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 This paper presents a simple three-terms Conjugate Gradient algorithm for 

solving Large-Scale systems of nonlinear equations without computing 

Jacobian and gradient via the special structure of the underlying function. 

This three term CG of the proposed method has an advantage of solving 

relatively large-scale problems, with lower storage requirement compared to 

some existing methods. By incoporating the Powel restart approach in to the 

algorithm, we prove the global convergence of the proposed method with a 

derivative free line search under suitable assumtions. The numerical results 

are presented which show that the proposed method is promising. 
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1. INTRODUCTION  

In real life problems, many problems are in large-scale systems of nonlinear equations such as 

concentration of chemical species, cross-sectional properties of structural elements and dimensional 

mechanical linkages e.t.c. Hence it is extremely important to develope an efficient algorithm to solve the 

following basic large-scale problem 
 

F(x) = 0, (1) 
 

where F: Rn→Rn is continuously differentiable, and the Jacobian J(x)≡F′(x) issymmetric, that is J(x)=J(x)T. 

Let define a norm function by f(x) = 
1

2
||F(x)||2, where ||.|| is the Euclidean norm. Then (1) is 

equivalent to the following unconstrained optimization problem 
 

minf(x),  x ∈ Rn (2) 
 

The general CG method for solving (2), is given as follows 
 

xk+1=xk+αkdk, (3) 
 

where αk>0 is attained using line search, and direction dk are obtained by 
 

dk+1=−∇f(xk+1) +βkdk, d0=−∇f(x0), (4) 
 

where 𝛽𝑘 is called conjugate gradient parameter 
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It is remarkable to mention that, many algorithms have been developed to solve nonlinear system of 

equations, the famous one is the Newton and quasi-Newton methods [1] which entails computation of 

Jacobian matrix or it’s approximate. Other methods include Gauss-Newton methods [2-4], the gradient-based 

and the conjugate gradient methods [5-9], the trust region method [10-12], the Levenberg-Marquardt 

methods [13-14], the tensor methods [15], the derivative free methods [16-18] and the subspace  

methods [19]. 

One of the most crucial features of each numerical algorithms for solving systems of nonlinear 

equations is how the procedure deals with large-scale problems. It is well known that choices of βk affect 

numerical performance of the method, and hence many researchers have studied effective choices of βk (see 

[5-6, 20], for example). Recently Hager and Zhang [6] presenetd conjugate gradient methods and their global 

convergence properties. The shortcomming of conjugate gradient methods is that most of conjugate gradient 

methods do not satisfy the descent condition F(x)T dk ≤ 0. However, some researchers proposed three-term 

conjugate gradient methods which always generate descent search directions (see [6-9, 19] for example). 

This is what motivated us, to proposed a simple three CG algorithm for solving large scale systems 

of nonlinear equations by a modifying the classical memoryless BFGS approximation of the Jacobian inverse 

restarted as a multiple of an identity matrix at every step. The method posses low memory requirement, 

global convergence properties and simple implementation procedure. 

The main contribution of this paper is to construct a fast and efficient three-term conjugate gradient 

method for solving (1) the proposed method is based on the three-term conjugate gradient method proposed 

by [21] for unconstrained optimization. In other words our algorithm can be thought as an extension to three-

term conjugate gradient method to a general systems of nonlinear equations. We present experimental 

numerical results and performance comparism with three-term DF−SDCG conjugate gradient method by [20] 

which illustrated that the proposed algorithm is efficient and promising. The rest of the paper is organized as 

follows: In section 2, we describe the proposed algorithm in details. Subsequently, Convergence results are 

presented in Section 3. Some numerical results are reported in Section 4 to show its practical performance. 

Finally, conclusions are made in Section 5. 
 

 

2. ALGORITHM 

This section, presents a simple three term CG method for solving large-scale systems of nonlinear 

equations via memoryless BFGS update. In general, quasi-Newton method is an iterative method that 

generates a sequence of points {xk} from a given initial guess x0 via the following form: 
 

xk+1=xk−αkBk
−1∇f(xk) k=0, 1, 2 . . . , (5) 

 

where Bk is an approximation to the Jacobian which can be updated at each iteration for k=0, 1, 2 . . ., the 

updated matrix Bk+1 is chosen in such a way that it satisfies the secant equation, i.e 
 

𝐵𝑘+1𝑆𝑘 = 𝑦𝑘 , (6) 
 

where sk=xk+1−xk and yk=∇f(xk+1) −∇f(xk) 

Ortega and Rheinboldt in [22] presented approximation to the gradient ∇f(xk), in order to avoid 

computing exact gradient as 
 

 (7) 

 

In our work we will use their idea and αk to be updated via line search technique. The update 

formula for the BFGS Bk is given as 
 

 (8) 

 

By letting Bk≈θI, (8) can be rewrite as: 
 

 

                                                  (9) 

 

where, θk as in Raydan [23] 
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                                                                    (10) 

 

We further multiply both sides of (9) by g(xk+1) to obtain 
 

 
            (11) 

 

Observe that the direction dk+1 from (11) can be written as 
 

 
                                                                    (12) 

 

Hence, our new direction is 
 

 
                                                                    (13) 

 

where, 
 

 
                                                            (14) 

 

 
                                                                    (15) 

 

Finally, we have 
 

 
                                                                    (16) 

 

Therefore with the proposed search direction we are using the derivative freee line search of Li and 

Li [16] to find αk=max{s, ρs, ρ2s, ...} such that 
 

 
                                              (17) 

 

where σ, s > 0 and ρ ∈ (0, 1). 

 

We present the below algorithm 

Algorithm 2.1 (STTCG) 

Step 1 : Given x0 ,α > 0 , σ ∈ (0, 1), ϵ=10−4 and compute d0=−g0, set k=0 . 

Step 2 : If ||gk|| < ϵ . then stop; otherwise continue with Step 3. 

Step 3 : Determine the stepsize αk by using a line search conditions in (17), 

Step 4 : Determine δk and ηk by (14) and (15) respectively. 

Step 5 : Find the search direction by (13). 

Step 6 : Powel restart criterion. If |𝑔𝑘+1
𝑇 𝑔𝑘|

2 > 0.2||𝑔𝑘+1||
2, then set 𝑑𝑘+1 = −9𝑘+1 

Step 7: Consider k=k + 1 and go to step 2. 
 
 

3. CONVERGENCE RESULT 
In this Section, we will present the global convergence of the simple three terms conjugate  

gradient method. 
Definition 1 

Let Ω be the level set defined by 
 

 
 

where τ is a positive constant. 

The following Assumptions are needed on the nonlinear systems F in order to establish the global 

convergence of our method Assumption A.  
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(i) The level set is bounded. 
 

 
 

(ii) In some neighborhood N of Ω, the Jacobian is lipschitz continuous, i.e there exist a constant L > 0 s.t 

for all x, y ∈ N 

 

                                                                     (18) 

 

(iii) There exists x∗ ∈Ω such that F(x∗)=0 and F′(x) is continous for all x. 

Asssumption A(ii) and A(iii) implies that there exist positive constants κ1, κ2 and L1 such that 

 

 

                                                                    (19) 

 

 
                                                         (20) 

 

The following lemma shows that the direction dk determined by (13) is interesting  

Lemma 1 Suppose that F is uniformly convex then dk is defined by (13), then we have 
 

                                                                           (21) 

 

and 
 

      
                                                                     (22) 

 

Proof. 

when k=0 (21) and (22) hold since d0=−g0. From the defination of dk in (13) we have 
 

 
 

Thus (21) hold for all k ≥ 1 and By Lipchitz continuity, we know that ||yk|| ≤ L||sk||. On the other 

hand by uniform convexity, it yields 
 

      
                                                                     (23) 

 

Thus, 
 

 
                                      (24) 

 

      

                                                                     (25) 

 

      
                                                                     (26) 

 

Since 
 

 
                                                                   (27) 
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Finally 
 

 
   (28) 

 

Hence, dk+1 is bounded. 

The comming lemma shows that the line search in step 3 of STTCG Algorithm is reasonable, then 

the presented algorithm is well defined. 
 

Lemma 2 

Let the Assumption A hold. Then STTCG Algorithm produces an iterate of zk =xk + αkdk, in a finite 

number of backtraking steps. 

Proof: 

We suppose that ||gk|| → 0 does not hold, or the algorithm is stoped. Then there exists a constant  

ϵ0 > 0 such that 
 

                                                                           (29) 

 

We will get this by contradiction. Suppose that for some iterate indexes such as k∗ the condition (17) 

is not true. Then by letting 𝑎𝑘∗
𝑚 = 𝑝𝑚𝑠, it can be concluded that 

 

 
 

combining with assumption A (ii) and (21) , we have 
 

 

                                           (30) 

 

By (19) and (28) 
 

 
 

Thus, we obtain 

 

 
 

Thus, it contradicts with the defination of 𝑎𝑘∗
𝑚 . Consequently, the line search procedure (17) can 

attain a positive steplength αk in a finite number of backtracking steps. Hence it turns out the result of this 

lemma. The proof is complete.  

Now we establish the global convergence theorem 

Theorem Let the properties of assumption A hold. Then the sequence {xk} be generated by STTCG 

algorithm converges globally, that is, 
 

      
                                                                     (31) 

Proof. We prove this theorem by contradiction. Suppose that (31) is not true, then there exists a 

positive constant τ such that 
 

                                                                           (32) 

 

Since ∇f(xk)=JkFk, (32) implies that there exists a positive constant τ1 satisfying 
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                                                                     (33) 

 

Case (i): lim supk→∞ αk > 0. then by (22), we have lim infk→∞ ||Fk||=0. This and Lemma 1 show that 

limk→∞ ||Fk||=0, which contradicts (32). 

Case (ii): lim supk→∞ αk=0. Since αk ≥ 0,this case implies that 

 

      
                                                                     (34) 

 

by definition of gk in (7), we have 

 

 
                                      (35) 

 

      
                                                                     (36) 

 

      
                                                                     (37) 

 

where we use (19) and (20) in the last inequality. (17) and (32) show that there exists a constant τ2 > 

0 such that 

 

                                                                           (38) 

 

By (7) and (19), we get 

 

  
                                     (39) 

 

From (20) and (39), we obtain 

 

      
                                                                     (40) 

 

      
  (41) 

 

      
                                                                     (42) 

 

This together with (34) and lemma 2 show that limk→∞ ||yk||=0. From (38), (39), (40) and (41),  

we have 

 

      
                                                                     (43) 

 

meaning there exists a constant λϵ (0, 1) such that for sufficiently large k 

 

                                                                          (44) 

 

Since limk→∞ αk=0, then 𝛼𝑘
′ =

𝑎𝑘

𝑟
does not satisfy (17) namely, 

 

 
 

Since {xk} ⊂ Ω is bounded and (28), without loss of generality, we assume xk → x∗. 

By (7), we have 
 



                ISSN: 2252-8814 

IJAAS  Vol. 5, No. 3,  September 2016 :  118 – 127 

124 

 

                                                          (45) 

 

the fact that the sequence {dk} is bounded. on the other hand 

 

      (46) 

 

Hence, from (45) and (46), we obtain −∇f(x∗)T∇f(x∗) ≥ 0, which means ||∇f(x∗)||=0. This contradicts 

with (32). The proof is then completed. 

 

 

4. NUMERICAL RESULTS 
In this section, we tested a simple three term conjugate gradient algorithm and compare it’s 

performance with a family of derivative free conjugate gradient method for largescale nonlinear systems of 

equations [24]:  

Problem 3, 5, 8, and 10 are constructed by us where as the remaining are the reference therein. The 

test functions are listed as follows 

 

Problem 1: see [18] 

Fi(x)=xi(cosxi − n1 ) − xn[sinxi − 1 − (xi − 1)2 − 
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  

i=1, 2, . . . , n x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 2: [25]  

Fi(x)=exi − 1 

i=1, 2, ..., n. 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 3: System of n nonlinear equations 

Fi(x)=1 − x2
i + xi + xixn−2xn−1xn − 2; 

i=2, 3, ..., n. 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 4: System of n nonlinear equations [18] 

Fi(x)=xi − 3 sin(x
3

i − 0.66) + 2, 

i=2, 3, ..., n − 1. 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 5: System of n nonlinear equations 

Fi(x)=cos x1 − 9 + 3x1 + 8ex2 , 

Fi(x)=cos xi − 9 + 3xi + 8exi  1 , 

i=1, 2, ..., n 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 6: System of n nonlinear equations [25] 

F (x)=𝑥1
2 + (𝑥𝑖 − 3) log(𝑥𝑖+3) − 9 + (x − 3) 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 7: System of n nonlinear equations [18] 

Fi(x) =𝑒𝑥1
2−𝑖

− cos⁡(1 − 𝑥𝑖),  

i=1, 2, ..., n 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 8: System of n nonlinear equations 

Fi(x)=(0.5 -xi)2 + (n + 1 − i)2 − 0.25xi − 1, 
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Fn(x)=
𝑛

10
1 − 𝑒−𝑥𝑛

2
 , i=1, 2, ..., n. 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 9: System of n nonlinear equations [25] 

Fi(x)=4xi + xi+1 − 2xi − 𝑥𝑛+1
3

 

Fn(x)=4xn + xn−1 − 2xn − − 𝑥𝑛+1
3

 

i=1, 2, ..., n − 1. 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

Problem 10: System of n nonlinear equations 

Fi(x)=𝑥𝑖
2− 4, 

x0=(0.5, 0.5, 0.5, ..., 0.5)T 

 

 

Table 1. Numerical Results 
 STTCG Algorithm     DF-SDCG Algorithm 

F Dim NI NF CPU time NI NF CPU time 
 1000 8 7.13E-04 0.309162 27 5.35E-07 0.483588 

1 5000 9 1.60E-04 0.225975 27 1.59E-06 2.015259 

 10000 9 2.26E-04 0.339415 27 2.33E-06 4.539496 
 100000 9 7.16E-04 3.706525 27 7.57E-06 32.24164 

 1000 86 9.24E-04 0.146515 110 9.59E-05 1.8757 

2 5000 93 9.88E-04 0.608405 118 9.14E-05 7.177654 
 10000 97 9.17E-04 1.056327 121 9.38E-05 14.69088 

 100000 108 9.10E-04 10.02409 132 9.18E-05 150.8311 

 1000 50 9.91E-04 0.122658 23 7.75E-05 0.397317 
3 5000 55 9.27E-04 0.551853 24 3.27E-05 1.782406 

 10000 57 9.25E-04 1.065817 24 4.62E-05 3.305191 

 100000 64 8.63E-04 13.20678 25 9.90E-05 30.46621 
 1000 59 9.94E-04 0.165684 17 5.88E-05 0.270884 

4 5000 64 9.30E-04 0.735837 18 6.62E-05 1.382743 
 10000 66 9.29E-04 1.336673 18 9.36E-05 2.614208 

 100000 89 9.00E-04 14.70021 25 7.65E-05 30.48919 

 1000 90 9.91E-04 0.312973 120 9.81E-05 2.058193 
5 5000 97 8.98E-04 1.402195 127 9.58E-05 8.248632 

 10000 99 9.81E-04 2.499665 130 9.50E-05 16.05217 

 100000 108 9.72E-04 23.19104 140 9.21E-05 170.3214 
 1000 17 7.72E-04 0.074975 20 7.20E-05 0.356372 

6 5000 18 6.78E-04 0.29091 22 9.35E-05 1.72317 

 10000 22 6.98E-04 0.629363 30 9.16E-05 4.247261 
 100000 45 5.89E-04 11.62368 48 2.31E-05 62.58256 

 

 

Table 2. Numerical Results continue 
 STTCG Algorithm     DF-SDCG Algorithm 

F Dim NI NF CPU time NI NF CPU time 
 1000 21 6.60E-04 0.06498 48 7.98E-05 0.866479 

7 5000 22 8.85E-04 0.2508 51 8.73E-05 3.622161 

 10000 23 7.51E-04 0.457754 52 9.73E-05 6.90017 
 100000 38 8.48E-04 7.904586 70 8.86E-05 81.89273 

 1000 12 7.28E-04 0.03847 36 9.69E-05 0.630022 

8 5000 13 3.97E-04 0.162693 38 9.81E-05 2.795954 
 10000 13 5.61E-04 0.303557 39 9.34E-05 5.907116 

 100000 14 4.33E-04 3.553242 42 9.01E-05 49.78434 

 1000 6 9.46E-04 0.038455 25 6.12E-05 0.486923 
9 5000 7 2.11E-04 0.127945 26 8.22E-05 2.085478 

 10000 7 2.99E-04 0.256841 27 6.91E-05 4.818576 

 100000 7 9.46E-04 2.880648 29 7.46E-05 35.18388 
 1000 59 9.86E-04 0.103063 22 3.91E-05 0.370238 

10 5000 64 9.22E-04 0.409039 22 8.75E-05 1.638231 

 10000 66 9.20E-04 0.766193 23 5.53E-05 3.171502 
 100000 99 9.40E-04 12.20289 37 4.52E-05 42.88408 
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Figure 1. Performance Pro_le of STTCG and  

DF-SDCG Methods with Respect to Number of 

Iterations for Problem 1-10 

Figure 2. Performance Pro_le of STTCG and  

DF-SDCG Methods with Respect to CPU Time in 

Seconds for Problem 1-10 

 

 

In the computational experiments, we compare the performance of the method introduced in this 

work with that of A three-terms PolakRibirePolyak conjugate gradient algorithm for large-scale nonlinear 

equations in order to check it’s effectiveness. Numerical computations have been performed in MATLAB 

R2013a on a PC with Intel CELERON(R) processor with 4.00GB of RAM and CPU 1.80GHz. We used 10 

test problems with dimensions 1000, 5000, 10000 and 100000 to test the performance of the proposed 

method in terms of the number of iterations (NI) and the CPU time (in seconds). We declare a termination of 

the method whenever or the number of iteration is greater than 300. The parameters were chosen as r =0.1, 

σ=0.01, s=1, ρ=0.1 and ϵ=10−4. 

 

                                                                          (48) 

 

In the columns of table 1 we have the following: 

Dim : the dimension of the problem. 

NI : the number of iteration. 

NF : the function norm evaluation when the program is stoped. 

CPUtime : the cpu time in seconds. 

 

The numerical result in Tables 1 and 2, when comparing STTCG with the DF-SDCG subject to 

CPU time in seconds, we see that STTCG is top performer. Comparing STTCG with DF-SDCG subject to 

number of iterations, we see that STTCG was better in 7 problems (i.e it achieved mininum number of 

iterations) while DF-SDCG was better in 3 problems. Therefore, in comparison is shown in Figures 1 and 2 

are performance profile derived by Dolan and More [26], with DF-SDCG, STTCG appears to generate the 

best search direction and best steplegth. The direction dk+1 given by (13) used in STTCG satified the decsent 

condition, and the restarted scheme proved to be more robust in numerical experiments and applications. 

 

 

5. CONCLUSION  

In this paper a new three-term conjugate gradient algorithm as a modification of BFGS quasi-

Newton update for with descent direction is has been presented. The convergence of this algorithm was 

proved using a derivative free linesearch. Intensive numerical experiments on some benchmark nonlinear 

system of equations of different characteristics proved that the suggested algorithm is faster and more 

efficient compared to three term DF-SDCG algorithm [24]. 
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