
International Journal of Advances in Applied Sciences (IJAAS) 
Vol. 7, No. 2, June 2018, pp. 152~155 
ISSN: 2252-8814, DOI: 10.11591/ijaas.v7.i2.pp152-155      152 

  

Journal homepage: http://iaescore.com/online/index.php/IJAAS 

Design and Analysis of an Improved Nucleotide Sequences 
Compression Algorithm Using Look up Table (LUT) 

 
 

Govind Prasad Arya1, R.K. Bharti2, Devendra Prasad3 

1Uttarakhand Technical University, Dehradun, Uttarakhand, India & Asistant Professor- Sikkim Manipal University, 
Gangtok, Sikkim, India 

2BTKIT Dwarahat, Dist-Almora, Uttarakhand, India 
3Uttarakhand Technical University, Dehradun, Uttarakhand, India  

 
 

Article Info  ABSTRACT 
Article history: 

Received Dec  20, 2018 
Revised Apr 24, 2018 
Accepted May 25, 2018 
 

 DNA (deoxyribonucleic acid), is the hereditary material in humans and 
almost all other organisms. Nearly every cell in a person’s body has the same 
DNA. The information in DNA is stored as a code made up of four chemical 
bases: adenine (A), guanine (G), cytosine (C), and thymine (T). With 
continuous technology development and growth of sequencing data, large 
amount of biological data is generated. This large amount of generated data 
causes difficulty to store, analyse and process DNA sequences. So there is a 
wide need of reducing the size, for this reason, DNA Compression is 
employed to reduce the size of DNA sequence. Therefore there is a huge 
need of compressing the DNA sequence. In this paper, we have proposed an 
efficient and fast DNA sequence compression algorithm based on differential 
direct coding and variable look up table (LUT). 

Keyword: 

Compression 
Decompression 
Differential Direct Coding 
DNA Compression Algorithm 
Look Up Table 
LUT 
Nucleotide Data Compression 

Copyright © 2018 Institute of Advanced Engineering and Science.  
All rights reserved. 

Corresponding Author: 

Govind Prasad Arya,  
Uttarakhand Technical University,  
Dehradun, Uttarakhand, India. 
Email: govind.arya10@gmail.com 

 
 
1. INTRODUCTION  

For decade, DNA sequence compression has become an area of research for researchers. In labs, 
researchers are continuously analysing these DNA sequences for various purposes. So for analysing these 
DNA sequences, DNA sequences need to be stored somewhere and transmitted from one place to another. 
But because of having very large size of DNA sequences, it results in very high transmission cost. From 1982 
to present, the numbers of bases in GenBank are getting doubled approximately in every 18 months. So we 
require a very efficient algorithm to compress these DNA sequences. There is a direct coding algorithm 
which uses 2 bits for representing each of the 4 nucleotides. As DNA sequence consists of 4 nucleotide bases 
A, C, G & T called exons(i.e. coding regions or protein synthesis) or introns(i.e. non-coding regions or no 
protein synthesis), 2 bits are sufficient to represent each of the 4 bases. 

 
1.1.   Limitations of Existing DNA Compression Algorithms 
a) Few existing compression algorithms such as GZIP, COMPRESS, BZIP2, WinRAR or WinZip uses 

more than 2 bits per byte for coding the DNA sequence. These algorithms do not utilize the common 
properties found in DNA sequence and this causes lower compression rate.  

b) There are few algorithms like GenCompress, BioCompress which uses properties found in DNA 
sequences for compression. Their approximate compression rate is 1.74 bits per base i.e. 78% in 
compression rate. But these algorithms have very high running time. 

mailto:govind.arya10@gmail.com


IJAAS  ISSN: 2252-8814  
 

Design & Analysis of an Improved Nucleotide Sequences Compression …  (Govind Prasad Arya) 

153 

1.2.   Shortcomings of “A Compression Algorithm for Nucleotide Data Based on Differential Direct 
Coding and Variable Length Lookup Table (LUT)”  

   The existing algorithm uses ASCII code ranging from -65 to -1 for triplet stored in field length 
LUT,  -127 to -65 for multiples of triplet (6,9,12, so on) stored in variable length LUT , ASCII code -128 
was used to handle unknown character N & other ASCII codes (from 0 to 127) were used to store auxiliary 
characters.  
  Sometimes there may be an ambiguity in identifying the nucleotide base; it may either be an A or 
C, an A or G and so on. The extended DNA alphabet can be used to identify all these possible combinations 
where all the 15 possible combinations of the standard 4 nucleotides are given unique symbols. We identify 
the extended DNA alphabet as Σ= {A, B, C, D, G, H, K, M, N, R, S, T, V, W, Y}. The above algorithm has 
not used extended DNA alphabet. The data model of existing algorithm is shown in Table 1. 
 
 

Table 1.  Data Model Used by Existing Algorithm  
Type of Data Description Range Look-Up Table 

Auxiliary Symbol ASCII 0 to 127  
Triplets Set of three characters (basae) -1 to -64 Fix Length LUT 

Multiple of Triplet Set of 6, 9, 12… characters (base) -65 to -127 Variable Length LUT 
Unknown ? -128  

 
 
1.3.   Proposed Algorithm 

In this paper, we are proposing an algorithm which is the modification of “A Compression 
Algorithm for Nucleotide Data Based on Differential Direct Coding and Variable Length Lookup Table 
(LUT)” in following ways. 

In the existing algorithm , all the ASCII codes from 0 to 127 was reserved to represent auxiliary 
symbols {A,G,T,C} which does not utilize all ASCII codes. We have 4 DNA alphabets and 16 doubles; in 
total we need 4+16=20 ASCII codes. Hence we have 256-20=236 ASCII codes which can be used to 
represent multiples of doubles to store in variable length LUT. By using these codes we can achieve better 
compression as compare to existing algorithm. 
  Model: We consider the ASCII characters between the ranges -128 to 127. The range between (112 
to 127) = 16 minus ASCII codes of respective 4 DNA alphabets Σ= {A, C, G, T} is used to represent doubles 
stored in fixed size LUT and remaining ASCII codes (256-16=240) except -1(used for EOF) is used to 
represent multiples of doubles stored in variable size LUT except four ASCII codes used for representing 4 
DNA symbols which are A, T, G, C. The data model of proposed algorithm is shown in Table 2. 
  Coding: Here we would encode DNA sequence using method described in the above model. We 
have a database which contains two tables; one Fixed Length LUT to store fixed 16 doubles and second 
Variable Length LUT to store maximum 235 combinations of multiples of doubles (4, 6, 8, 10 so on). We 
scan the DNA sequences character by character until end of file (EOF) character is encountered. Every time 
we read two characters (doubles) from uncompressed DNA sequence which definitely found in Fixed Length 
LUT, then we read next doubles, now we have a group of four characters. Initially this group of four 
characters is not available in Variable Length LUT. Hence we will store that group in this table and write 
respective ASCII code of last matched word in the output file. Whenever we find a word in Variable Length 
LUT, we will search another multiple of doubles (4, 6, 8, 10 and so on) in the table and if not found then 
store that combination of doubles in the table and write ASCII code of last matched table entry in the output 
file. When we find repetition of a nucleotide base like R (i.e RRRRRR), that will be written in output file as 
it is. The word having length less than 2 characters will also be written as it is. 
 
 

Table 2.  Data Model for Proposed Algorithm 
Type of Data Description Range Look-Up Table 

Auxiliary Symbol (4 Characters) ASCII alphabets 
Σ={A, T, G, C} 

Respective ASCII codes of Σ NA 

Double (16 Words) Set of two base characters (112 to 127) - Σ Fix Length LUT 

Multiple of Doubles (Max. 235 Words) Set of  4,6,8… base 
characters -128 to 111 Variable Length LUT 

Total 256 Words  -128 to 127  
 
 
 



                ISSN: 2252-8814 

IJAAS  Vol. 7, No. 2, June 2018:  152 – 155 

154 

2. RESEARCH METHOD  
Our proposed algorithm is given below- 
 

WHILE (EOF) 
{ 
Try to read two characters (doubles) in string variable doub from uncompressed sequence 
 If (length of doub = = 2) and doub is a valid doubles then 
  { 
   mdoub=mdoub + doub 
   IF (mdoub found in Variable Length LUT) then 
     Continue to while loop to read next doubles 
   ELSE 
   { 

Write the integer code of last matched sequence from Fixed Length 
LUT or Variable Length LUT into output file and also store that 
sequence in Variable Length LUT along with new integer code 

} 
} 
   ELSE IF (length of doub < 2) then 
 Write sequence stored in doub directly to output file 
 
ELSE IF (There is n times repetition of a character (i.e R) other than {A, G, T, C}) 

Write that character as Rn in output file and also write sequence stored in doub with length < 2 
directly to output file  

} 
 
The execution method of proposed algorithm is shown in Table 3. 

 
 

Table 3.  Encoding Process with Proposed Algorithm 
 
Step Input Sequence Doubles(t) Multiple of 

Doubles(st) 
Look-Up Table Encoded 

Sequence(s) Status of st Entry 

1 ACTGTGACTG      

2 AC AC AC Found AC=# 
TG=+ 

 

3 TG TG ACTG Not Found Add with 
ACTG=$ 

# 

4 TG TG TGTG Not Found Add with 
TGTG=@ 

#+ 

5 AC AC TGAC Not Found TGAC=^ #++ 

6  TG TG ACTG Found ACTG= $   #++$ 

 
 
3. RESULTS AND ANALYSIS  

Our proposed algorithm has been applied on ten types of DNA sequences shown in Table 4. 
a. The results shown in Table 4 proves that our proposed algorithm would provide better compression ratio 

in comparison to existing methodologies to compress DNA sequences. This algorithm uses less amount 
of memory as compared to the other algorithms and it takes less amount of time than other algorithms and 
it is easy to implement as well. 

b. Our proposed algorithm compresses both DNA and RNA sequences. Most of the other compression 
algorithms use the other properties of sequences such as repeated and non- repeated patterns in DNA 
sequences. If the sequence is compressed using our proposed algorithm then it would be so easier to 
make sequence analysis among compressed sequences.  It would also be easier to make multi-sequence 
alignment as well. The compression results of our proposed algorithm are shown in Table 4. 

 
 
 
 



IJAAS  ISSN: 2252-8814  
 

Design & Analysis of an Improved Nucleotide Sequences Compression …  (Govind Prasad Arya) 

155 

Table 4.  Results & Conclusion 
 
 

S.N 

 
 

Sequence 
Type 

 
Size of Original 

Sequence Before 
Compression 

Size of Sequence After Compression 

Using Existing 
Methodology 

Using Proposed 
Methodology 

Using Latest Proposed 
Methodology 

1 ATATSGS 9647 3101 2951 3011 
2 ATEF1A23 6022 1957 1858 1814 
3 ATRDNAF 10014 3276 3165 3128 
4 ATRDNAI 5287 1734 1700 1684 
5 CHMPXX 15180 4874 4489 4160 
6 CHNTXX 155844         50540 48011 46443 
7 HEHCMVCG 229354 74736 72397 74205 
8 HUMDYSTROP 105265 34347 33249 32260 
9 HUMHDABCD 58864 19201 18731 18252 
10 VACCG 47912 15374 14672 15445 

Average 53812.4 20914 20122.3 20040.2 
 
 
4. CONCLUSION 

The previous algorithm which was based on triplets was able to compress the DNA sequence upto 
68% of its original size but our proposed algorithm that is based on doubles can compress the DNA sequence 
upto 70%. In this research paper, we have come up with the idea which is actually a modification in 
differential direct coding with variable length LUT. The results which we achieved using proposed 
algorithm, are shown below in table, are much better than the existing results. Our proposed algorithm would 
lead to much better compression ratio as the multiples of doubles are found frequently in DNA sequences. 
 
 
REFERENCES  
[1] Gregory Veyetal., Differential direct coding: a compression algorithm for nucleotide sequence data, Database 

(Oxford), Published online 2009 Sep 14. doi:  10.1093/database/bap013. 
[2] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression," IEEE Transactionson Information 

Theory, vol. IT-23 NO. 3, pp. 337-343, MAY 1977. 
[3] X. Chen and M. Lip, " DNA compress: fast and effective dna sequence compression," Bioinformatics, vol. 18, 

Pages 1696–1698, DEC 2002. 
[4] Bao, S., et al., " A DNA sequence compression algorithm based on LUT and LZ77," DOI: 

10.1109/ISSPIT.2005.1577064 · Source: IEEE Xplore, pp. 1-14, January 2006. 
[5] Ateet Mehta, et al, " DNA Compression using Hash Based Data    Structure," IJIT & KM, vol. 2, pp. 383-386, 

2010. 
[6] Govind Prasad Arya and R.K. Bharti, " A Compression Algorithm for Nucleotide Data Based on Differential Direct 

Coding and Variable Length Lookup Table (LUT)," IJCSIT, vol. 3, pp. 4411-4416, 2012. 
[7] Li Tan, et al, " K-means clustering based compression algorithm for the high-throughput DNA sequence IEEE 

Xplore, pp. 952-955, 2014. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797453/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797453/
https://dx.doi.org/10.1093%2Fdatabase%2Fbap013

