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1. INTRODUCTION

Reactive power problem plays a key role in secure and economic operations of power system.
Optimal reactive power problem has been solved by variety of types of methods [1]-[6]. Nevertheless,
numerous scientific difficulties are found while solving problem due to an assortment of constraints.
Evolutionary techniques [7]-[16] are applied to solve the reactive power problem, but the main problem is
many algorithms get stuck in local optimal solution & failed to balance the exploration & exploitation during
the search of global solution. In this paper, dynamic membrane evolutionary algorithm (DMEA) has been
applied to solve optimal reactive power problem. Proposed methodology merges the fusion and division rules
of P systems with active membranes and with adaptive differential evolution (ADE), particle swarm
optimization (PSO) exploration stratagem. In this work, composition of the dynamic membrane algorithm
along with the fusion, division rules are utilized to solve the optimal reactive power problem. In skin
membrane 0, elementary membranes 1, 2, _, m are embedded in the structure, and it contains set of
evolutionary, communication rules, multi-set of objects. All elementary membranes are amalgamated into
one membrane in the computing procedure.

Furthermore, integrated membrane is alienated into the elementary membranes 1, 2, _, m. In particle
swarm optimization (PSO), C;, C, (acceleration constants) are vital parameters to augment the exploration

Journal homepage: http://ijaas.iaescore.com


https://creativecommons.org/licenses/by-sa/4.0/
mailto:gklenin@gmail.com

100 a ISSN: 2252-8814

ability of PSO in the period of the optimization procedure. Conversely, dissimilar optimization problems
have altered values for the acceleration constants, it will not be an effortless assignment to choose the optimal
values. In this work, Gaussian probability distribution is initiated to engender the accelerating coefficients of
PSO. Particle swarm optimization (PSO) based on Gaussian distribution will be employed concurrently in
area from 1 to m. The proposed dynamic membrane evolutionary algorithm (DMEA) has been tested in
standard IEEE 14, 30, 57, 118, and 300 bus test system and simulation results show the projected algorithm
reduced the real power loss extensively.

2. PROBLEM FORMULATION
Objective of the problem is to reduce the true power loss as (1).

F= P, = Ykenbr 8k (V2 + V7 — 2V;Vjcos6;;) 1)
Voltage deviation given as (2).

F = P, + w, X Voltage Deviatio 2
Voltage deviation given by (3).

Voltage Deviation = Y1 20|V, — 1] )
Constraint (Equality).

P =P+ P, 4

Constraints (Inequality).

aanck S Poslack S Pasinek %)
Q™ < Qg < QE™,i€N, (6)
Vmin <y, < VA e N (7
TR < T, < TM3 j € Ny (8)
Q™ < Q. < QF™,i€Nc 9

3. DYNAMIC MEMBRANE EVOLUTIONARY ALGORITHM
In membrane computing, P systems with dynamic membranes are a very blistering research topic
and the analogous membrane algorithms have been used extensively to solve various types of optimization
problems [17]. In this work, composition of the dynamic membrane algorithm along with the fusion, division
rules are utilized to solve the optimal reactive power problem. In skin membrane 0, elementary membranes 1,
2, _, mare embedded in the structure, and it contains set of evolutionary, communication rules, multi-set of
objects. All elementary membranes are amalgamated into one membrane in the computing procedure.
Furthermore, integrated membrane is alienated into the elementary membranes 1, 2, , m. Proposed
methodology merges the fusion and division rules of P systems with active membranes and with adaptive
differential evolution (ADE), particle swarm optimization (PSO) exploration stratagem.
a. One level membrane structure has been specified
b. In particle swarm optimization (PSO), C;, C, (acceleration constants) are vital parameters to augment the
exploration ability of PSO in the period of the optimization procedure. Conversely, dissimilar
optimization problems have altered values for the acceleration constants, it will not be an effortless
assignment to choose the optimal values. In this work, Gaussian probability distribution is initiated to
engender the accelerating coefficients of PSO. Particle swarm optimization (PSO) based on Gaussian
distribution will be employed concurrently in area from 1 to m.
— Start
— Position and velocity are initialized
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— Compute the fitness value
— Pbest and Gbest are updated
— If stop criterion satisfied, then end or else update Position and velocity go to step iii

- End
vt = |randomn()| x (Pbestf; — xf;) + [randomn()| x (Gbestf; — xf;) (10)
xf = x5+ vt (12)

c. Execute the integration process, all elementary membranes are amalgamated into one elementary
membrane one m,,,, and all elementary membranes strings are gone into the membrane m,,,,.

d. Inm,,. membrane, adaptive differential evolution is utilized to modernize the strings object. In this work
self-adaptive method is used to control the parameters CR and F.

CRy(t) = CR;(t) + N(0,1) X (CR;»(t) — CRi3(¢)) (12)
Fi(t) = Fiu(t) + N(0,0.5) x (Fis(t) - Fié(t)) (13)

— Engender the preliminary population

— For each individual in the population, engender three arbitrary different integers r;,r, and r; €
{1,2,..,N} and engender an arbitrary integer Jandom € {1,2,.,n}

— If random;(0,1) < CRthen x;; = X; ;3 + F * (X;1 — Xi2)

— Else X;']- = Xi,j

—Endif

— End for

— If Fitenss(x;) < Fitness(x;) ; then x; = x;

—Endif

— End for

— End condition

When xi'ljinfringe the boundary constraint, and then the violated variable value is brought back by,

Xmin,jif (random () < 0.5)v(xi"]- < Xminimum,j)
Xmax,jif (random () < O.S)V(xi:j < xmaximum,j)

. , (14)
2 X Xppin,j — X j if (random () > 0.5)v(xi,j < xmmimum,j)

xi’]‘ =
2 X Xyninj — x;j if (random () > 0.5)v(x;; < Xmaximum,;)

e. By using fitness function compute the fitness of each string

f. Employ the contact rules, a replica of the most excellent strings is chosen in the membrane m,,. which

will be sent to the skin membrane, and the present most excellent strings are accumulated in the skin

membrane.

Once the end condition is met, subsequently output the results; otherwise go to Step h.

With the m elementary membranes m,,. Membrane is alienated into the identical structure. At present

most excellent strings and Ng — 1 strings with the poor fitness will be send to every elementary membrane

in roll by the send-in contact rules, and then go back to Step b.

i. End condition is the utmost number of iterations. Algorithm will end if the utmost number of iterations is
reached and output the results.

e

4.  SIMULATION RESULTS

At first in standard IEEE 14 bus system the validity of the proposed dynamic membrane
evolutionary algorithm (DMEA) has been tested. Table 1 shows the constraints of control variables. Table 2
shows the limits of reactive power generators and comparison results are presented in Table 3.
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Table 1. Constraints of control variables

System Variables Minimum (PU)  Maximum (PU)
IEEE 14 Bus  Generator Voltage 0.95 1.1
Transformer Tap 0.9 11
VAR Source 0 0.20

Table 2. Constrains of reactive power generators

System Variables  Q Minimum (PU)  Q Maximum (PU)
IEEE 14 Bus 1 0 10

2 -40 50

3 0 40

6 -6 24

8 -6 24

Table 3. Simulation results of IEEE —14 system

Control variables Basecase MPSO[18] PSO[18] EPJ18] SARGA[18] DMEA
VGe—-1 1.060 1.100 1.100 NR* NR* 1.020
VG2 1.045 1.085 1.086 1.029 1.060 1.041
VG-3 1.010 1.055 1.056 1.016 1.036 1.052
VG—6 1.070 1.069 1.067 1.097 1.099 1.060
VG—8 1.090 1.074 1.060 1.053 1.078 1.024
Tap 8 0.978 1.018 1.019 1.04 0.95 0.961
Tap 9 0.969 0.975 0.988 0.94 0.95 0.952
Tap 10 0.932 1.024 1.008 1.03 0.96 0.908
QC-9 0.19 14.64 0.185 0.18 0.06 0.162
PG 272.39 271.32 271.32 NR* NR* 271.02
QG (Mvar) 82.44 75.79 76.79 NR* NR* 74.98
Reduction in PLoss (%) 0 9.2 9.1 15 25 18.095
Total PLoss (Mw) 13.550 12.293 12.315 13.346 13.216 11.098

NR* - Not reported.

Then the proposed dynamic membrane evolutionary algorithm (DMEA) has been tested, in IEEE 30
Bus system. Table 4 shows the constraints of control variables. Table 5 shows the limits of reactive power
generators and comparison results are presented in Table 6.

Then the proposed dynamic membrane evolutionary algorithm (DMEA) has been tested, in IEEE 57
Bus system. Table 7 shows the constraints of control variables. Table 8 shows the limits of reactive power
generators and comparison results are presented in Table 9.

Then the proposed dynamic membrane evolutionary algorithm (DMEA) has been tested, in IEEE
118 Bus system. Table 10 shows the constraints of control variables and comparison results are presented in
Table 11. Then IEEE 300 bus system [19] is used as test system to validate the performance of the dynamic
membrane evolutionary algorithm (DMEA). Table 12 shows the comparison of real power loss obtained after
optimization.

Table 4. Constraints of control variables

System Variables Minimum (PU)  Maximum (PU)
IEEE 30 Bus  Generator Voltage 0.95 1.1
Transformer Tap 0.9 11
VAR Source 0 0.20

Table 5. Constrains of reactive power generators

System Variables  Q Minimum (PU)  Q Maximum (PU)
IEEE 30 Bus 1 0 10

2 -40 50

5 -40 40

8 -10 40

11 -6 24

13 -6 24
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Table 6. Simulation results of IEEE —30 system

Control variables Base case  MPSO[18] PSO[18] EP[18] SARGA[18] DMEA
VGe-1 1.060 1.101 1.100 NR* NR* 1.010
VG2 1.045 1.086 1.072 1.097 1.094 1.032
VG-5 1.010 1.047 1.038 1.049 1.053 1.042
VG-8 1.010 1.057 1.048 1.033 1.059 1.026
VG-12 1.082 1.048 1.058 1.092 1.099 1.068
VG-13 1.071 1.068 1.080 1.091 1.099 1.080
Tapll 0.978 0.983 0.987 1.01 0.99 0.934
Tapl2 0.969 1.023 1.015 1.03 1.03 0.946
Tapl5 0.932 1.020 1.020 1.07 0.98 0.920
Tap36 0.968 0.988 1.012 0.99 0.96 0.916
QC10 0.19 0.077 0.077 0.19 0.19 0.079
QC24 0.043 0.119 0.128 0.04 0.04 0.126
PG (MW) 300.9 299.54 299.54 NR* NR* 298.32
QG (Mvar) 133.9 130.83 130.94 NR* NR* 130.04
Reduction in PLoss (%) 0 8.4 7.4 6.6 8.3 12.13
Total PLoss (Mw) 17.55 16.07 16.25 16.38 16.09 15.42

NR* - Not reported.

Table 7. Constraints of control variables

System Variables Minimum (PU)  Maximum (PU)
IEEE 57 Bus  Generator Voltage 0.95 1.1
Transformer Tap 0.9 11
VAR Source 0 0.20

Table 8. Constrains of reactive power generators

System Variables  Q Minimum (PU)  Q Maximum (PU)
IEEE 57 Bus 1 -140 200

2 -17 50

3 -10 60

6 -8 25

8 -140 200

9 -3 9

12 -150 155

Table 9. Simulation results of IEEE —57 system

Control variables Basecase MPSO[18] PSO[18] CGA[18] AGA[18] DMEA
VG 1 1.040 1.093 1.083 0.968 1.027 1.021
VG2 1.010 1.086 1.071 1.049 1.011 1.048
VG 3 0.985 1.056 1.055 1.056 1.033 1.031
VG 6 0.980 1.038 1.036 0.987 1.001 1.030
VG 8 1.005 1.066 1.059 1.022 1.051 1.048
VG 9 0.980 1.054 1.048 0.991 1.051 1.026
VG 12 1.015 1.054 1.046 1.004 1.057 1.060
Tap 19 0.970 0.975 0.987 0.920 1.030 0.962
Tap 20 0.978 0.982 0.983 0.920 1.020 0.946
Tap 31 1.043 0.975 0.981 0.970 1.060 0.969
Tap 35 1.000 1.025 1.003 NR* NR* 1.012
Tap 36 1.000 1.002 0.985 NR* NR* 1.000
Tap 37 1.043 1.007 1.009 0.900 0.990 1.003
Tap 41 0.967 0.994 1.007 0.910 1.100 0.990
Tap 46 0.975 1.013 1.018 1.100 0.980 1.010
Tap 54 0.955 0.988 0.986 0.940 1.010 0.980
Tap 58 0.955 0.979 0.992 0.950 1.080 0.964
Tap 59 0.900 0.983 0.990 1.030 0.940 0.979
Tap 65 0.930 1.015 0.997 1.090 0.950 1.010
Tap 66 0.895 0.975 0.984 0.900 1.050 0.972
Tap 71 0.958 1.020 0.990 0.900 0.950 1.019
Tap 73 0.958 1.001 0.988 1.000 1.010 1.000
Tap 76 0.980 0.979 0.980 0.960 0.940 0.973
Tap 80 0.940 1.002 1.017 1.000 1.000 1.000
QC 18 0.1 0.179 0.131 0.084 0.016 0.171
QC 25 0.059 0.176 0.144 0.008 0.015 0.170
QC53 0.063 0.141 0.162 0.053 0.038 0.140
PG (MW) 1278.6 1274.4 1274.8 1276 1275 1269.1
QG (Mvar) 321.08 272.27 276.58 309.1 304.4 269.26
Reduction in PLoss (%) 0 15.4 14.1 9.2 11.6 20.72
Total PLoss (Mw) 27.8 23,51 23.86 25.24 24.56 22.04

NR* - Not reported.
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Table 10. Constraints of control variables

System Variables Minimum (PU)  Maximum (PU)
IEEE 118 Bus  Generator Voltage 0.95 11
Transformer Tap 0.9 11
VAR Source 0 0.20

Table 11. Simulation results of IEEE —118 system

Control variables Basecase MPSO[18] PSO[18] PSO|[18] CLPSO[18] DMEA
VG 1 0.955 1.021 1.019 1.085 1.033 1.010
VG4 0.998 1.044 1.038 1.042 1.055 1.062
VG 6 0.990 1.044 1.044 1.080 0.975 1.051
VG8 1.015 1.063 1.039 0.968 0.966 1.072
VG 10 1.050 1.084 1.040 1.075 0.981 1.012
VG 12 0.990 1.032 1.029 1.022 1.009 1.020
VG 15 0.970 1.024 1.020 1.078 0.978 1.021
VG 18 0.973 1.042 1.016 1.049 1.079 1.040
VG 19 0.962 1.031 1.015 1.077 1.080 1.027
VG 24 0.992 1.058 1.033 1.082 1.028 1.049
VG 25 1.050 1.064 1.059 0.956 1.030 1.060
VG 26 1.015 1.033 1.049 1.080 0.987 1.046
VG 27 0.968 1.020 1.021 1.087 1.015 0.910
VG31 0.967 1.023 1.012 0.960 0.961 0.932
VG 32 0.963 1.023 1.018 1.100 0.985 0.959
VG 34 0.984 1.034 1.023 0.961 1.015 1.016
VG 36 0.980 1.035 1.014 1.036 1.084 1.021
VG 40 0.970 1.016 1.015 1.091 0.983 0.980
VG 42 0.985 1.019 1.015 0.970 1.051 1.002
VG 46 1.005 1.010 1.017 1.039 0.975 1.020
VG 49 1.025 1.045 1.030 1.083 0.983 1.006
VG54 0.955 1.029 1.020 0.976 0.963 0.969
VG 55 0.952 1.031 1.017 1.010 0.971 0.990
VG56 0.954 1.029 1.018 0.953 1.025 0.971
VG 59 0.985 1.052 1.042 0.967 1.000 0.969
VG 61 0.995 1.042 1.029 1.093 1.077 0.990
VG 62 0.998 1.029 1.029 1.097 1.048 0.992
VG 65 1.005 1.054 1.042 1.089 0.968 1.004
VG 66 1.050 1.056 1.054 1.086 0.964 1.024
VG 69 1.035 1.072 1.058 0.966 0.957 1.068
VG 70 0.984 1.040 1.031 1.078 0.976 1.031
VG 72 0.980 1.039 1.039 0.950 1.024 1.028
VG 73 0.991 1.028 1.015 0.972 0.965 1.019
VG 74 0.958 1.032 1.029 0.971 1.073 1.015
VG 76 0.943 1.005 1.021 0.960 1.030 1.004
VG 7 1.006 1.038 1.026 1.078 1.027 1.026
VG 80 1.040 1.049 1.038 1.078 0.985 1.004
VG 85 0.985 1.024 1.024 0.956 0.983 1.010
VG 87 1.015 1.019 1.022 0.964 1.088 1.020
VG 89 1.000 1.074 1.061 0.974 0.989 1.060
VG 90 1.005 1.045 1.032 1.024 0.990 1.032
VG 91 0.980 1.052 1.033 0.961 1.028 1.041
VG 92 0.990 1.058 1.038 0.956 0.976 1.036
VG99 1.010 1.023 1.037 0.954 1.088 1.019
VG 100 1.017 1.049 1.037 0.958 0.961 1.028
VG 103 1.010 1.045 1.031 1.016 0.961 1.030
VG 104 0.971 1.035 1.031 1.099 1.012 1.026
VG 105 0.965 1.043 1.029 0.969 1.068 1.052
VG 107 0.952 1.023 1.008 0.965 0.976 1.031
VG 110 0.973 1.032 1.028 1.087 1.041 1.028
VG111 0.980 1.035 1.039 1.037 0.979 1.026
VG 112 0.975 1.018 1.019 1.092 0.976 1.091
VG 113 0.993 1.043 1.027 1.075 0.972 1.030
VG 116 1.005 1.011 1.031 0.959 1.033 1.001
Tap 8 0.985 0.999 0.994 1.011 1.004 0.950
Tap 32 0.960 1.017 1.013 1.090 1.060 1.007
Tap 36 0.960 0.994 0.997 1.003 1.000 0.964
Tap 51 0.935 0.998 1.000 1.000 1.000 0.958
Tap 93 0.960 1.000 0.997 1.008 0.992 1.001
Tap 95 0.985 0.995 1.020 1.032 1.007 0.990
Tap 102 0.935 1.024 1.004 0.944 1.061 1.020
Tap 107 0.935 0.989 1.008 0.906 0.930 0.972
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5.

Table 11. Simulation results of IEEE —118 system (Continued)

Control variables Base case  MPSO[18] PSO[18] PSO[18] CLPSOJ[18] DMEA
Tap 127 0.935 1.010 1.009 0.967 0.957 1.000
QC 34 0.140 0.049 0.048 0.093 0.117 0.029
QC 44 0.100 0.026 0.026 0.093 0.098 0.018
QC 45 0.100 0.196 0.197 0.086 0.094 0.189
QC 46 0.100 0.117 0.118 0.089 0.026 0.126
QC 48 0.150 0.056 0.056 0.118 0.028 0.046
QC74 0.120 0.120 0.120 0.046 0.005 0.134
QC 79 0.200 0.139 0.140 0.105 0. 148 0.127
QC 82 0.200 0.180 0.180 0.164 0.194 0.176
QC 83 0.100 0.166 0.166 0.096 0.069 0.159
QC 105 0.200 0.189 0.190 0.089 0.090 0.172
QC 107 0.060 0.128 0.129 0.050 0.049 0.114
QC 110 0.060 0.014 0.014 0.055 0.022 0.026
PG(MW) 4374.8 4359.3 4361.4 NR* NR* 4430.2
QG(MVAR) 795.6 604.3 653.5 *NR* NR* 628.2
Reduction in PLOSS (%) 0 11.7 10.1 0.6 1.3 12.72
Total PLOSS (Mw) 132.8 117.19 119.34 131.99 130.96 115.90

NR* - Not reported.

Table 12. Comparison of real power loss

Parameter Method EGA [20] Method EEA [21] Method CSA[21] DMEA
PLOSS (MW) 646.2998 650.6027 635.8942 610.1249
CONCLUSION

In this work dynamic membrane evolutionary algorithm (DMEA) successfully solved the optimal

reactive power problem. Proposed methodology merges the fusion and division rules of P systems with active
membranes and with adaptive differential evolution (ADE), particle swarm optimization (PSO) exploration
stratagem. In this paper, composition of the dynamic membrane algorithm along with the fusion, division
rules are utilized to solve the optimal reactive power problem. In this work, Gaussian probability distribution
is initiated to engender the accelerating coefficients of PSO. Proposed dynamic membrane evolutionary
algorithm (DMEA) has been tested in standard IEEE 14, 30, 57, 118, and 300 bus test system and simulation
results show the projected algorithm reduced the real power loss extensively.
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