Influence of Zinc Ion Concentration on Structure, Morphology and Optical properties of Spray Deposited ZnO Thin Films

Limbraj Sopan Ravangave, Sarika Vishvnbath Jadhav

Abstract


Zinc Oxide (ZnO) thin films have been deposited for five different molarity (M) of Zinc acetate hydrated (0.075, 0.1, 0.125, 0.15, 0.175 M) using simple spray technique to study the effect of Zinc ion concentration on structure, morphology and optical properties. The XRD patterns of deposited ZnO thin films show tetragonal crystal structure with wurtzite symmetry. The effect of molarity on morphology was studied using Scanning Electron microscopy (SEM). The elemental analysis was studied by using Energy Dispersive X-ray analysis (EDX). The optical absorption was recorded by using Systronics Double Beam Spectrophotometer (2201). Crystallite size estimated from XRD data was to be in nanometre (nm) range; however films deposited for 0.15 M zinc acetate show maximum crystallite size (66 nm) as compared to other samples. All the films show lower absorption in wide range (340-999 nm) of light spectrum. However ZnO film deposited for 0.15 zinc acetate hydrated shows maximum blue shifting of absorption edge and higher band gap (3.8 eV) as compared to other samples.


References


Hadis Morkoç and Umit Ozgeur, Zinc Oxide: Fundamentals, Materials and Device Technology. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) ISBN: 978-3-527-40813-9

Ü. Özgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç 2005 Journal of Applied Physics: 98 041301(1 -103) https://doi.org/10.1063/1.1992666

Baxter J B, and Aydil E S, 2006 Solar Energy Materials and Solar Cells: 90 (5) 607-622 https://doi.org/10.1016/j.solmat.2005.05.010

M. Nadareishvili G. Mamniashvili D. Jishiashvili, 2020 Engineering, Technology & Applied Science Research: 10 (2) 5524-5527 www.etasr.com

Lim S J, Kwon S, Kim H, 2008 Thin Solid Films: 516 1523–1528 https://doi.org/10.1016/j.tsf.2007.03.144

Ma J, Ji F, Zhang D, Ma H, and Li S, 1999 Thin Solid Films: 357(2) 98-101 https://doi.org/10.1016%2FS0040-6090%2899%2900357-0

Tripathi Brijesh, patel Malkesh, ray Abhijit and kumar manoj, 2013 National Seminar on Current Trends in Materials Science (CTMS-2011) IOP Conf. Series: Materials Science and Engineering: 43 012002 doi:10.1088/1757-899X/43/1/012002

Maruyama T, Shionoya J, 1992 Journal of Material Science Letters: 11 170–172 https://doi.org/10.1007/BF00724682

Shinen H Mohammed, 2014 Journal of Natural Sciences Research 4 (1) 98-106 10.1016/j.jphotobiol.2014.02.004

M. G. Faraj, and K. Ibrahim, International Journal of Polymer Science 2011 https://doi.org/10.1155/2011/302843

Tecaru A, Danciu A I, Musat V, Fortunato E, Elangovan E, 2010 Journal of Optoelectronics and Advanced Materials: 12 (9) 1889 – 1893 https://www.researchgate.net/publication/234022979

Cullity B., Stock S. Elements of X-ray Diffraction, 3rd Ed. Princeton Hall: (2001).

Dhruba B. Khadka and JunHo Kim, 2013 CrystEngComm, , 15, 10500–10509 doi: 10.1039/C3CE41387J

J. Tauc, Amorphous and Liquid Semiconductors, Plenum, London: (1974)

Limbraj Sopan Ravangave, Sarika Vishvnath Jadhav Journal of Advanced Applied Scientific Research 2020 2(3):1-6 www.joaasr.com

More N. R, Chanshetti U. B., International Journal of Chemical and Physical Sciences, 2018 7 special issue 51-54 https://www.researchgate.net/publication/326624516

Abdelkader H, Fahima D, Narimane S,2018 Optics: 7(2) 68-73 doi: 10.11648/j.optics.20180702.12




DOI: http://doi.org/10.11591/ijaas.v10.i3.pp%25p

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594


Web Analytics View IJAAS Stats