
International Journal of Advances in Applied Sciences (IJAAS)

Vol. 9, No. 4, December 2020, pp. 284~293

ISSN: 2252-8814, DOI: 10.11591/ijaas.v9.i4.pp284-293  284

Journal homepage: http://ijaas.iaescore.com

Development of software defect prediction system using

artificial neural network

Olatunji B. L.1, Olabiyisi S. O.2, Oyeleye C. A.3, Sanusi B. A.4, Olowoye A. O.5, Ofem O. A.6
1,2,4,5Department of Computer Science, Ladoke Akintola University of Technology, Nigeria
3Department of Information Systems, Ladoke Akintola University of Technology, Nigeria

6Department of Computer Science, University of Calabar, Nigeria

Article Info ABSTRACT

Article history:

Received Mar 23, 2020

Revised Jun 11, 2020

Accepted Jun 18, 2020

 Software testing is an activity to enable a system is bug free during execution

process. The software bug prediction is one of the most encouraging

exercises of the testing phase of the software improvement life cycle. In any

case, in this paper, a framework was created to anticipate the modules that

deformity inclined in order to be utilized to all the more likely organize

software quality affirmation exertion. Genetic Algorithm was used to extract

relevant features from the acquired datasets to eliminate the possibility of

overfitting and the relevant features were classified to defective or otherwise

modules using the Artificial Neural Network. The system was executed in

MATLAB (R2018a) Runtime environment utilizing a statistical toolkit and

the performance of the system was assessed dependent on the accuracy,

precision, recall, and the f-score to check the effectiveness of the system. In

the finish of the led explores, the outcome indicated that ECLIPSE JDT

CORE, ECLIPSE PDE UI, EQUINOX FRAMEWORK and LUCENE has

the accuracy, precision, recall and the f-score of 86.93, 53.49, 79.31 and

63.89% respectively, 83.28, 31.91, 45.45 and 37.50% respectively, 83.43,

57.69, 45.45 and 50.84% respectively and 91.30, 33.33, 50.00 and 40.00%

respectively. This paper presents an improved software predictive system for

the software defect detections.

Keywords:

Artificial neural network

Genetic algorithm

Software defect prediction

Software metrics

This is an open access article under the CC BY-SA license.

Corresponding Author:

Olatunji B. L.,

Department of Computer Science,

Ladoke Akintola University of Technology,

Gra oke aafin area Ogbomoso north local government, 210214, Ogbomosho, Nigeria.

Email: olatunji_tunde@yahoo.com

1. INTRODUCTION

A software defect is a fault, blunder, or failure in a software system [1]. It creates either an off base,

or unforeseen result, and acts in a unintended way [2]. It is a flaw in the software system that makes it

perform out of the blue [3]. A software defect can be referred to as imperfection during the software

improvement process that makes the software fail and not meets the ideal desire [4]. The defect prediction in

software is the way toward deciding pieces of a software system that may contain bugs [5]. Use of Defect

Prediction systems in the early software life-cycle permits the pro to focus their testing labor in a way that

the parts identified as mistake inclined are tried inside and out in contrast with different pieces of

the software system [6] This prompts the decrease of labor costs during improvement and furthermore

loosens up the support effort [7]. Late investigations report that the chance of bug discovery by the software

defect prediction systems might be higher than the chance of identification by as of now utilized software

audits in mechanical strategies [8]. Thusly, the right prediction of defect-inclined software assists with

https://creativecommons.org/licenses/by-sa/4.0/

Int J Adv Appl Sci ISSN: 2252-8814 

Development of software defect prediction system using artificial neural network (Olatunji B. L.)

285

coordinating test effort, to decrease costs, to improve the software testing process by focusing on defect-

inclined modules [9], lastly to make the nature of the software better [10].

That is the reason today's software defect prediction is a significant examination subject in the software

engineering field [11]. Software defect prediction is a key procedure in software engineering to make

the quality and affirmation of software better in less time and at least expense [12]. It is actualized before

the testing phase of the software advancement life cycle. Software defect prediction systems give defects or

various defects.

The software defect prediction has been roused by various analysts to give a different system inside

a task or cross-undertaking to improve different quality and watching affirmation of software [12]. There are

two ways to deal with builds a software defect prediction system like supervised learning and unsupervised

learning. Supervised learning has an issue of requiring historical information to prepare the software defect

prediction system while unsupervised learning doesn't require historical information or some known

outcomes [2]. The improvement of software technology causes an expansion in the number of software

items, and their support has become a difficult assignment. Besides, half of the life cycle cost for a software

system incorporates upkeep exercises. With the ascent in complexity in software systems, the likelihood of

having defective modules in the software systems is getting higher [13]. A key focus, defect prediction, has

risen as a functioning examination zone for decades. Defect prediction methods build systems dependent on

different sorts of metrics and foresee defects at different granularity levels, e.g., change, file, or module

levels [14]. These procedures can be utilized to effectively apportion quality confirmation assets. In spite

of various defects, prediction contemplates research on defect prediction despite everything

increments exponentially.

Tending to this issue can give knowledge to the two experts and scientists. Experts can utilize

observational proof on defect prediction to settle on informed choices about when to utilize defect prediction

and how it would best fit into their advancement procedure. Specialists can improve defect prediction

procedures dependent on the desires for professionals and appropriation challenges that they face. To pick up

bits of knowledge into the reasonable estimation of defect prediction, a quantitative report was performed in

this examination so as to help software designers with the errand of comprehension, assessing, and improving

their software items. It is imperative to predict and fix the defects before it is conveyed to clients in light of

the fact that the software quality confirmation is a tedious task and now and again doesn't take into

consideration complete testing of the whole system because of spending issues. There are numerous open

datasets that are accessible free for specialists like PROMISE, ECLIPSE, and APACHE to conquer

the difficult issue when preparing performed on another project. Analysts have been creating enthusiasm to

build a cross-project defect prediction system with various metrics set like class-level metrics, process

metrics, static code metrics yet they couldn't build increasingly feasible systems [12]. There are numerous

classifiers or learning algorithm to choose a wide assortment of software metrics like Naive Bayes, Support

Vector Machine, K-Nearest Neighbor, Random Forest, Decision Tree, Neural Network and Logistic

Regression. Hence, in this paper a software defect prediction system was developed using Artificial Neural

Network as the classifying algorithm and with the use of Genetic Algorithm the possibility of overfitting was

eliminated by extracting the relevant features from the original datasets which the outcomes give best

predictive performance.

2. RELATED WORK

Fenton and Neil [15], make utilization of Bayesian networks for forecasting of unwavering quality

and defectiveness of software. It makes utilization of casual process factors and qualitative and quantitative

measures, in this manner taking into account the constraints of traditional software impediments.

The utilization of a powerful discretization method brings about a better prediction system for software

defects. Jie et al. [16], make utilization of different statistical procedures, and machine learning methods were

utilized to verify the validity of software defect prediction systems. In this investigation, the neuro-fuzzy

method was thought of. The data from ISBSG were taken to achieve the research. Manu [17], make

utilization of another computational insight sequential hybrid design including Genetic Programming (GP)

and Group Method of Data Handling (GMDH) viz. The GPGMDH has been contemplated. Be that as it may,

the GP and GMDH, a large group of methods on the ISBSG dataset have been tried.

The GP-GMDH and GMDH-GP hybrids surpass all other independent and hybrid procedures. It is

presumed that the GPGMDH or GMDH-GP system is the greatest system among all different methods for

software cost estimation. Puneet and Pallavi [18] utilized different data mining strategies for software

mistake prediction, like affiliation mining, classification, and clustering methods. This has helped

the software engineers in growing better systems. For a situation where defect marks are absent,

unsupervised procedures can be utilized for system advancement.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 9, No. 4, December 2020: 284 – 293

286

In 2014, Mattias and Alexander worked on software defect prediction utilizing machine learning

(Random Forest and J46) on test and source code metrics. The goal of the proposal was to explore whether

a test, combined with a source code file contained enough information to upgrade the software defect

performance if metrics from both source files and test files are joined. Gray et al. [19] proposed an

investigation utilizing the static code metrics for a group of modules contained inside eleven NASA data sets

and make utilization of a Support Vector Machine classifier. A careful progression of the pre-processing

stage was applied to the data before classification, including the balancing of the two classes (defective or

something else) and the dismissal of countless rehashing events. The Support Vector Machine in this trial

yields a normal accuracy of 70% on previously inconspicuous data. According to the reviewed related works,

it is observed that the previously developed software prediction systems have a limitation of overfitting

which happens when the system acquire the detail in the training data to the extent that it negatively effects

the performance of the system on new data.

3. RESEARCH METHOD

The architecture of the developed system in this paper is presented in Figure 1. The following are

the stages that were adopted in this paper:

i. The first stage is acquisition of data. This stage involves gathering necessary datasets which were used

in this paper. However, the datasets were acquired from http://bug.inf.usi.ch/download.php which is

publicly available for use.

ii. The next stage is the feature selection stage which was achieved by using Genetic Algorithm so as to

extract the relevant features from the datasets acquired in the first stage.

iii. In the classification stage, the extracted features were classified using Artificial Neural Network.

iv. Finally, the results of this work were evaluated using accuracy, precision, recall and f -score.

Figure 1. Architecture of the developed system.

3.1. Data collection

Software defect prediction research depends on data that must be gathered from in any case separate

stores. In this paper, the datasets were acquired from http://bug.inf.usi.ch/download.php which is a store for

the bug prediction dataset for most open-source software. “The Eclipse Jdt Core, Eclipse Pde Ui, Equinox

Framework and Lucene” are the software systems that were considered in this paper. However, each software

systems includes different pieces of information but in this paper weighted entropy module codenamed

“weighted.ent” was selected because it has most familiar parameters like lines of code which suites the aim

of defect prediction system. Weighted entropy is the proportion of data provided by a probabilistic test whose

basic occasions are described by both their target probabilities and by some subjective loads.

3.2. Feature selection

The computational complexity of some of the previously mentioned machine learning algorithms

makes the building of the system infeasible to use if all of the features in the dataset is used. Along these

lines, feature selection was utilized to remove a lot of most significant free factors contained in the first

Int J Adv Appl Sci ISSN: 2252-8814 

Development of software defect prediction system using artificial neural network (Olatunji B. L.)

287

dataset to dispense with factors that won't add to the presentation of prediction, at that point improve learning

proficiency and increment prediction accuracy. However, in this paper Genetic Algorithm (GA) was used for

extracting the relevant features in eliminating the possibility of overfitting. GA is a versatile heuristic

technique for worldwide advancement looking through used to create valuable answers for machine learning

applications and it reenacts the conduct of the development procedure in nature. Figure 2 depicts

the flowchart of a typical GA. The feature was ultimately reduced using the fitness function;

∑
1

|(∑ 𝑔(𝑗))−𝑅(𝑖)|𝑛
𝑗=1

𝑚
𝑖=1 (1)

where

𝑔 is a 𝑚 × 𝑛 matrix of feature and

𝑅 is the corresponding output.

3.3. Classification stage

The extracted relevant feature was divided into folds and ensure that each fold was used as testing

set at some point and used to train the classifier. K-fold cross validation was adopted where the acquired

datasets was divided into a k number of folds. However, since four open source software were considered in

this paper the datasets was divided into 4 folds. In the primary cycle, the principal fold was utilized to test

the framework and the rest was utilized to prepare the framework. In the subsequent emphasis,

the subsequent fold was utilized as the testing set while the rest fill in as the preparation set. This process was

repeated until each fold of the 4 folds are been used as the testing set. The system has a flow in which every

user can follow. This also can be used in software engineering field when measuring the flow and quality of

a software according to software metrics. Cross validation was adopted since the amount of data is limited

and it has a merit over the existing technique called holdout method. In the holdout method, one part of

the datasets is used for training and the other for testing. In this paper, the solution to the bias idea was

adopted using cross validation where all the instances were used one time for testing and training.

This simply means that, instead of conducting four folds, a total of 16 folds is generated and the error

estimate is therefore more reliable. Hence, Artificial Neural Network (ANN) was adopted in the classification

stage using Levenberg-Marquardt (LM) Algorithm to train the ANN. The choice of the LM Algorithm in this

paper is that it is not that memory efficient but faster than other algorithms. It approximates the blunder of

the network with a second-order articulation which diverges from the back-propagation algorithm that does it

with a first-order articulation. LM refreshes the ANN loads as follows:

∆𝑤 = [𝜇𝐼 + ∑ 𝐽𝑃(𝑤)𝑇 𝐽𝑃 (𝑤)𝑃
𝑃=1]−1∇𝐸(𝑤) (2)

where

𝐽𝑃(𝑤) is the Jacobian matrix of the error vector;

𝑒𝑃(𝑤) evaluated in w and

𝐼 is the identity matrix.

The vector error 𝑒𝑃(𝑤) is the error of the network for patter 𝑝, that is

𝑒𝑃(𝑤) = 𝑡𝑝 − 𝑜𝑝(𝑤) (3)

The parameter 𝜇 is increased or decreased at each step. If the error is reduced, then 𝜇 is divided by

a factor 𝛽 and it is multiplied by 𝛽 in other case. LM performs the steps detailed in Algorithm 1. It calculates

the network output, the error vectors and the Jacobian matrix for each pattern. Then, it computes ∆𝑤 using

equation 2 and recalculates the error with 𝑤 + ∆𝑤 as network weights. If the error has decreased, 𝜇 is

divided by 𝛽, the new weights are maintained and the process starts again; otherwise, 𝜇 is multiplied by 𝛽.

∆𝑤 is calculated with a new value and it iterates again [20].

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 9, No. 4, December 2020: 284 – 293

288

Figure 2. The flowchart of a typical genetic algorithm

Algorithm 1: Pseudocode of Levenberg-Marquardt

Initialize Weights;

While not stop Criterion do

Calculates CP(w) for each pattern

e1 = ∑ = 1 eP (w)TeP(w)

P

P

Calculates JP(w) for each pattern
Repeat

Calculates ∆w

e2 = ∑ = eP(w + ∆w)TeP(w + ∆w)

P

P

If e1 ≤ e2 then

μ = μ ∗ β
End If

Until e1 < e2

μ = μ/β

w = w + ∆w
End while

3.4. Performance metrics

In order to measure defect prediction results by classification models, different performance

measures are available for effectiveness. In this paper, the following prediction outcomes were considered:

Int J Adv Appl Sci ISSN: 2252-8814 

Development of software defect prediction system using artificial neural network (Olatunji B. L.)

289

i. True positive (TP): buggy instances predicted as buggy

ii. False positive (FP): clean instances predicted as buggy

iii. True negative (TN): clean instances predicted as clean

iv. False negative (FN): buggy instances predicted as clean

With these outcomes, the following measures which are mostly used in the software defect

prediction literature are defined:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (4)

Accuracy thinks about both true positives and true negatives over all occurrences. As it were,

accuracy shows the proportion of all accurately classified cases.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6)

Recall measures correctly predicted buggy instances among all buggy instances.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 (7)

F-measure is a harmonic mean of precision and recall. By collecting these performance

measurements, future predictions on unseen files can be estimated. The calculation of accuracy, precision and

recall makes use of the confusion matrix.

4. RESULTS AND DISCUSSION

The experiment was conducted by first extracting the relevant features from the datasets used in this

research as discussed in section 3.2 using GA. However, weighted-ent dataset has 17 features excluding

the class names and with the adoption of the GA, the features are reduced to 13 using the fitness function

discussed in section 3.2. Figure 3 shows the graphical user interface of the GA at the feature selection stage.

Using the mathematical formulas discussed in section 3.4, the values in Table 1 are calculated and by

collecting these performance measurements, future predictions on unseen files can be estimated.

According to the conducted experiments the percentage of the True Positive Rate (TPR) and True

Negative Rate (TNR) of the datasets used in this research work; ECLIPSE JDT CORE, ECLIPSE PDE UI,

EQUINOX FRAMEWORK and LUCENE are (79.31% and 88.24%), (45.45% and 87.97%), (45.45% and

73.81%) and (50.00% and 93.85%) respectively. The training and validation for the datasets ECLIPSE JDT

CORE, ECLIPSE PDE UI, EQUINOX FRAMEWORK and LUCENE was conducted. However, the best

validation performance is 0.52482 at epoch 5, 0.21032 at epoch 5, 0.67527 at epoch 9 and 0.01356 at epoch

10 respectively. Figures 4, Figure 5, Figure 6 and Figure 7 shows the chart representation of the training and

validation for each dataset respectively.

Summarily, K-fold validation method was used to validate the dataset where all the datasets

partakes in both training and testing process as discussed in Section 3.3. More so, as shown in Table 1

throughout the performance measures the dataset LUCENE has the highest accuracy of 91.30% while

EQUINOX FRAMEWORK has the highest precision of 57.69% which measures how good the prediction

system is at identifying actual faulty files. Furthermore, recall used in this research measures the proportion

of faulty files which are correctly identified as faulty where ECLIPSE JDT CORE has the highest recall of

79.31% and highest F-Score of 63.89%.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 9, No. 4, December 2020: 284 – 293

290

Figure 3. Desktop interface of the feature selection stage

Table 1. System results of the accuracy, precision, recall, and F-Score
Datasets Accuracy Precision Recall F-Score

ECLIPSE JDT CORE 86.93% 53.49% 79.31% 63.89%
ECLIPSE PDE UI 83.28% 31.91% 45.45% 37.50%

EQUINOX FRAMEWORK 83.43% 57.69% 45.45% 50.84%

LUCENE 91.30% 33.33% 50.00% 40.00%
AVERAGE 86.24% 44.11% 55.05% 48.06%

Figure 4. Training and validation for ECLIPSE JDT CORE

Int J Adv Appl Sci ISSN: 2252-8814 

Development of software defect prediction system using artificial neural network (Olatunji B. L.)

291

Figure 5. Training and validation for ECLIPSE PDE UI

Figure 6. Training and validation for EQUINOX FRAMEWORK

Figure 7. Training and validation for LUCENE

To ease the comparison to the related study, the average of the results for all the datasets and

performance measures are presented in Figure 8. As accuracy is dependent on the balance of the underlying

dataset, it is further compared to the average accuracy result of the related study. [21] Proposed

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 9, No. 4, December 2020: 284 – 293

292

a ConPredictor system to predict defects specific to concurrent programs by combining both static and

dynamic program metrics. As this research is conducted using the same performance measures as [21] and as

they summarize many studies, the results of this study are compared to ones compiled by [21].

Figure 8. ConPredictor comparison results against the developed system

5. CONCLUSION

The development of software product is increasing exponentially due to their benefits and

occurrence of defects in the software products is inevitable. In other words, this defect needs to be reduced to

minimum count. Software defect prediction effectively improve the quality and efficiency of software which

enhances the procedure of following defective parts in software preceding the beginning of the testing stage.

However, some classification techniques such as Naïve Bayes, random forest and decision tree has been

adopted for software defect prediction according to literature. Hence, in this paper GA was successfully used

for feature selection alongside ANN in predicting the defective modules in a software system. This developed

system was compared with existing system which at the completion of the conducted experiments it

outshines the existing system by giving a best predictive performance.

REFERENCES
[1] Naik, K. and Tripathy, P., “Software Testing and Quality Assurance,” John Wiley & Sons, Inc. pp. 29-32, 2008.

[2] Sanusi B. A., Olabiyisi S. O., Olowoye A. O. and Olatunji B. L., “Software Defect Prediction System using

Machine Learning based Algorithms,” Journal of Advances in Computational Intelligence Theory, vol. 1, no. 3, pp.

1-9, 2019.

[3] McDonald M., Musson, R. and Smith, R., “The practical guide to defect prevention,” Control, pp. 260-272, 2007.

[4] Kumaresh, S. and Baskaran, R., “Defect analysis and prevention for software process quality improvements,”

International Journal of Computer Applications, vol. 8, no. 9, pp. 250-254, 2010.

[5] Kitchenham, B. A.,” Guidelines for Performing Systematic Literature Review in Software Engineering,” Technical

Report EBSE-2007-001, Keele University and Durham University, Staffordshire, pp. 184-210, 2007.

[6] Catal, C. and Diri, B., “A Systematic Review of Software Fault Prediction studies,” Expert Syst. Appl., vol. 36, pp.

7346–7354, 2009.

[7] Radjenovic, D., Hericko, M., Torkar, R. and Zivkovic, A., “Software fault prediction metrics: A Systematic

literature review,”

Inf. Softw. Technol, vol. 55, pp. 1397-1418, 2013.

[8] Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., and Bener, A., “Defect prediction from static code

features: current results, limitations, new approaches,” Automated Software Engineering, vol. 17, no. 4, pp. 375-

407, 2010.

[9] Catal, C., Sevim, U., and Diri, B., “Practical development of an Eclipse-based software fault prediction tool using

Naive Bayes algorithm,” Expert Systems with Applications, vol. 38, no. 3, pp. 2347-2353, 2011.

[10] Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S., “A Systematic Literature Review on Fault Prediction

Performance in Software Engineering,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276-1304,

2012.

[11] Song, Q., Jia, Z., Shepperd, M., Ying, S., and Liu, J., “A General Software Defect-Proneness Prediction

Framework,”

IEEE Transactions on Software Engineering, vol. 37, no. 3, pp. 356-370, 2011.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Accuracy Precision Recall F-Score

ConPredictor Developed System

Int J Adv Appl Sci ISSN: 2252-8814 

Development of software defect prediction system using artificial neural network (Olatunji B. L.)

293

[12] Rajesh, K. and Gupta, D. L., “Software Fault Prediction,” International Journal of Computer Science and Mobile

Computing, vol. 4, no. 9, pp. 250-254, 2015.

[13] Xu, J. Ho, D. and Carpret, L. F., “An empirical study on the procedure to derive software quality estimation

models,” International Journal of Computer Science & Information Technology (IJCSIT), vol. 2, no. 4, pp. 1-16,

2010.

[14] Hata, H., Mizuno, O. and Kikuno, T. “Bug prediction based on fine-grained module histories,” In Proceedings of

the 34th International Conference on Software Engineering, ICSE ’12, pp. 200-210, 2012.

[15] Fenton, N. and Neil, M., “Using Bayesian networks to predict software defects and reliability,” Proc. IMechE vol.

222 Part O: J. Risk and Reliability, pp. 702-703, 2008.

[16] Jie Xu, Danny Ho and Luiz Fernando, “An Empirical Study on The Procedure Drive Software Quality Estimation

Models,” International journal of computer science & information Technology (IJCSIT), vol. 2, no. 4, pp. 12-15,

2010.

[17] Manu, B., “Computational Hybrids Towards Software Defect Predictions,” International Journal of Scientific

Engineering and Technology, vo. 2, no. 5, pp. 311-316, 2013.

[18] Puneet, J. K. and Pallavi, “Data Mining Techniques for Software Defect Prediction,” International Journal of

Software and Web Sciences, vol. 3, no. 1, pp. 54-57, 2013.

[19] Gray, D., Bowes, D., Davey, N. and Sun, Y., “Bruce Christianson, Using the Support Vector Machine as a

Classification Method for Software Defect Prediction with Static Code Metrics,” 11th International Conference,

EANN 2019, pp. 21-25, 2019.

[20] Khan, K. and Sahai, A., “Comparison of BA, GA, PSO, BP and LM for Training Feed Forward Neural Networks in

E-Learning Context,” Int J Intel Syst App, vol. l7, pp. 23-29, 2012.

[21] Yu, T., Wen, W., Han, X. and Hayes, J., “Conpredictor: Concurrency Defect Prediction in Real-World

Applications,” In IEEE International Conference on Software Testing, Verification and Validation, pp. 168-179,

2018.

