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 In this work Opposition based Kidney Search Algorithm (OKS) is used to 
solve the optimal reactive power problem. Kidney search algorithm imitates 
the various sequences of functions done by biological kidney. Opposition 
based learning (OBL) stratagem is engaged to commence the algorithm. This 
is to make certain high-quality of preliminary population and to expand the 
exploration steps in case of stagnation of the most excellent solutions. 
Opposition based learning (OBL) is one of the influential optimization tools 
to boost the convergence speed of different optimization techniques. The 
thriving implementation of the OBL engages evaluation of opposite 
population and existing population in the similar generation to discover the 
superior candidate solution of a given reactive power problem. Proposed 
Opposition based Kidney Search Algorithm (OKS) has been tested in 
standard IEEE 14, 30, 57,118,300 bus test systems and simulation results 
show that the proposed algorithm reduced the real power loss efficiently. 
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1. INTRODUCTION  

Reactive power problem plays a key role in secure and economic operations of power system. 
Optimal reactive power problem has been solved by variety of types of methods [1-6]. Nevertheless, 
numerous scientific difficulties are found while solving problem due to an assortment of constraints. 
Evolutionary techniques [7-15] are applied to solve the reactive power problem, but the main problem is 
many algorithms get stuck in local optimal solution & failed to balance the Exploration & Exploitation 
during the search of global solution. In this work Opposition based Kidney Search Algorithm (OKS) is used 
to solve the optimal reactive power problem. Kidney search algorithm imitates the various sequences of 
functions done by biological kidney. In preliminary segment, a capricious population of feasible solutions is 
formed and re-absorption, secretion, excretion are replicated in the exploration procedure to verify different 
conditions well-established to the algorithm. Opposition based learning (OBL) stratagem is engaged to 
commence the algorithm. This is to make certain high-quality of preliminary population and to expand the 
exploration steps in case of stagnation of the most excellent solutions. Opposition based learning (OBL) is 
one of the influential optimization tools to boost the convergence speed of different optimization techniques. 
The thriving implementation of the OBL engages evaluation of opposite population and existing population 
in the similar generation to discover the superior candidate solution of a given reactive power problem. In all 
oppositional based optimization; the conception of OBL is used in the initialization procedure and as well as 
in each iteration using the generation jumping rate, Jr. Proposed Opposition based Kidney Search Algorithm 
(OKS) has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show the 
projected algorithm reduced the real power loss comprehensively.  
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2. PROBLEM FORMULATION  
Objective of the problem is to reduce the true power loss 
 
F = P = ∑  g∈ V + V − 2V V cosθ   (1) 
 
Voltage deviation given as follows 
 
F = P + ω × Voltage Deviation (2) 
 
Voltage deviation given by 
 
 Voltage Deviation = ∑ |V − 1|  (3) 
 
Constraint (Equality) 
 
 P = P + P   (4) 
 
Constraints (Inequality)  
 
 P ≤ P ≤ P   (5) 
 
 Q ≤ Q ≤ Q  , i ∈ N   (6) 
 
 V ≤ V ≤ V  , i ∈ N  (7) 
 
 T ≤ T ≤ T  , i ∈ N   (8) 
 
 Q ≤ Q ≤ Q  , i ∈ N   (9) 
 
 

3. OPPOSITION BASED KIDNEY SEARCH ALGORITHM  
Kidney search algorithm imitates the various sequences of functions done by biological kidney. 

Filtration, Re-absorption, Secretion, Excretion plays key function in the function of the kidney. In 
preliminary segment, a capricious population of feasible solutions is formed and re-absorption, secretion, 
excretion are replicated in the exploration procedure to verify different conditions well-established to the 
algorithm. Algorithm is built to perk up the exploration even a potential solution stirred to waste (W) and it 
will be fetch back to the filtered blood (FB). Glomerular filtration rate (GFR) test is employed to authenticate 
the robustness of kidney. The test roughly gives the capability of blood that pass all the way through the 
glomeruli every minute. Depending on the GFR test outcome which is less than 15 or falls between 15 and 60 
or is more than 60 a meticulous action will be accomplished. This process executed to perk up the rate of 
exploration and to discover the optimal solution. The GFR testing process is added at the ending of iterations. 
When GFR level is less than 15, the method is recurring with the population in Filtered Blood. When GFR 
level is between 15 and 60, development of realistic solutions in Filtered blood is applied as a treatment for 
abridged kidney function. This sequence augments the searching capability and is designed to assist the 
algorithm in detection of improved solution. If the GFR level is larger than 60, then kidney function is 
ordinary, in which case no extra development is added to algorithm.  

Movement equation as follows 
 
𝑍 = 𝑍 + 𝑟𝑎𝑛𝑑(𝑍 − 𝑍 )  (10) 
 
Filtering of the solutions is done with a filtration rate and Calculation of the filtration rate (𝑙 ) is 

done using the following equation 
 

𝑙 = 𝛽 ×
∑ ( )

  (11) 

 
𝛽 is a constant value between 0 and 1 and is attuned in advance. s represents the size of the 

population. 𝑓(𝑦 ) represents an objective function of solution y at ith iteration [16]. In every iteration, 
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previous to integration the Filtration of blood (FB) and waste (W) will be population for the subsequent 
iteration, the algorithm compute the GFR level based on the fr in FB 

 

Glomerular filtration rate = 120 −
∗

  (12) 

 
Define the Population  
Calculate approximate solution in the population  
Most excellent solution 𝑍  , is found  
By (11) find the Filtration rate- 𝑙 ,  
Define waste (W)  
Define filtered blood (FB)  
Number of iteration will be found  
Do while (iteration < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 
For 𝑍  ; compute new 𝑍  by using (10) 
Check the value of 𝑍  using 𝑙  
If 𝑍  allocated to W then place on re-absorption and produce 𝑍  by using (10) 
If re-absorption is not fulfilled then 𝑍  will not be part of FB 
Eradicate 𝑍  from W (excretion) 
Place randomly Z into W to exchange 𝑍  
End if 
𝑍  is reabsorbed 
Else 
If it is superior than the 𝑍  𝑖𝑛 𝐹𝐵  
 𝑍  is secreted 
Calculate the GFR level solutions in FB by using (12) 
𝑖𝑓 15 < 𝐺𝐹𝑅 𝑙𝑒𝑣𝑒𝑙 < 60 ; 𝑡ℎ𝑒𝑛 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐹𝐵  
End if  
𝑖𝑓 𝐺𝐹𝑅 𝑙𝑒𝑣𝑒𝑙 < 15 ; 𝑡ℎ𝑒𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑝𝑟𝑜𝑐𝑒𝑒𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐹𝐵  
End if  
End if  
End for 
Rank the 𝑍  from FB and modernize the  𝑍  
Merge W and FB 
By (11) amend filtration rate 𝑙   
End while  
Return  𝑍  
 
In this work Opposition based Kidney Search Algorithm (OKS) is used to solve the problem. 

Opposition based learning (OBL) stratagem is engaged to commence the algorithm. This is to make certain 
high-quality of preliminary population and to expand the exploration steps in case of stagnation of the most 
excellent solutions. Opposition based learning (OBL) is one of the influential optimization tools to boost the 
convergence speed of different optimization techniques [17]. The thriving implementation of the OBL 
engages evaluation of opposite population and existing population in the similar generation to discover the 
superior candidate solution of a given reactive power problem. The conception of opposite number 
requirements is to be defined to explain OBL. 

Let 𝑁 (𝑁 ∈ [𝑥, 𝑦]) be a real number and the 𝑁  (opposite number) can be defined as follows 
 
𝑁 = 𝑥 + 𝑦 − 𝑁  (13) 
 
In the exploration space it has been extended as 
 
𝑁 = 𝑥 + 𝑦 − 𝑁   (14) 
 
Where (𝑁 , 𝑁 , . . 𝑁 ) is a point in the dimensional search space, 𝑁 ∈ [𝑥 , 𝑦 ], 𝑖 → {1,2,3, . . 𝑑} 
In all oppositional based optimization; the conception of OBL is used in the initialization procedure 

and as well as in each iteration using the generation jumping rate, Jr.  
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a. Begin  
b. Engender OBL based population  
c. Calculate each “Z” in the population and fix the “Zbest” 
d. Produce new-fangled “Z” for “Zi” based on mutual information based switching 
e. Apply the filtration operator  
f.  Is “Zi” assigned as “W”? ; if “Yes” apply the reabsorption operator; or check is “Zi” better than the 

“Zworst” – if yes then secrete “Zworst” from FB or secrete “Zi” 
g. Can “Znew” be assigned as FB? If yes remove “Zi” from W and insert a random “Z” into “W”  
h. Have all “Zs” have been met?  
i. If “yes” engender �̅�  or else go to step “d” 
j. Is "�̅� " better than the “Zworst” in FB? if “yes” replace “Zworst” with "�̅� "  
k. Or else update “Zbest” , merge W ,FB modernize the filtration rate  
l. Is end criterion reached? if yes stop or else go to step “d” 

 
 

4. SIMULATION STUDY  
At first in standard IEEE 14 bus system the validity of the proposed Opposition based Kidney 

Search Algorithm (OKS) has been tested, Table 1 shows the constraints of control variables Table 2 shows 
the limits of reactive power generators and comparison results are presented in Table 3.  

 
 

Table 1. Constraints of control variables 

System Variables 
Minimum 

(PU) 
Maximum 

(PU) 

IEEE 14 Bus 
Generator Voltage 0.95 1.1 
Transformer Tap o.9 1.1 

VAR Source 0 0.20 
 

Table 2. Constrains of reactive power generators 

System Variables 
Q Minimum 

(PU) 
Q Maximum 

(PU) 

IEEE 14 Bus 
1 0 10 
2 -40 50 
3 0 40 

 6 -6 24 
 8 -6 24 

 

 
 

Table 3. Simulation results of IEEE −14 system 
Control variables Base case MPSO [18] PSO [18] EP [18] SARGA [18] OKS 

𝑉𝐺−1 1.060 1.100 1.100 NR* NR* 1.012 
𝑉𝐺−2 1.045 1.085 1.086 1.029 1.060 1.028 
𝑉𝐺−3 1.010 1.055 1.056 1.016 1.036 1.024 
𝑉𝐺−6 1.070 1.069 1.067 1.097 1.099 1.016 
𝑉𝐺−8 1.090 1.074 1.060 1.053 1.078 1.019 
𝑇𝑎𝑝 8 0.978 1.018 1.019 1.04 0.95 0.910 
𝑇𝑎𝑝 9 0.969 0.975 0.988 0.94 0.95 0.902 

𝑇𝑎𝑝 10 0.932 1.024 1.008 1.03 0.96 0.915 
𝑄𝐶−9 0.19 14.64 0.185 0.18 0.06 0.146 

𝑃𝐺 272.39 271.32 271.32 NR* NR* 271.09 
𝑄𝐺 (Mvar) 82.44 75.79 76.79 NR* NR* 75.17 

Reduction in PLoss (%) 0 9.2 9.1 1.5 2.5 18.75 
Total PLoss (Mw) 13.550 12.293 12.315 13.346 13.216 11.009 

NR* - Not reported. 
 
 

Then the proposed Opposition based Kidney Search Algorithm (OKS) has been tested, in IEEE 30 
Bus system. Table 4 shows the constraints of control variables, Table 5 shows the limits of reactive power 
generators and comparison results are presented in Table 6. 

 
 

Table 4. Constraints of control variables 

System Variables 
Minimum 

(PU) 
Maximum 

(PU) 

IEEE 30 
Bus 

Generator Voltage 0.95 1.1 
Transformer Tap o.9 1.1 

VAR Source 0 0.20 
 

Table 5. Constrains of reactive power generators 

System Variables 
Q Minimum 

(PU) 
Q Maximum 

(PU) 

IEEE 30 
Bus 

1 0 10 
2 -40 50 
5 -40 40 

 8 -10 40 
 11 -6 24 
 13 -6 24 
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Table 6. Simulation results of IEEE −30 system 
Control variables Base case MPSO [18] PSO [18] EP [18] SARGA [18] OKS 

𝑉𝐺−1 1.060 1.101 1.100 NR* NR* 1.028 
𝑉𝐺−2 1.045 1.086 1.072 1.097 1.094 1.029 
𝑉𝐺−5 1.010 1.047 1.038 1.049 1.053 1.017 
𝑉𝐺−8 1.010 1.057 1.048 1.033 1.059 1.028 

𝑉𝐺−12 1.082 1.048 1.058 1.092 1.099 1.019 
VG-13 1.071 1.068 1.080 1.091 1.099 1.026 
Tap11 0.978 0.983 0.987 1.01 0.99 0.920 
Tap12 0.969 1.023 1.015 1.03 1.03 0.921 
Tap15 0.932 1.020 1.020 1.07 0.98 0.922 
Tap36 0.968 0.988 1.012 0.99 0.96 0.929 
QC10 0.19 0.077 0.077 0.19 0.19 0.094 
QC24 0.043 0.119 0.128 0.04 0.04 0.107 

𝑃𝐺 (MW) 300.9 299.54 299.54 NR* NR* 297.08 
𝑄𝐺 (Mvar) 133.9 130.83 130.94 NR* NR* 131.78 

Reduction in PLoss (%) 0 8.4 7.4 6.6 8.3 14.46 
Total PLoss (Mw) 17.55 16.07 16.25 16.38 16.09 15.012 

NR* - Not reported. 
 
 
Then the proposed Opposition based Kidney Search Algorithm (OKS) has been tested, in IEEE 57 

Bus system. Table 7 shows the constraints of control variables, Table 8 shows the limits of reactive power 
generators and comparison results are presented in Table 9. 

 
 

Table 7. Constraints of control variables 

System Variables 
Minimum 

(PU) 
Maximum 

(PU) 

IEEE 57 Bus 
Generator Voltage 0.95 1.1 
Transformer Tap 0.9 1.1 

VAR Source 0 0.20 
 

Table 8. Constrains of reactive power generators 

System Variables 
Q Minimum 

(PU) 
Q Maximum 

(PU) 

IEEE 57 
Bus 

1 -140 200 
2 -17 50 
3 -10 60 

 6 -8 25 
 8 -140 200 
 9 -3 9 
 12 -150 155 

 

 
 

Table 9. Simulation results of IEEE −57 system 
Control variables Base case MPSO [18] PSO [18] CGA [18] AGA [18] OKS 

𝑉𝐺 1 1.040 1.093 1.083 0.968 1.027 1.012 
𝑉𝐺 2 1.010 1.086 1.071 1.049 1.011 1.018 
𝑉𝐺 3 0.985 1.056 1.055 1.056 1.033 1.028 
𝑉𝐺 6 0.980 1.038 1.036 0.987 1.001 1.027 
𝑉𝐺 8 1.005 1.066 1.059 1.022 1.051 1.029 
𝑉𝐺 9 0.980 1.054 1.048 0.991 1.051 1.030 

𝑉𝐺 12 1.015 1.054 1.046 1.004 1.057 1.040 
𝑇𝑎𝑝 19 0.970 0.975 0.987 0.920 1.030 0.900 
𝑇𝑎𝑝 20 0.978 0.982 0.983 0.920 1.020 0.909 
𝑇𝑎𝑝 31 1.043 0.975 0.981 0.970 1.060 0.906 
𝑇𝑎𝑝 35 1.000 1.025 1.003 NR* NR* 1.018 
𝑇𝑎𝑝 36 1.000 1.002 0.985 NR* NR* 1.014 
𝑇𝑎𝑝 37 1.043 1.007 1.009 0.900 0.990 1.008 
𝑇𝑎𝑝 41 0.967 0.994 1.007 0.910 1.100 0.940 
𝑇𝑎𝑝 46 0.975 1.013 1.018 1.100 0.980 1.010 
𝑇𝑎𝑝 54 0.955 0.988 0.986 0.940 1.010 0.920 
𝑇𝑎𝑝 58 0.955 0.979 0.992 0.950 1.080 0.930 
𝑇𝑎𝑝 59 0.900 0.983 0.990 1.030 0.940 0.921 
𝑇𝑎𝑝 65 0.930 1.015 0.997 1.090 0.950 1.005 
𝑇𝑎𝑝 66 0.895 0.975 0.984 0.900 1.050 0.931 
𝑇𝑎𝑝 71 0.958 1.020 0.990 0.900 0.950 1.008 
𝑇𝑎𝑝 73 0.958 1.001 0.988 1.000 1.010 1.010 
𝑇𝑎𝑝 76 0.980 0.979 0.980 0.960 0.940 0.942 
𝑇𝑎𝑝 80 0.940 1.002 1.017 1.000 1.000 1.004 
𝑄𝐶 18 0.1 0.179 0.131 0.084 0.016 0.152 
𝑄𝐶 25 0.059 0.176 0.144 0.008 0.015 0.141 
𝑄𝐶 53 0.063 0.141 0.162 0.053 0.038 0.120 

𝑃𝐺 (MW) 1278.6 1274.4 1274.8 1276 1275 1272.92 
𝑄𝐺 (Mvar) 321.08 272.27 276.58 309.1 304.4 272.01 

Reduction in PLoss (%) 0 15.4 14.1 9.2 11.6 24.12 
Total PLoss (Mw) 27.8 23.51 23.86 25.24 24.56 21.092 

NR* - Not reported. 
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Then the proposed Opposition based Kidney Search Algorithm (OKS) has been tested, in IEEE 118 
Bus system. Table 10 shows the constraints of control variables and the comparison results are presented  
in Table 11 as shown in appendix. 

 
 

Table 10. Constraints of control variables 
System Variables Minimum (PU) Maximum (PU) 

IEEE 118 Bus 
Generator Voltage 0.95 1.1 
Transformer Tap 0.9 1.1 

VAR Source 0 0.20 

 
 

Then IEEE 300 bus system [19] is used as test system to validate the performance of the Opposition 
based Kidney Search Algorithm (OKS). Table 12 shows the comparison of real power loss obtained  
after optimization.  

 
 

Table 12. Comparison of real power loss 
Parameter Method EGA [20] Method EEA [20] Method CSA [21] OKS 

PLOSS (MW) 646.2998 650.6027 635.8942 613.0974 

 
 
5. CONCLUSION  

In this work Opposition based Kidney Search Algorithm (OKS) has been successfully applied for 
solving optimal reactive power problem. Opposition based learning (OBL) stratagem is engaged to 
commence the algorithm. The prosperous execution of the OBL employ assessment of opposite population 
and existing population in the analogous generation to find out the better candidate solution of a given 
reactive power problem. In all oppositional based optimization; the conception of OBL is used in the 
initialization procedure and as well as in each iteration using the generation jumping rate. Proposed 
Opposition based Kidney Search Algorithm (OKS) has been tested in standard IEEE 14, 30, 57,118,300 bus 
test systems and simulation results show that the proposed algorithm reduced the real power loss efficiently. 
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APPENDIX 
 
 

Table 11. Simulation results of IEEE −118 system 
 Base case MPSO [18] PSO [18] PSO [18] CLPSO [18] OKS 

𝑉𝐺 1 0.955 1.021 1.019 1.085 1.033 1.012 
𝑉𝐺 4 0.998 1.044 1.038 1.042 1.055 1.016 
𝑉𝐺 6 0.990 1.044 1.044 1.080 0.975 1.028 
𝑉𝐺 8 1.015 1.063 1.039 0.968 0.966 1.019 

𝑉𝐺 10 1.050 1.084 1.040 1.075 0.981 1.012 
𝑉𝐺 12 0.990 1.032 1.029 1.022 1.009 1.028 
𝑉𝐺 15 0.970 1.024 1.020 1.078 0.978 1.019 
𝑉𝐺 18 0.973 1.042 1.016 1.049 1.079 1.006 
𝑉𝐺 19 0.962 1.031 1.015 1.077 1.080 1.015 
𝑉𝐺 24 0.992 1.058 1.033 1.082 1.028 1.014 
𝑉𝐺 25 1.050 1.064 1.059 0.956 1.030 1.013 
𝑉𝐺 26 1.015 1.033 1.049 1.080 0.987 1.022 
𝑉𝐺 27 0.968 1.020 1.021 1.087 1.015 0.909 
𝑉𝐺31 0.967 1.023 1.012 0.960 0.961 0.906 
𝑉𝐺 32 0.963 1.023 1.018 1.100 0.985 0.905 
𝑉𝐺 34 0.984 1.034 1.023 0.961 1.015 1.014 
𝑉𝐺 36 0.980 1.035 1.014 1.036 1.084 1.003 
𝑉𝐺 40 0.970 1.016 1.015 1.091 0.983 0.950 
𝑉𝐺 42 0.985 1.019 1.015 0.970 1.051 1.008 
𝑉𝐺 46 1.005 1.010 1.017 1.039 0.975 1.010 
𝑉𝐺 49 1.025 1.045 1.030 1.083 0.983 1.011 
𝑉𝐺 54 0.955 1.029 1.020 0.976 0.963 0.912 
𝑉𝐺 55 0.952 1.031 1.017 1.010 0.971 0.929 
𝑉𝐺56 0.954 1.029 1.018 0.953 1.025 0.944 
𝑉𝐺 59 0.985 1.052 1.042 0.967 1.000 0.932 
𝑉𝐺 61 0.995 1.042 1.029 1.093 1.077 0.910 
𝑉𝐺 62 0.998 1.029 1.029 1.097 1.048 0.922 
𝑉𝐺 65 1.005 1.054 1.042 1.089 0.968 1.006 
𝑉𝐺 66 1.050 1.056 1.054 1.086 0.964 1.049 
𝑉𝐺 69 1.035 1.072 1.058 0.966 0.957 1.012 
𝑉𝐺 70 0.984 1.040 1.031 1.078 0.976 1.010 
𝑉𝐺 72 0.980 1.039 1.039 0.950 1.024 1.008 
𝑉𝐺 73 0.991 1.028 1.015 0.972 0.965 1.009 
𝑉𝐺 74 0.958 1.032 1.029 0.971 1.073 1.002 
𝑉𝐺 76 0.943 1.005 1.021 0.960 1.030 1.006 
𝑉𝐺 77 1.006 1.038 1.026 1.078 1.027 1.008 
𝑉𝐺 80 1.040 1.049 1.038 1.078 0.985 1.004 
𝑉𝐺 85 0.985 1.024 1.024 0.956 0.983 1.010 
𝑉𝐺 87 1.015 1.019 1.022 0.964 1.088 1.002 
𝑉𝐺 89 1.000 1.074 1.061 0.974 0.989 1.031 
𝑉𝐺 90 1.005 1.045 1.032 1.024 0.990 1.010 
𝑉𝐺 91 0.980 1.052 1.033 0.961 1.028 1.009 
𝑉𝐺 92 0.990 1.058 1.038 0.956 0.976 1.018 
𝑉𝐺 99 1.010 1.023 1.037 0.954 1.088 1.005 

𝑉𝐺 100 1.017 1.049 1.037 0.958 0.961 1.003 
𝑉𝐺 103 1.010 1.045 1.031 1.016 0.961 1.009 
𝑉𝐺 104 0.971 1.035 1.031 1.099 1.012 1.017 
𝑉𝐺 105 0.965 1.043 1.029 0.969 1.068 1.028 
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Table 11. Simulation results of IEEE −118 system (continued) 
 Base case MPSO [18] PSO [18] PSO [18] CLPSO [18] OKS 

𝑉𝐺 107 0.952 1.023 1.008 0.965 0.976 1.012 
𝑉𝐺 110 0.973 1.032 1.028 1.087 1.041 1.016 
𝑉𝐺 111 0.980 1.035 1.039 1.037 0.979 1.019 
𝑉𝐺 112 0.975 1.018 1.019 1.092 0.976 1.092 
𝑉𝐺 113 0.993 1.043 1.027 1.075 0.972 1.016 
𝑉𝐺 116 1.005 1.011 1.031 0.959 1.033 1.018 
𝑇𝑎𝑝 8 0.985 0.999 0.994 1.011 1.004 0.932 

𝑇𝑎𝑝 32 0.960 1.017 1.013 1.090 1.060 1.004 
𝑇𝑎𝑝 36 0.960 0.994 0.997 1.003 1.000 0.949 
𝑇𝑎𝑝 51 0.935 0.998 1.000 1.000 1.000 0.912 
𝑇𝑎𝑝 93 0.960 1.000 0.997 1.008 0.992 1.018 
𝑇𝑎𝑝 95 0.985 0.995 1.020 1.032 1.007 0.930 

𝑇𝑎𝑝 102 0.935 1.024 1.004 0.944 1.061 1.012 
𝑇𝑎𝑝 107 0.935 0.989 1.008 0.906 0.930 0.930 
𝑇𝑎𝑝 127 0.935 1.010 1.009 0.967 0.957 1.014 

𝑄𝐶 34 0.140 0.049 0.048 0.093 0.117 0.010 
𝑄𝐶 44 0.100 0.026 0.026 0.093 0.098 0.024 
𝑄𝐶 45 0.100 0.196 0.197 0.086 0.094 0.110 
𝑄𝐶 46 0.100 0.117 0.118 0.089 0.026 0.109 
𝑄𝐶 48 0.150 0.056 0.056 0.118 0.028 0.020 
𝑄𝐶 74 0.120 0.120 0.120 0.046 0.005 0.112 
𝑄𝐶 79 0.200 0.139 0.140 0.105 0. 148 0.109 
𝑄𝐶 82 0.200 0.180 0.180 0.164 0.194 0.140 
𝑄𝐶 83 0.100 0.166 0.166 0.096 0.069 0.106 

𝑄𝐶 105 0.200 0.189 0.190 0.089 0.090 0.110 
𝑄𝐶 107 0.060 0.128 0.129 0.050 0.049 0.121 
𝑄𝐶 110 0.060 0.014 0.014 0.055 0.022 0.015 

PG(MW) 4374.8 4359.3 4361.4 NR* NR* 4358.02 
QG(MVAR) 795.6 604.3 653.5 * NR* NR* 605.97 

Reduction in PLOSS (%) 0 11.7 10.1 0.6 1.3 13.38 
Total PLOSS (Mw) 132.8 117.19 119.34 131.99 130.96 115.02 

NR* - Not reported. 
 


