Design and Analysis of an Improved Nucleotide Sequences Compression Algorithm Using Look up Table (LUT)

Govind Prasad Arya, R.K. Bharti, Devendra Prasad

Abstract


DNA (deoxyribonucleic acid), is the hereditary material in humans and almost all other organisms. Nearly every cell in a person’s body has the same DNA. The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). With continuous technology development and growth of sequencing data, large amount of biological data is generated. This large amount of generated data causes difficulty to store, analyse and process DNA sequences. So there is a wide need of reducing the size, for this reason, DNA Compression is employed to reduce the size of DNA sequence. Therefore there is a huge need of compressing the DNA sequence. In this paper, we have proposed an efficient and fast DNA sequence compression algorithm based on differential direct coding and variable look up table (LUT).

Full Text:

PDF


DOI: http://doi.org/10.11591/ijaas.v7.i2.pp152-155

Refbacks

  • There are currently no refbacks.


International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Web Analytics View IJAAS Stats