟
|,       

 

And m (⋅) determines the sign of the coefficients.Clearly, 𝜏(𝐹(x)) (𝐞I∧𝐯J) is a linear combination of 

basis elements of ⋀𝑙(ℝ𝑚+𝑛) and the coefficients of these basis elements are determinants of square 

submatrices of F( 𝐱 ). 

Now, let us apply τ(F(𝐱))(𝐞𝐼 ∧ 𝐯𝐽)  is a linear combination of basis elements of ⋀𝑙(ℝ𝑚+𝑛) and the 

coefficient of these basis elements are determinants of square submatrices of F(x).Now, let us apply 𝜏(𝐹(𝐱)) 
to w where w is a homogenous element of ⋀𝑙(ℝ𝑚+𝑛) corresponding to 𝑙 dimension rational subspace W. 

Since {𝒘1, . . . , 𝒘𝑙} is a generating set of nonzero rational subspace W, we can write w = 𝐰1∧  . . . ∧ 𝐰𝑙 = 

∑𝐼,𝐽𝑎𝐼,𝐽 𝐞I∧𝐯𝐽 ∈ ⋀𝑙(ℝ𝑚+𝑛), where the summation is over all I, J satisfying (2.2.1) with 𝑙 = |I | + | J | is fixed 

and 𝑎𝐼,𝐽’s are integers coefficients. By equation (2.2.3) since w is a linear combination of 𝐞𝐼∧𝐯𝐽’s 

τ(F(𝐱)) (𝐰) is also a linear combination of basis elements ⋀𝑙 (ℝ𝑚+𝑛) with the coefficients of each 𝐞I∧𝐯𝐽 in 

τ(F(𝐱))(𝐰) a combination of 𝑓𝐾,𝐽(x)’s. Let 𝜔ˊ𝐼,𝐽(𝐱) be the coefficient of 𝐞𝐼∧𝐯𝐽 in τ (F(𝐱))(𝐰), then we can 

write: 
 

𝜏(F(x))(w) = 
JI ,

𝜔ˊ𝐼,𝐽(x) 𝐞𝐼∧𝐯𝐽 . 
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Now, let us apply  𝑔𝐭 , for t in  𝐚+ . Take  𝑡𝐼 =  Ii
𝑡𝑖  and 𝑡𝐽= 

Jj

𝑡𝑚+𝑗 .  We have:  

 

 𝑔𝐭(𝜏(F(x)))𝐰 =
JI ,

𝑒𝑡𝐼−𝑡𝐽𝜔ˊ𝐼,𝐽 (𝐱)𝐞I ∧ 𝐯𝐽. 

 

Let 𝜔𝐼,𝐽(x) = 𝑒𝑡𝐼−𝑡𝐽𝜔ˊ𝐼,𝐽(x). By the assumption that (𝐷𝐹 , 𝑣) is (𝐶, 𝛼)-good on 𝐵̃, those  𝜔𝐼,𝐽(x)’s 

which are linear combination of 𝑓𝐼,𝐽’s are also (𝐶, 𝛼)-good on 𝐵̃ with respect to 𝑣. Furthermore, this implies 

that Q(x) ≝ ‖𝑔𝐭(𝜏(𝐹(𝐱)))𝐰‖ is (𝐶′′′ , 𝛼)-good on 𝐵̃ with respect to 𝑣 for any homogenous w and some 𝐶 ˊˊˊ,α 

>0. To show this, let 𝐞𝐼∗∧𝐯𝐽∗ ∈ ⋀|𝐼|+|𝐽|(ℝ𝑚+𝑛) be such that the coefficient 𝜔𝐼∗,𝐽∗(x) satisfies the following: 

 

‖𝜔𝐼∗,𝐽∗(𝐱)‖𝑣,𝐵̃=max
|||| lJI 

{‖𝜔𝐼,𝐽(𝐱)‖𝑣,𝐵̃} , 

 

where the maximum is taken among all the norms of coefficients of 𝜏(F(𝐱)(𝐰). Following the 

definition of the norm ‖⋅‖ on the exterior algebra ⋀ (ℝ𝑚+𝑛), 

  

‖𝑄(𝐱)‖𝑣,𝐵̃= ∥ √ 
 lJI ||||

𝜔𝐼,𝐽
2 (𝐱) ∥𝑣,𝐵̃    ≤ √ 

 lJI ||||

‖𝜔𝐼,𝐽 
2 (𝐱)‖

𝑣,𝐵̃
. � 

 

Then it is clear that there exist some constant 𝐶 ˊˊˊ≥0 (𝐶′′′depends on 𝑚 , 𝑛 but not on 𝐰) such that 

the following is satisfied:  

 

‖𝜔𝐼∗,𝐽∗(𝐱)‖𝑣,𝐵̃ ≥ 𝐶 ˊˊˊ‖𝑄(𝐱)‖𝑣,𝐵̃ . 

 

It follow that there exist some 𝐶 ˊˊˊ> 0 such that: 
 

𝑣({x ∈𝐵̃ : | Q(x)| < ε})  ≤ 𝑣({𝐱 ∈ 𝐵̃: | 𝜔𝐼∗,𝐽∗ (x)| < ε })  

 

 ≤ C (
𝜀

‖𝜔𝐼∗,𝐽∗(𝐱)‖𝑣,𝐵̃

)

𝛼

𝑣(𝐵̃) = 𝐶 ˊˊˊ (
𝜀

‖𝑄(𝐱)‖𝑣,𝐵̃
)
𝛼

𝑣(𝐵̃). 

 

The second inequality following from (C, α)-good property of 𝜔𝐼∗,𝐽∗(x) on 𝐵̃ with respect to 𝑣. this 

proves that (Q (x),𝑣) is (𝐶 ˊˊˊ, α)-good on 𝐵̃ for any w and consequently, ℓ𝑤  ∘ ℎ (𝐶′′′, 𝛼)-good on 𝐵̃ with 

respect to 𝑣 for any nonzero rational subspace W and h( 𝐱 ) = 𝑔𝒕( τ ( 𝐱 ) ). 
Now, let us show that the second condition is satisfied; that is: there exist some ϱ with 0  <   𝜚  ≤

  1  such that for any nonzero rational subspace W   of  ℝ𝑚+𝑛  and any t, 

 
 

‖ℓ𝑤∘   ℎ‖𝑣,𝐵̃   ≥   ϱ, 

 
 

when  ℎ ( x )  = 𝑔𝒕 ( τ( F ( x ) ) ). 

Recall from the paragraph before the proof of Theorem 1.1.1 that, an expanding basis element is a 

basis element 𝐞𝐼∧𝐯𝐽 such that   
 

‖𝑔𝐭   ( 𝐞𝐼    ⋀𝐯𝐽  ) ‖ ≥‖𝐞𝐼 ⋀𝐯𝐽‖,   

 

or equivalently, 

 

 𝐞𝐼  ∧ 𝐯𝐽 ∈ 𝑬
+⊕  𝑬0. 
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Our strategy to show condition (2) of Theorem 2.2.2 is as follow. First, apply 𝜏(F (x)) to w = 

∑𝐼,𝐽a𝐼,𝐽𝐞I∧𝐯𝐽 and calculate the result; next take the expanding Part of   𝜏(F(x)) (w) and show  ‖ℓ𝑤  ∘ ℎ‖𝑣,𝐵  ≥ 

ϱ for any nonzero rational subspace W when ℎ (x) =  𝑔𝐭 (τ (F (x))). Let us consider two cases: 

Case1.When 𝑙 ≤ 𝑚 denote by E the space generated by {𝐞1, ⋯ , 𝐞𝑚} and by V the space generated by                     

{𝐯1, ⋯ , 𝐯𝑛}, and consider a projection P ∶  ⋀𝑙  (ℝ𝑚+𝑛 ) ⟶ ⋀𝑙 (E).                                                                                                           

 From the definition of P, the image of P consists of linear combination of expanding basis elements (i. e. 

elements in 𝐸+⊕𝐸0 ) since ⋀𝑙(E) = span (𝐞𝐿)𝐿⊂𝑀, and for any L ⊂ M, ‖𝑔𝒕𝐞𝐿‖  = 𝑒𝑡𝐿‖𝐞𝐿‖ ≥ ‖𝐞𝐿‖  where 

𝑡𝐿=∑𝑖∈𝐿𝑡𝑖.Using equation (2.2.3), it is easy to see that   

 

P ( τ ( F( x )) ( 𝐞𝐼∧𝐯𝐽 ))  =  𝐞𝐼∧


 ||||,\ JKIMK (−1)𝑚(𝐼,𝐽)𝑓𝐾,𝐽 ( x ) 𝐞𝐾  ,                                   ( 2.2.4 ) 

 
 

 Where K = {𝑘1, ⋯ , 𝑘𝑠} ⊂ M.  

Note that |I | can take values between max(0, 𝑙 − 𝑛) and  𝑙 ; equivalently,  𝑙 − | 𝐼 | ranges between 0 

and 𝑙 – max(0,𝑙 − 𝑛) = min(𝑙, 𝑛 ).Then we have: 

 

P (τ (F(𝐱)) (𝐰))    = 



lInl

MI
||),0max(

          

𝐞𝐼∧  



||||

  
IlJ

NJ

𝑎𝐼,𝐽 



||||  

||\
JK

IMK

(−1)𝑚(𝐼,𝐽)   𝑓𝐾,𝐽 (x) 𝒆𝐾. 

 

Rearranging terms and substituting L = I ⋃ K, we get 

 

P(τ(F(𝐱))(𝐰))  =  



lL
ML

||
(

 
 





lInl

LI
||),0max(

          





||||

  
IlJ

NJ

(−1)𝑚(𝐼,𝐽)𝑎𝐼,𝐽𝑓𝐿\𝐼,𝐽(𝐱)

)

 
 
𝐞𝐿, 

 

Or equivalently, 

 

P(τ(F(𝐱))(𝐰)) = 



lL
ML

||
(

  
 





lInlK

MK
||),min(||0

            





|||| KJ
NJ

(−1)𝑚(𝐼,𝐽)𝑎𝐿\𝐾 𝑓𝐾,𝐽 (𝐱)

)

  
 
𝐞𝐿 . 

 

From the definition of ℓ𝑤(ℎ(x)) for any W   and for ℎ(x) = 𝑔𝐭 (τ(F(𝐱))), we know that  

 

‖ℓ𝑤(ℎ(𝐱))‖𝑣,𝐵  =  ‖‖𝑔𝐭(𝜏(𝐹(𝐱))(𝐰)) ‖‖
𝑣,𝐵 

, 

 

Where in the right hand side of equation, the inner ‖ ⋅ ‖ is exterior algebra of ℝ𝑚+𝑛 and ‖ ⋅ ‖𝑣,𝐵 the norm 

define in following equation,  

 

‖𝑓‖𝑣,𝐵 = sup {c: 𝑣({x ∈ B : |𝑓(𝐱)|> c}) >0}. 

 

From the definition of ‖ ⋅ ‖ norm and the fact that 𝐞𝐿 is an expanding basis element, ‖‖𝑔𝐭 𝜏(𝑌)(𝐰)‖‖𝑣,𝐵 is 

greater than or equal to the ‖ ⋅ ‖𝑣,𝐵 norm of the coefficients of any   𝐞𝐿 , i.e.      

     

‖‖𝑔𝐭 (𝜏(𝐹(𝐱))(𝐰))‖‖
𝑣,𝐵

 

 

  ≥    max
|| lL

ML



‖‖𝑔𝐭 ((  



lInlK

LK
||),min(||0

             




|||| KJ
NJ

(−1)𝑚(𝐼,𝐽)𝑎𝐿\𝐾,𝐽𝑓𝐾,𝐽 (𝐱)𝐞L‖‖𝑣,𝐵 
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≥   max
|| lL

ML



‖ 



lInlK

LK
||),min(||0

             





|||| KJ
NJ

(−1)𝑚(𝐼,𝐽)𝑎𝐿\𝐾,𝐽𝑓𝐾,𝐽(𝐱)‖𝑣,𝐵. 

 

It remains to show that there exist 0 ≤ ϱ ≤ 1 such that for any w = ∑ 𝑎𝐼,𝐽 𝐼,𝐽 𝐞𝐼∧𝐯𝐽 corresponding to a 

nonzero rational subspace W, 

 

max
|| lL

ML



‖ 



lInlK

LK
||).min(||0

             





|||| KJ
NJ

(−1)𝑚(𝐼,𝐽)𝑎𝐿\𝐾,𝐽𝑓𝐾,𝐽 (𝐱)‖𝑣,𝐵 ≥  ϱ.                          (2.2.5) 

 

From the assumption that (𝐷𝐹  ,𝑣 ) is nonplanar, 𝑓𝐾,𝐽(x)’s linearly independent on B. And this implies 

that there exist 0 < ϱ  ≤ 1 such that for any 𝑏𝐼,𝐽’s where  I ⊂ M ,J ⊂ N, |I |=| J | ≤ min (𝑚, 𝑛) with 

max𝐼,𝐽{|𝑏𝐼,𝐽|} ≥ 1, we have:  

 

‖
JI ,

𝑏𝐼,𝐽  𝑓𝐼,𝐽  (𝐱)‖𝑣,𝐵  ≥  ϱ. 

 

From this fact unless 𝑎𝐼,𝐽 = 0 for all I ⊂ M, J ⊂ N and |I |= | J | ≤ min(𝑚, 𝑛)equation (2.2.5) is satisfied. If 𝑎𝐼,𝐽 

= 0 for all I ⊂ M, J ⊂ N, and | I | =| J | ≤ min(𝑚, 𝑛), then w=0 and the corresponding subspace W is zero .This 

contradicts to the assumption that W is nonzero. This shows that for the case 1, condition (2) in Theorem2.2.1 

is satisfied. 

Case2. If  𝑙 ≥ 𝑚, we need to consider the projection P′ from ⋀𝑙 ( ℝ𝑚+𝑛 ) onto 𝐞𝑀  ∧  ⋀
𝑙−𝑚(V). Similarly, the 

image of the projection consists of linear combinations of expanding basis elements since for any L ⊂ N, 

 

‖𝑔𝐭 (𝐞M  ∧  𝐯L ) ‖ ≥ 𝑒𝑡𝑀−𝑡𝐿‖𝐞M ∧ 𝐯𝐿‖  =  𝑒  𝑡−𝑡𝐿‖𝐞𝑀  ∧ 𝐯𝐿‖ ≥ ‖𝐞𝑀  ∧ 𝐯𝐿‖. 

 

Then from equation (2.2.3):  

 

𝑃ˊ (τ( F(𝐱))(𝐞I ∧ 𝐯J )) =  𝐞𝐼∧( 
 ||||, ImKJK

(−1)𝑚(𝐼,𝐽)𝑓𝑀∖ 𝐼,𝐾(𝐱)𝐞𝑀 ∖ 𝐼  ∧  𝐯J\K) 

 

= 𝐞𝑀∧( 
 ||||, ImKJK

(−1)𝑚(𝐼,𝐽)𝑓𝑀\𝐼,𝐾(𝐱)𝐯J\K).                        (2.2.6) 

 

Note that now we must have max( 0, 𝑙 − 𝑛)  ≤ | 𝐼| ≤ 𝑚, or, equivalently, 0≤ |M \ I |≤𝑚 −max (0, 𝑙 − 𝑛) 
=min (𝑚,𝑚 + 𝑛 − 𝑙) .Therefore: 

 

𝑃ˊ(τ (F(𝐱))(𝐰)) = 𝐞𝑀∧ 



mInl

MI
||),0max(

          





||||

  
IlJ

NJ

𝑎𝐼,𝐽 



||||

    
ImK

JK

(−1)𝑚(𝐼,𝐽)𝑓𝑀\𝐼,𝐾(x)𝐯𝐽\𝐾. 

 

Rearranging terms and substituting L= J \K , we get  

 

𝑃ˊ(τ(F(𝐱))(𝐰) =  



mlL

ML
||

  

(

 
 





mInl

MI
||),0max(

          





||||

  
IlJ

LJ

(−1)𝑚(𝐼,𝐽)𝑎𝐼,𝐽𝐹𝑀 \ 𝐼,𝐽\𝐿(𝐱)

)

 
 
𝐞𝑀 ∧𝐯L 
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=  



mlL

NL
||

  

(

  
 





),min(|\|0

                
lnmmIM

MI





||||

\
ImK

LNK

(−1)𝑚(𝐼,𝐽)𝑎𝐼,𝐾∪𝐿𝑓𝑀\𝐼,𝐾(𝐱)

)

  
 
𝐞𝑀∧𝐯L . 

 

Similarly to the case 1, we want to show that there exist 0 ≤ ϱ ≤ 1 such that for any w = ∑𝐼,𝐽𝑎𝐼,𝐽𝐞I∧𝐯𝐽 

corresponding to a nonzero rational subspace 𝑊 ∶ 
 

 

max
||

 
mlL

ML




‖ 



),min(|\|0

                 
lnmmIM

MI





||||

\
ImK

LNK

(−1)𝑚(𝐼,𝐽)𝑎𝐼,𝐾⋃𝐿𝑓𝑀\𝐼,𝐾(𝐱)‖𝑣,𝐵  ≥  ϱ.              (2.2.7) 

 

Using the same argument as in case 1, since 𝑎𝐼,𝐽 ≠ 0 some I, J and (𝐷𝐹  ,𝑣 ) is nonplanar on B, the 

inequality (2.2.7) is satisfied. This shows that in case 2, condition (2) of Theorem 2.2.1 is satisfied. We have 

shown that both condition (1) and condition (2) of Theorem 2.2.1 are satisfied in Theorem 1.1.1, so we can 

prove Theorem 1.1.1 by applying Theorem 2.2.1 with 𝐶 = 𝐶 ˊ (
1

𝜚
)
𝛼

𝑣 (𝐵). 

 

 

4. CONCLUSION 

In this paper, we studied linear combination, nonplanar condition (C, α)-good function. We apply 

τ(F(𝐱)) to w and calculate the result and after calculating τ(F(𝐱))(𝐰)apply it to calculating 

(‖𝑔𝑡  (𝜏(𝐹(𝐱)))(𝐰)‖ , 𝑣) is (𝐶′′′ , 𝛼)-good on 𝐵̃. We conclude that the result of applying τ(F(𝐱)) to any type 

of basis element is a linear combination of basis elements of dimension 2 with the coefficients are 1,f𝑖𝑗(x)s 

or the determinants of 2 by 2 submatrices of F(x).We have shown that both conditions are satisfied. 
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