Factual power loss reduction by dynamic membrane evolutionary algorithm

Lenin Kanagabasai

Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh, India

Article Info

Article history:

Received Apr 4, 2020 Revised Dec 1, 2020 Accepted Feb 22, 2021

Keywords:

Dynamic membrane evolutionary algorithm Optimal reactive power Transmission loss

ABSTRACT

This paper presents a dynamic membrane evolutionary algorithm (DMEA) that has been applied to solve optimal reactive power problems. The proposed methodology merges the fusion and division rules of P systems with active membranes and with adaptive differential evolution (ADE), particle swarm optimization (PSO) exploration stratagem. All elementary membranes are amalgamated into one membrane in the computing procedure. Furthermore, the integrated membrane is alienated into the elementary membranes 1, 2, _, *m*. In particle swarm optimization (PSO) C₁ and C₂ (acceleration constants) are vital parameters to augment the exploration ability of PSO in the period of the optimization procedure. In this work, Gaussian probability distribution is initiated to engender the accelerating coefficients of PSO. The proposed DMEA has been tested in standard IEEE 14, 30, 57, 118, and 300 bus test systems and simulation results show the projected algorithm reduced the real power loss comprehensively.

This is an open access article under the <u>CC BY-SA</u> license.

Corresponding Author:

Lenin Kanagasabai Department of EEE Prasad V. Potluri Siddhartha Institute of Technology Kanuru, Vijayawada, Andhra Pradesh-520007, India Email: gklenin@gmail.com

1. INTRODUCTION

Reactive power problem plays a key role in secure and economic operations of power system. Optimal reactive power problem has been solved by variety of types of methods [1]-[6]. Nevertheless, numerous scientific difficulties are found while solving problem due to an assortment of constraints. Evolutionary techniques [7]-[16] are applied to solve the reactive power problem, but the main problem is many algorithms get stuck in local optimal solution & failed to balance the exploration & exploitation during the search of global solution. In this paper, dynamic membrane evolutionary algorithm (DMEA) has been applied to solve optimal reactive power problem. Proposed methodology merges the fusion and division rules of P systems with active membranes and with adaptive differential evolution (ADE), particle swarm optimization (PSO) exploration stratagem. In this work, composition of the dynamic membrane algorithm along with the fusion, division rules are utilized to solve the optimal reactive power problem. In skin membrane 0, elementary membranes 1, 2, $_{-}$, m are embedded in the structure, and it contains set of evolutionary, communication rules, multi-set of objects. All elementary membranes are amalgamated into one membrane in the computing procedure.

Furthermore, integrated membrane is alienated into the elementary membranes 1, 2, _, m. In particle swarm optimization (PSO), C_1 , C_2 (acceleration constants) are vital parameters to augment the exploration

ability of PSO in the period of the optimization procedure. Conversely, dissimilar optimization problems have altered values for the acceleration constants, it will not be an effortless assignment to choose the optimal values. In this work, Gaussian probability distribution is initiated to engender the accelerating coefficients of PSO. Particle swarm optimization (PSO) based on Gaussian distribution will be employed concurrently in area from 1 to m. The proposed dynamic membrane evolutionary algorithm (DMEA) has been tested in standard IEEE 14, 30, 57, 118, and 300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

2. PROBLEM FORMULATION

Objective of the problem is to reduce the true power loss as (1).

$$F = P_L = \sum_{k \in Nbr} g_k \left(V_i^2 + V_j^2 - 2V_i V_j \cos \theta_{ij} \right)$$
⁽¹⁾

Voltage deviation given as (2).

$$F = P_{L} + \omega_{v} \times \text{Voltage Deviatio}$$
(2)

Voltage deviation given by (3).

Voltage Deviation =
$$\sum_{i=1}^{Npq} |V_i - 1|$$
 (3)

Constraint (Equality).

 $P_{\rm G} = P_{\rm D} + P_{\rm L} \tag{4}$

Constraints (Inequality).

 $P_{gslack}^{min} \le P_{gslack} \le P_{gslack}^{max}$ (5)

$$Q_{gi}^{\min} \le Q_{gi} \le Q_{gi}^{\max}, i \in N_g$$
(6)

$$V_i^{\min} \le V_i \le V_i^{\max}, i \in \mathbb{N}$$
⁽⁷⁾

$$T_{i}^{\min} \leq T_{i} \leq T_{i}^{\max}, i \in N_{T}$$

$$(8)$$

$$Q_{c}^{\min} \leq Q_{c} \leq Q_{C}^{\max}, i \in N_{C}$$
(9)

3. DYNAMIC MEMBRANE EVOLUTIONARY ALGORITHM

In membrane computing, P systems with dynamic membranes are a very blistering research topic and the analogous membrane algorithms have been used extensively to solve various types of optimization problems [17]. In this work, composition of the dynamic membrane algorithm along with the fusion, division rules are utilized to solve the optimal reactive power problem. In skin membrane 0, elementary membranes 1, 2, _, *m* are embedded in the structure, and it contains set of evolutionary, communication rules, multi-set of objects. All elementary membranes are amalgamated into one membrane in the computing procedure. Furthermore, integrated membrane is alienated into the elementary membranes 1, 2, _, *m*. Proposed methodology merges the fusion and division rules of P systems with active membranes and with adaptive differential evolution (ADE), particle swarm optimization (PSO) exploration stratagem.

a. One level membrane structure has been specified

b. In particle swarm optimization (PSO), C_1 , C_2 (acceleration constants) are vital parameters to augment the exploration ability of PSO in the period of the optimization procedure. Conversely, dissimilar optimization problems have altered values for the acceleration constants, it will not be an effortless assignment to choose the optimal values. In this work, Gaussian probability distribution is initiated to engender the accelerating coefficients of PSO. Particle swarm optimization (PSO) based on Gaussian distribution will be employed concurrently in area from 1 to m.

- Position and velocity are initialized

D 101

- Compute the fitness value
- Pbest and Gbest are updated
- If stop criterion satisfied, then end or else update Position and velocity go to step iii
- End

$$v_{i,j}^{k+1} = |randomn()| \times \left(Pbest_{i,j}^{k} - x_{i,j}^{k}\right) + |randomn()| \times \left(Gbest_{i,j}^{k} - x_{i,j}^{k}\right)$$
(10)

$$x_{i,j}^{k+1} = x_{i,j}^k + v_{i,j}^{k+1} \tag{11}$$

- c. Execute the integration process, all elementary membranes are amalgamated into one elementary membrane one m_{one} and all elementary membranes strings are gone into the membrane m_{one} .
- d. In m_{one} membrane, adaptive differential evolution is utilized to modernize the strings object. In this work self-adaptive method is used to control the parameters CR and F.

$$CR_{i}(t) = CR_{i1}(t) + N(0,1) \times (CR_{i2}(t) - CR_{i3}(t))$$
(12)

$$F_i(t) = F_{i4}(t) + N(0,0.5) \times \left(F_{i5}(t) - F_{i6}(t)\right)$$
(13)

- Engender the preliminary population
- For each individual in the population, engender three arbitrary different integers r_1, r_2 and $r_3 \in \{1, 2, .., N\}$ and engender an arbitrary integer $J_{random} \in \{1, 2, .., N\}$
- If random_J(0,1) < CR then $x'_{i,j} = x_{i,r3} + F * (x_{i,r1} x_{i,r2})$
- Else $\mathbf{x}'_{i,j} = \mathbf{x}_{i,j}$
- End if
- End for
- If Fitenss $(x'_i) \leq Fitness(x_i)$; then $x_i = x'_i$
- End if
- End for
- End condition

When $x_{i,j}$ infringe the boundary constraint, and then the violated variable value is brought back by,

$$x_{i,j}^{'} = \begin{cases} x_{min,j} if(random() \le 0.5) \lor (x_{i,j}^{'} < x_{minimum,j}) \\ x_{max,j} if(random() \le 0.5) \lor (x_{i,j}^{'} < x_{maximum,j}) \\ 2 \times x_{min,j} - x_{i,j}^{'} if(random() > 0.5) \lor (x_{i,j}^{'} < x_{minimum,j}) \\ 2 \times x_{min,j} - x_{i,j}^{'} if(random() > 0.5) \lor (x_{i,j}^{'} < x_{maximum,j}) \end{cases}$$
(14)

- e. By using fitness function compute the fitness of each string
- f. Employ the contact rules, a replica of the most excellent strings is chosen in the membrane m_{one} which will be sent to the skin membrane, and the present most excellent strings are accumulated in the skin membrane.
- g. Once the end condition is met, subsequently output the results; otherwise go to Step h.
- h. With the m elementary membranes m_{one} Membrane is alienated into the identical structure. At present most excellent strings and $N_s 1$ strings with the poor fitness will be send to every elementary membrane in roll by the send-in contact rules, and then go back to Step b.
- i. End condition is the utmost number of iterations. Algorithm will end if the utmost number of iterations is reached and output the results.

4. SIMULATION RESULTS

At first in standard IEEE 14 bus system the validity of the proposed dynamic membrane evolutionary algorithm (DMEA) has been tested. Table 1 shows the constraints of control variables. Table 2 shows the limits of reactive power generators and comparison results are presented in Table 3.

Table 1.	Constraints	of control	variables	
				_

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 14 Bus	Generator Voltage	0.95	1.1
	Transformer Tap	o.9	1.1
	VAR Source	0	0.20

Table 2. Constrains of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 14 Bus	1	0	10
	2	-40	50
	3	0	40
	6	-6	24
	8	-6	24

Table 3. Simulation results of IEEE -14 system

Control variables	Base case	MPSO [18]	PSO [18]	EP [18]	SARGA [18]	DMEA
<i>VG</i> -1	1.060	1.100	1.100	NR*	NR*	1.020
VG-2	1.045	1.085	1.086	1.029	1.060	1.041
VG-3	1.010	1.055	1.056	1.016	1.036	1.052
<i>VG</i> -6	1.070	1.069	1.067	1.097	1.099	1.060
VG-8	1.090	1.074	1.060	1.053	1.078	1.024
Tap 8	0.978	1.018	1.019	1.04	0.95	0.961
Tap 9	0.969	0.975	0.988	0.94	0.95	0.952
<i>Tap</i> 10	0.932	1.024	1.008	1.03	0.96	0.908
QC-9	0.19	14.64	0.185	0.18	0.06	0.162
PG	272.39	271.32	271.32	NR*	NR*	271.02
QG (Mvar)	82.44	75.79	76.79	NR*	NR*	74.98
Reduction in PLoss (%)	0	9.2	9.1	1.5	2.5	18.095
Total PLoss (Mw)	13.550	12.293	12.315	13.346	13.216	11.098

NR* - Not reported.

Then the proposed dynamic membrane evolutionary algorithm (DMEA) has been tested, in IEEE 30 Bus system. Table 4 shows the constraints of control variables. Table 5 shows the limits of reactive power generators and comparison results are presented in Table 6.

Then the proposed dynamic membrane evolutionary algorithm (DMEA) has been tested, in IEEE 57 Bus system. Table 7 shows the constraints of control variables. Table 8 shows the limits of reactive power generators and comparison results are presented in Table 9.

Then the proposed dynamic membrane evolutionary algorithm (DMEA) has been tested, in IEEE 118 Bus system. Table 10 shows the constraints of control variables and comparison results are presented in Table 11. Then IEEE 300 bus system [19] is used as test system to validate the performance of the dynamic membrane evolutionary algorithm (DMEA). Table 12 shows the comparison of real power loss obtained after optimization.

Table 4. Constraints of control variables					
System	Variables	Minimum (PU)	Maximum (PU)		
IEEE 30 Bus	Generator Voltage	0.95	1.1		
	Transformer Tap	o.9	1.1		
	VAR Source	0	0.20		

Table 5. Constrains of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 30 Bus	1	0	10
	2	-40	50
	5	-40	40
	8	-10	40
	11	-6	24
	13	-6	24

Table 6. Simulation results of IEEE –30 system							
Control variables	Base case	MPSO [18]	PSO [18]	EP [18]	SARGA [18]	DMEA	
VG-1	1.060	1.101	1.100	NR*	NR*	1.010	
VG-2	1.045	1.086	1.072	1.097	1.094	1.032	
VG-5	1.010	1.047	1.038	1.049	1.053	1.042	
VG-8	1.010	1.057	1.048	1.033	1.059	1.026	
VG-12	1.082	1.048	1.058	1.092	1.099	1.068	
VG-13	1.071	1.068	1.080	1.091	1.099	1.080	
Tap11	0.978	0.983	0.987	1.01	0.99	0.934	
Tap12	0.969	1.023	1.015	1.03	1.03	0.946	
Tap15	0.932	1.020	1.020	1.07	0.98	0.920	
Tap36	0.968	0.988	1.012	0.99	0.96	0.916	
QC10	0.19	0.077	0.077	0.19	0.19	0.079	
QC24	0.043	0.119	0.128	0.04	0.04	0.126	
PG (MW)	300.9	299.54	299.54	NR*	NR*	298.32	
QG (Mvar)	133.9	130.83	130.94	NR*	NR*	130.04	
Reduction in PLoss (%)	0	8.4	7.4	6.6	8.3	12.13	
Total PLoss (Mw)	17.55	16.07	16.25	16.38	16.09	15.42	

NR* - Not reported.

Table 7. Constraints of control variables

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 57 Bus	Generator Voltage	0.95	1.1
	Transformer Tap	o.9	1.1
	VAR Source	0	0.20

T 11 0	a	C			
Toble V	'onotroing	of rooting	nomon	aanaratara	
L'able A	COUSTIANTS	or reactive.	DOWEL	venerators	
1 4010 01	Combulatio	or reactive		Longiatory	

Table 8.	Table 8. Constrains of reactive power generators						
System	Variables	Q Minimum (PU)	Q Maximum (PU)				
IEEE 57 Bus	1	-140	200				
	2	-17	50				
	3	-10	60				
	6	-8	25				
	8	-140	200				
	9	-3	9				
	12	-150	155				

1 add = 7. Shi hulalion (Csuits Of 11717) $= 77$ system	Table 9.	Simulation	results of IEEE	-57	svstem
--	----------	------------	-----------------	-----	--------

				e, ejeten		
Control variables	Base case	MPSO [18]	PSO [18]	CGA [18]	AGA [18]	DMEA
VG 1	1.040	1.093	1.083	0.968	1.027	1.021
VG 2	1.010	1.086	1.071	1.049	1.011	1.048
VG 3	0.985	1.056	1.055	1.056	1.033	1.031
VG 6	0.980	1.038	1.036	0.987	1.001	1.030
VG 8	1.005	1.066	1.059	1.022	1.051	1.048
VG 9	0.980	1.054	1.048	0.991	1.051	1.026
VG 12	1.015	1.054	1.046	1.004	1.057	1.060
<i>Tap</i> 19	0.970	0.975	0.987	0.920	1.030	0.962
<i>Tap</i> 20	0.978	0.982	0.983	0.920	1.020	0.946
<i>Tap</i> 31	1.043	0.975	0.981	0.970	1.060	0.969
Tap 35	1.000	1.025	1.003	NR*	NR*	1.012
<i>Tap</i> 36	1.000	1.002	0.985	NR*	NR*	1.000
Tap 37	1.043	1.007	1.009	0.900	0.990	1.003
<i>Tap</i> 41	0.967	0.994	1.007	0.910	1.100	0.990
<i>Tap</i> 46	0.975	1.013	1.018	1.100	0.980	1.010
Tap 54	0.955	0.988	0.986	0.940	1.010	0.980
<i>Tap</i> 58	0.955	0.979	0.992	0.950	1.080	0.964
<i>Tap</i> 59	0.900	0.983	0.990	1.030	0.940	0.979
<i>Tap</i> 65	0.930	1.015	0.997	1.090	0.950	1.010
<i>Tap</i> 66	0.895	0.975	0.984	0.900	1.050	0.972
<i>Tap</i> 71	0.958	1.020	0.990	0.900	0.950	1.019
<i>Tap</i> 73	0.958	1.001	0.988	1.000	1.010	1.000
Tap 76	0.980	0.979	0.980	0.960	0.940	0.973
<i>Tap</i> 80	0.940	1.002	1.017	1.000	1.000	1.000
QC 18	0.1	0.179	0.131	0.084	0.016	0.171
QC 25	0.059	0.176	0.144	0.008	0.015	0.170
QC 53	0.063	0.141	0.162	0.053	0.038	0.140
PG (MW)	1278.6	1274.4	1274.8	1276	1275	1269.1
QG (Mvar)	321.08	272.27	276.58	309.1	304.4	269.26
Reduction in PLoss (%)	0	15.4	14.1	9.2	11.6	20.72
Total PLoss (Mw)	27.8	23.51	23.86	25.24	24.56	22.04
NR* - Not reported.						

Factual power loss reduction by dynamic membrane evolutionary algorithm (Lenin Kanagabasai)

Table 10. Constraints of control variables						
System	System Variables Minimum (PU) Maxi					
IEEE 118 Bus	Generator Voltage	0.95	1.1			
	Transformer Tap	o.9	1.1			
	VAR Source	0	0.20			

Table	11	Simul	ation	results	of IEEE	-118 s	system
1 auto	11.	onnu	auton	results	OI ILLL	110.	5 y Stern

		inulation re	SUILS OF TE	EE -118 S	System	DIF
Control variables	Base case	MPSO [18]	PSO [18]	PSO [18]	CLPSO [18]	DMEA
VG I VC A	0.955	1.021	1.019	1.085	1.033	1.010
VG 4 VC C	0.998	1.044	1.038	1.042	1.055	1.062
	0.990	1.044	1.044	1.060	0.973	1.031
	1.015	1.005	1.039	0.908	0.900	1.072
VG 10	0.000	1.064	1.040	1.073	1.000	1.012
VG 12 VG 15	0.990	1.032	1.029	1.022	0.078	1.020
VG 18	0.970	1.024	1.020	1.078	1.079	1.021
VC 10	0.973	1.042	1.010	1.049	1.079	1.040
VG 24	0.902	1.051	1.013	1.077	1.030	1.027
VG 25	1.050	1.058	1.055	0.956	1.028	1.049
VG 26	1.050	1.004	1.039	1 080	0.987	1.000
VG 27	0.968	1.035	1.04)	1.000	1.015	0.910
VG 27	0.967	1.020	1.021	0.960	0.961	0.932
VG 32	0.963	1.023	1.012	1 100	0.985	0.959
VG 34	0.984	1.034	1.023	0.961	1.015	1.016
VG 36	0.980	1.035	1.014	1.036	1.084	1.021
VG 40	0.970	1.016	1.015	1.091	0.983	0.980
VG 42	0.985	1.019	1.015	0.970	1.051	1.002
VG 46	1.005	1.010	1.017	1.039	0.975	1.020
VG 49	1.025	1.045	1.030	1.083	0.983	1.006
VG 54	0.955	1.029	1.020	0.976	0.963	0.969
VG 55	0.952	1.031	1.017	1.010	0.971	0.990
VG56	0.954	1.029	1.018	0.953	1.025	0.971
VG 59	0.985	1.052	1.042	0.967	1.000	0.969
VG 61	0.995	1.042	1.029	1.093	1.077	0.990
VG 62	0.998	1.029	1.029	1.097	1.048	0.992
VG 65	1.005	1.054	1.042	1.089	0.968	1.004
VG 66	1.050	1.056	1.054	1.086	0.964	1.024
VG 69	1.035	1.072	1.058	0.966	0.957	1.068
VG 70	0.984	1.040	1.031	1.078	0.976	1.031
VG 72	0.980	1.039	1.039	0.950	1.024	1.028
VG 73	0.991	1.028	1.015	0.972	0.965	1.019
VG 74	0.958	1.032	1.029	0.971	1.073	1.015
VG 76	0.943	1.005	1.021	0.960	1.030	1.004
VG 77	1.006	1.038	1.026	1.078	1.027	1.026
VG 80	1.040	1.049	1.038	1.078	0.985	1.004
VG 85	0.985	1.024	1.024	0.956	0.983	1.010
VG 87	1.015	1.019	1.022	0.964	1.088	1.020
VG 89	1.000	1.074	1.061	0.974	0.989	1.060
VG 90	1.005	1.045	1.032	1.024	0.990	1.032
VG 91	0.980	1.052	1.033	0.961	1.028	1.041
VG 92	0.990	1.058	1.038	0.956	0.976	1.036
VG 99	1.010	1.023	1.037	0.954	1.088	1.019
VG 100	1.017	1.049	1.037	0.958	0.961	1.028
VG 103	1.010	1.045	1.031	1.016	0.961	1.030
VG 104	0.971	1.035	1.031	1.099	1.012	1.026
VG 105	0.965	1.043	1.029	0.969	1.068	1.052
VG 10/	0.952	1.023	1.008	0.965	0.976	1.031
VG 110 VC 111	0.9/3	1.032	1.028	1.08/	1.041	1.028
VG 111 VC 112	0.980	1.035	1.039	1.037	0.979	1.026
VG 112 VC 112	0.975	1.018	1.019	1.092	0.976	1.091
VG 115 VC 116	0.993	1.043	1.027	1.0/5	0.972	1.030
VG 110	1.005	1.011	1.031	0.959	1.055	1.001
Tap 8	0.985	0.999	0.994	1.011	1.004	0.950
1 up 32 Tan 26	0.960	1.01/	1.015	1.090	1.000	1.007
1 up 30 Tan 51	0.960	0.994	0.997	1.005	1.000	0.904
Tap 02	0.935	0.998	1.000	1.000	1.000	0.958
1 ap 95 Tap 95	0.960	1.000	0.997	1.008	0.992	1.001
1 up 95 Tan 102	0.985	0.995	1.020	1.032	1.007	0.990
Tap 102	0.955	0.024	1.004	0.944	0.020	0.072
1 up 107	0.935	0.989	1.008	0.900	0.930	0.972

AIDDD

110

Table 11. Simulation results of IEEE –118 system (Continued)						
Control variables	Base case	MPSO [18]	PSO [18]	PSO [18]	CLPSO [18]	DMEA
Tap 127	0.935	1.010	1.009	0.967	0.957	1.000
QC 34	0.140	0.049	0.048	0.093	0.117	0.029
QC 44	0.100	0.026	0.026	0.093	0.098	0.018
QC 45	0.100	0.196	0.197	0.086	0.094	0.189
QC 46	0.100	0.117	0.118	0.089	0.026	0.126
QC 48	0.150	0.056	0.056	0.118	0.028	0.046
QC 74	0.120	0.120	0.120	0.046	0.005	0.134
QC 79	0.200	0.139	0.140	0.105	0.148	0.127
QC 82	0.200	0.180	0.180	0.164	0.194	0.176
QC 83	0.100	0.166	0.166	0.096	0.069	0.159
QC 105	0.200	0.189	0.190	0.089	0.090	0.172
QC 107	0.060	0.128	0.129	0.050	0.049	0.114
QC 110	0.060	0.014	0.014	0.055	0.022	0.026
PG(MW)	4374.8	4359.3	4361.4	NR*	NR*	4430.2
QG(MVAR)	795.6	604.3	653.5	* NR*	NR*	628.2
Reduction in PLOSS (%)	0	11.7	10.1	0.6	1.3	12.72
Total PLOSS (Mw)	132.8	117.19	119.34	131.99	130.96	115.90

NR* - Not reported.

T 11 11 a'

Table 12. Comparison of real power loss							
Parameter	Method EGA [20]	Method EEA [21]	Method CSA [21]	DMEA			
PLOSS (MW)	646.2998	650.6027	635.8942	610.1249			

5. CONCLUSION

In this work dynamic membrane evolutionary algorithm (DMEA) successfully solved the optimal reactive power problem. Proposed methodology merges the fusion and division rules of P systems with active membranes and with adaptive differential evolution (ADE), particle swarm optimization (PSO) exploration stratagem. In this paper, composition of the dynamic membrane algorithm along with the fusion, division rules are utilized to solve the optimal reactive power problem. In this work, Gaussian probability distribution is initiated to engender the accelerating coefficients of PSO. Proposed dynamic membrane evolutionary algorithm (DMEA) has been tested in standard IEEE 14, 30, 57, 118, and 300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

REFERENCES

- K. Y. Lee, Y. M. Park, J. L. Ortiz, "Fuel-cost minimisation for both real and reactive-power dispatches," *IET Digital Library*, vol. 131, no. 3, pp. 85-93, 1984. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/ip-c.1984.0012.
- [2] N. I. Deeb, S. M. Shahidehpour, "An efficient technique for reactive power dispatch using a revised linear programming approach," *Electric Power System Research*, vol. 15, no. 2, pp. 121-134, 1988. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/0378779688900168.
- [3] M. Bjelogrlic, M. S. Calovic, P. Ristanovic and B. S. Babic, "Application of Newton's optimal power flow in voltage/reactive power control," in *IEEE Transactions on Power Systems*, vol. 5, no. 4, pp. 1447-1454, Nov. 1990. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/99399.
- [4] S. Granville, "Optimal reactive dispatch through interior point methods," in *IEEE Transactions on Power Systems*, vol. 9, no. 1, pp. 136-146, Feb. 1994. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/317548.
- [5] N. Grudinin, "Reactive power optimization using successive quadratic programming method," in *IEEE Transactions on Power Systems*, vol. 13, no. 4, pp. 1219-1225, Nov. 1998. [Online]. Available: http://dx.doi.org/10.1109/59.736232.
- [6] Ng Shin Mei. R, Sulaiman M. H, Mustaffa Z, Daniyal H, "Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique," *Applied Soft Computing*, vol. 59, pp. 210-222, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1568494617303356.
- [7] Chen G, Liu L, Zhang Z, Huang S, "Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints" *Applied Soft Computing*, vol. 50, pp. 58-70, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1568494616305774.
- [8] Naderi E, Narimani H, Fathi M, Narimani M. R, "A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch," *Applied Soft Computing*, vol. 53, pp. 441-456, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1568494617300169.
- [9] Heidari A. A, Ali Abbaspour R, Rezaee Jordehi A, "Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems," *Applied Soft Computing*, vol. 57, pp. 657-671, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1568494617302302.

- [10] Mahaletchumi Morgan, Nor Rul Hasma Abdullah, Mohd Herwan Sulaiman, Mahfuzah Mustafa, Rosdiyana Samad, "Benchmark Studies on Optimal Reactive Power Dispatch (ORPD) Based Multi-objective Evolutionary Programming (MOEP) Using Mutation Based on Adaptive Mutation Adapter (AMO) and Polynomial Mutation Operator (PMO)," *Journal of Electrical Systems*, vol. 12, no. 1, pp. 121-132, 2016. [Online]. Available: http://www.journal.esrgroups.org/jes/papers/12_1_8.pdf.
- [11] Rebecca Ng Shin Mei, Mohd Herwan Sulaiman, Zuriani Mustaffa, "Ant Lion Optimizer for Optimal Reactive Power Dispatch Solution," *Journal of Electrical Systems*, vol. 6, no. 4, pp. 466-479, 2010. [Online]. Available: https://core.ac.uk/download/pdf/159186311.pdf.
- [12] P. Anbarasan, T. Jayabarathi, "Optimal reactive power dispatch problem solved by symbiotic organism search algorithm," 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 2017, pp. 1-8.
- [13] Gagliano A, Nocera F, "Analysis of the performances of electric energy storage in residential applications," *International Journal of Heat and Technology*, vol. 35, no. 1, pp. S41-S48. [Online]. Available: DOI: 10.18280/ijht.35Sp0106.
- [14] Caldera M, Ungaro P, Cammarata G, Puglisi G, "Survey-based analysis of the electrical energy demand in Italian households," *Mathematical Modelling of Engineering Problems*, vol. 5, no. 3, pp. 217-224, 2018. [Online]. Available: DOI: 10.18280/mmep.050313.
- [15] M. Basu, "Quasi-oppositional differential evolution for optimal reactive power dispatch," *Electrical Power and Energy Systems*, vol. 78, pp. 29-40, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0142061515004986.
- [16] T. Weise, "Global Optimization Algorithms Theory and Application," Germany: it-weise.de, 2009.
- [17] Zhang X. Y, Li J, Zhang L, "A multi-objective membrane algorithm guided by the skin membrane," *Nature Computing*, vol. 15, no. 4, pp. 597-610, 2016. [Online]. Available: https://link.springer.com/article/10.1007/s11047-016-9572-3.
- [18] Ali Nasser Hussain, Ali Abdulabbas Abdullah, Omar Muhammed Neda, "Modified Particle Swarm Optimization for Solution of Reactive Power Dispatch," *Research Journal of Applied Sciences, Engineering and Technology*, vol. 15, no. 8, pp. 316-327, 2018, [Online]. Available: DOI:10.19026/rjaset.15.5917.
- [19] IEEE, "The IEEE-test systems," 1993, [Online]. Available: http://www.ee.washington.edu/trsearch/pstca/.
- [20] S. S. Reddy, P. R. Bijawe, A. R. Abhyankar, "Faster evolutionary algorithm based optimal power flow using incremental variables," *International Journal of Electrical Power and Energy Systems*, vol. 54, pp. 198-210, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0142061513003165.
- [21] S. Surender Reddy, "Optimal Reactive Power Scheduling Using Cuckoo Search Algorithm," *International Journal of Electrical and Computer Engineering*, vol. 7, no. 5, pp. 2349-2356, 2017. [Online]. Available: http://ijece.iaescore.com/index.php/IJECE/article/view/8185.