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 In this work, the rain drop optimization (RDO) algorithm is projected to 

reduce power loss. Proceedings of rain drop have been imitated to model the 

RDO algorithm. The natural action of rain drop is flowing downwards from 

the peak and it may form small streams during the headway from the 

mountain or hill. As by gravitation principal rain drop flow as a stream as a 

river from the peak of mountains or hill then it reaches the sea as global 

optimum. Proposed rain drop optimization (RDO) algorithm evaluated in 

IEEE 30, bus test system. Power loss reduction, voltage deviation 

minimization, and voltage stability improvement have been achieved. 
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1. INTRODUCTION  

Real power loss reduction is main objective of this work. Various methods conventional [1]-[6] and 

Evolutionary techniques [7]-[19] are applied to solve the problem. Rain drop optimization (RDO) Algorithm 

applied to reduce the power loss. Rain drop actions have been imitated to model the algorithm. Natural 

behavior of rain drop is flowing downwards form the peak and it will form small streams during the 

progression from the hill. With reference to the gravitation the raindrop flow as stream then as river from the 

peak of mountains or hill then finally it reaches the sea. Reaching the sea by passing many areas including 

valleys is global optimum. Raindrops are engendered in arbitrary mode in the initial iteration itself, then each 

rain drop will assign a neighborhood by itself then in arbitrary mode neighbor points are produced. Projected 

algorithm begins with arbitrarily engendered solution afterwards exploration has been done sequentially 

around the present point until end of the end criterion and also revision of the present value will be there 

throughout the procedure. Rain drop optimization (RDO) Algorithm evaluated in standard IEEE 30, bus test 

system. Voltage deviation and power minimization achieved along with voltage enhancement.  

 

 

2. PROBLEM FORMULATION 

Solving the optimal reactive power dispatch (ORPD) problem plays a significant role in the efficient 

operation and planning of the power system. The aim of solving the ORPD is to determine the best operating 

point of system for maximizing the voltage stability, minimizing the system loss and the voltage deviations. 

The best operating point includes the terminal voltages of the generators, taps of transformers and the 

injected reactive powers of the shunt compensators. The solution of the ORPD problem is formulated as an 

https://creativecommons.org/licenses/by-sa/4.0/
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optimization problem applied for assigning set control parameters for a certain objective function, satisfying 

the operating constraints of the system. 
 

Minimization F̃(x̅, y̅) (1) 
 

Subject to (2): 
 

E(x̅, y̅) = 0 (2) 
 

I(x̅, y̅) = 0 (3) 
 

x = [VG1, . . , VGNg; QC1, . . , QCNc; T1, . . , TNT
] (4) 

 

y = [PGslack; VL1, . . , VLNLoad
; QG1, . . , QGNg; SL1, . . , SLNT

] (5) 

 

Fitness function (F1) (6) is defined to diminish the power loss (MW). 

 

F1 = PMin = Min [∑ Gm
NTL
m [Vi

2 + Vj
2 − 2 ∗ ViVjcosØij]] (6) 

 

Fitness function (F2) minimization of Voltage deviation is (7). 

 

F2 = Min [∑ |VLk − VLk
desired|

2
+ ∑ |QGK − QKG

Lim|
2Ng

i=1
NLB
i=1 ] (7) 

 

Fitness function (F3) (8) voltage stability index (L-index) is (9), (10), (11). 

 

F3 = Min LMax (8) 

 

LMax = Max[Lj]; j = 1; NLB (9) 

 

And {
Lj = 1 − ∑ Fji

Vi

Vj

NPV
i=1

Fji = −[Y1]1[Y2]
 (10) 

 

LMax = Max [1 − [Y1]−1[Y2] ×
Vi

Vj
] (11) 

 

Equality constraints: 

 

0 = PGi − PDi − Vi ∑ Vjj∈NB
[Gijcos[Øi − Øj] + Bijsin[Øi − Øj]] (12) 

 

0 = QGi − QDi − Vi ∑ Vjj∈NB
[Gijsin[Øi − Øj] + Bijcos[Øi − Øj]] (13) 

 

Inequality constraints: 

 

Pgslack
min ≤ Pgslack ≤ Pgslack

max  (14) 

 

Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng (15) 

 

VLi
min ≤ VLi ≤ VLi

max , i ∈ NL (16) 

 

Ti
min ≤ Ti ≤ Ti

max , i ∈ NT  (17) 

 

Qc
min ≤ Qc ≤ QC

max , i ∈ NC (18) 

 
|SLi| ≤ SLi

max , i ∈ NTL (19) 
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VGi
min ≤ VGi ≤ VGi

max , i ∈ Ng (20) 

 

Multi objective fitness is (21), (22), (23). 

 

MOF = OF1 + xiOF2 + yOF3 = OF1 + [∑ xv[VLi − VLi
min]

2NL
i=1 + ∑ xg[QGi − QGi

min]
2NG

i=1 ] + xfOF3 (21) 

 

VLi
min = {

VLi
max , VLi > VLi

max

VLi
min, VLi < VLi

min  (22) 

 

𝑄𝐺𝑖
𝑚𝑖𝑛 = {

𝑄𝐺𝑖
𝑚𝑎𝑥  , 𝑄𝐺𝑖 > 𝑄𝐺𝑖

𝑚𝑎𝑥

𝑄𝐺𝑖
𝑚𝑖𝑛 , 𝑄𝐺𝑖 < 𝑄𝐺𝑖

𝑚𝑖𝑛  (23) 

 

 

3. RAIN DROP OPTIMIZATION ALGORITHM  

Natural behavior of rain drop is flowing downwards form the peak and it will form small streams 

during the progression from the hill [20]. In the projected algorithm rain drop will be a particle in the 

population, and it has been described as (24), 
 

DPi = [Yi,1, Yi,2, Yi,3, . . , Yi,k, . . , Yi,n] i ∈ {1,2,3, . . , m} (24) 
 

DPi symbolize rain drop, number of variables indicated by “n” and Yi,k indicate the kth variable in the problem, 

size of the population is defined by “m”. DPi has been assumed as a vector or point in the “N” dimensional axis 

and through uniform distribution it has been engendered as function with constraints as (25). 
 

Yi,k = uniform distribution function (UDF). (Lowerk, Upperk) (25) 
 

With radius “r” around the point of Rain Drop (RD) in the “N” dimensional axis with respect to the 

neighborhood value the change in Rain Drop (RD) value will be modernized. A Rain Drop (RD) “i” which 

possess a neighbor point “j” is indicated by NHPj
i as (26) and (27). 

 

‖(RDi − NHPj
i). unit vectork‖ ≤ ‖radius(r). unit vectork‖ (26) 

 

raduis(r) = raduisinitial × f(iteration) (27) 
 

Naturally the dominant or main (M) neighbor point NHPM
i  satisfy amongst of all rain drop RDi and by 

objective function (F) the rain drop and neighbor point values are obtained by (28) and (29). 

 

F(NHPM
i ) < 𝐹(RDi) (28) 

 

F(NHPM
i ) < 𝐹(NHPj

i) (29) 

 

No main point for a single rain drop RDi then predominantly in the position of stationary. Then the 

rain drop has been take out of this situation through a procedure of explosion is defined by (30). 
 

NHPexploration = neighbor point × explosion base × explosion counter (30) 
 

The ranking of the rain drops in iteration’s is given by (31) and (32). 
 

D1t
i = F(RDi)|at tthiteration − F(RDi)|at 1stiteration (31) 

 

D2t
i = F(RDi)|at tthiteration (32) 

 

order(D1t
i ), order(D2t

i); are orders at iteration t (33) 
 

ω1, ω2 ; are weight cofficients and rankingt
i  is rank of rain drop RDi  

 

Raindrops are engendered in arbitrary mode in the initial iteration itself, then each rain drop will assign a 

neighborhood by itself then in arbitrary mode neighbor points are produced. Throughout the procedure of the 

optimization the neighbor point will be within in the exploration space limits and if any engendered beyond 

the exploration space limit, then it has been modernized by (34) and (35). 
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if(NHPj
i)

k
< Lowerk then(NHPj

i)
k

= Lowerk (34) 

 

if(NHPj
i)

k
< Upperk then(NHPj

i)
k

= Upperrk (35) 

 

Subsequently for each rain drop and its neighbor points cost function will be computed then the 

comparison of values between rain drop and neighbor point will be done when there is dominant or main 

neighbor point found then the rain drop move towards to that point by altering its position.  

− Begin 

− Parameters values are engendered  

− Fix each rain drop value as active  

− Rain drop’s initial population produced  

− Iteration =1 

− Drop number =1 

− Explosion counter =0 

− Is rain drop is active? if yes got to next step or else go to step “o” 

− Engender the neighbor points  

− Rain drop and neighbor point cost function value computed  

− Change of rain drop position when a dominant neighbor point has been found then Explosion counter =0 

then go to step “n” 

− Otherwise, exploration process will be applied  

− Fix the rain drop as live 

− Swap the rain drop with dominant neighbor point 

− Drop number +1 

− Is drop number <= number of population? If yes go to step “g”  

− Otherwise, iteration +1 

− Even after applying the exploration process no neighbor point found means then that particular rain drop is 

marked as motionless  

− After creation of the worth order list then lower order value rain drops are marked as motionless  

− Any live or active rain drop found; Itertaion <= maximum itertaion  

− If yes go step “f” 

− Otherwise go to next step “w” 

− For all rain drops the cost function value will be computed  

− Discover the rain drop which possess the minimum cost functional value  

− Then optimal solution is the cost and raindrop position  

− End  

 

 

4. SIMULATION RESULTS  

Projected rain drop optimization (RDO) algorithm evaluated in standard IEEE 30 bus system [21]. 

Active and reactive power consumption is 2.8340 and 1.2620 per unit in 100 MVA base. Table 1 and Table 2 

show the parameters [21]; then Table 3 to Table 6 show the comparison results. Figures 1-4 give the 

graphical comparison.  

 

 

Table 1. Variables 
System [21]  Variables  Minimum (PU) Maximum (PU) 

  VG 0.950 1.10 

Tt 0.90 1.10 
VAR 0.0 5 .0 

 

 

Table 2. System parameters 
Description [21] IEEE 30 bus  

NB  30 
NG 6 

NT 4 

NQ 9 
NE 41 

Power loss 5.660 

Base casee for VD (Per Uit)  0.582170 
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Table 3. Power loss comparison with different metaheuristic algorithms 
 DE [22] GSA [23] APO-PSO [24] RDO 

Power Loss (MW) 4.555 4.5143 4.398 0.940 

Voltage. D (PU) 1.9589 0.87522 1.047 4.226 
L-index (PU) 0.55130 0.141090 0.12670 1.044 

 

 

Table 4. Comparison with reference to voltage stability improvement 
 DE [22] GSA [23] APO-PSO [24] RDO 

Power loss (MW) 6.4755 6.9117 5.698 5.429 
Volatge D (PU) 0.0911 0.0676 0.087 0.083 

L-index (PU) 0.143520 0.13490 0.13770 0.1314 

 

 

Table 5. Comparison with reference to voltage deviation minimization  
 DE [22] GSA [23] APO-PSO [24] RDO 

Power loss (MW) 7.0733 4.9752 4.478 4.249 

Volatge. D (PU) 1.419 0.21579 1.8579 1.8205 

L-index (PU) 0.12460 0.136840 0.12270 0.1173 

 

 

Table 6. Comparison of values with reference to multi objective formulation  
 APO-PSO [24] RDO 

Power Loss (MW) 4.842 4.738 

Volatge. D (PU) 1.009 1.003 
L-index (PU) 0.1192 0.1184 

 

 

  
  

Figure 1. Comparison of power loss Figure 2. Comparison with respect to VSI 

 

 

  
  

Figure 3. Comparison of loss with reference to VDM Figure 4. Comparison of loss with reference to MOF 

 

 

5. CONCLUSION 

In this work optimal reactive power dispatch problem has been successfully solved by rain drop 

optimization (RDO) algorithm. Projected algorithm begins with arbitrarily engendered solution afterwards 

exploration has been done sequentially around the present point until end of the end criterion and also 

revision of the present value will be there throughout the procedure. Throughout the procedure of the 
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optimization the neighbor point will be within in the exploration space limits and if any engendered beyond 

the exploration space limit, then it has been modernized. Rain drop optimization (RDO) algorithm evaluated 

in IEEE 30, bus test system. Voltage stability enhanced; power loss reduced with voltage deviation 

minimization.  
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