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ABSTRACT

Pedestrian detection is a rapidly growing field of computer vision with appli-
cations in smart cars, surveillance, automotive safety, and advanced robotics.
Most of the success of the last few years has been driven by the rapid growth
of deep learning, more efficient tools capable of learning semantic, high-level,
deeper features of images are proposed. In this article, we investigated the task
of pedestrian detection on roads using models based on convolutional neural
networks. We compared the performance of standard state-of-the-art object de-
tectors like Faster region-based convolutional network (R-CNN), single shot de-
tector (SSD), and you only look once, version 3 (YOLOv3). Results show that
YOLOv3 is the best object detection model than others for pedestrians in terms
of detection and time prediction.
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1. INTRODUCTION
The increasing number of vehicles during this century has made road accidents a major cause of death.

Traffic accidents in Morocco cause more than 4000 deaths each year, 25% are pedestrians. Both the scientific
community and the automobile industry have contributed to the development of various types of protection
systems to improve the vehicle’s safety and environmental performance. At the moment, the main goal in
this field is to provide drivers with information about their environment and any potential dangers. Two of all
useful information are the detection and location of pedestrians in front of a vehicle. Traditional object detection
techniques in the past were based on are based on handcrafted features such as integral channel features (ICF)
[1], [2], scale-invariant feature transform (SIFT) [3], histogram of oriented gradients (HOG) [4], local binary
patterns (LBP) [5], general forward-backward (GFB) [6] ,and their variations [7]-[9] and combinations [10],
[11], followed by a trainable classifier such as support vector machines (SVM) [7], [12], boosted classifiers
[13], or random forests [14]. Their performance can be easily degraded by constructing complex ensembles
that combine numerous low-level features with high-level context from object detectors and scene classifiers.
With the rapid progress of deep learning technology, more effective tools capable of learning semantic, high-
level, and deeper features are being introduced to address the issues in traditional architectures.

Deep convolutional neural networks (DCNN) [15]-[19] provide us such ability with high performance
for various computer vision applications. Our study focuses on detecting pedestrians in individual monocular
images using state-of-the-art object detection approaches based on neural networks. The rest of this research

Journal homepage: http://ijaas.iaescore.com



Int J Adv Appl Sci ISSN: 2252-8814 ❒ 195

study includes: section 2 describes object detection models we will address. After presenting and discussing
our testing results in section 3, we conclude in section 4.

2. OBJECT DETECTION MODELS
2.1. Faster R-CNN

Faster region-based convolutional network (R-CNN) proposed by Ren et al. [20] , runs at 7 FPS using
Nvidia TiTan X graphic card. It employs a separate network known as the region proposal network to identify
region proposals. The predicted regions are then reshaped with the help of a region of interest (ROI) pooling
layer. After that Faster R-CNN classifies the image within the proposed region and predicts the bounding box
offset values. Its structure is illustrated in Figure 1.

Figure 1. Faster R-CNN architecture

2.2. YOLOv3
You only look once (YOLO) invented by Redmon and Farhadi [21], is a convolutional network (CNN)

based open-source object detection and classification algorithm. At first glance, it can tell which objects are
present in an image and where they are located. The primary benefit of this technique is that a single neural
network evaluates the entire image. Using an Nvidia TiTan X graphic card, the network can process images in
real-time at 45 frames per second, and a simplified version called Fast YOLO can process images at 155 frames
per second, outperforming other real-time detectors. Furthermore, in the background, YOLO generates fewer
false positives in the background. The YOLO algorithm’s structure consists of conventional neural networks,
see Figure 2. YOLO begins by splitting the input image into SxS grids (S=13, S=26, and S=52), with B
bounding locations predicted for each grid (B=3 for YOLOv3). Each boundary box includes many variables:
x, y, w, h, box confidence score, and C class probabilities. The confidence score indicates the probability of an
object being present in the box and the precision of the boundary box. x and y are cell offsets. The width w and
height h of the bounding box are normalized by the image’s width and height. The final output of each scale
has a structure of (S, S, B×(5 + C)).

Figure 2. YOLOv3 architecture

2.3. SSD
The single shot detector (SSD) detector proposed by Liu et al. [22], runs at 19 FPS using Nvidia TiTan

X graphic card. It’s a feed-forward convolutional neural network consisting of a base net and an auxiliary
architecture. The main aspect of SSD is that multiscale features are gathered to detect targets. SSD’s main
function is to predict category scores and box offsets for a predefined set of default bounding boxes by applying
small convolutional filters to feature maps, followed by a non-maximum suppression step to produce the final
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detections. SSD like YOLO only needs one shot to identify different objects in an image, SSD allows more
aspect ratios than YOLO. As a result, it can deal with objects of various sizes. The SSD network structure is
shown in Figure 3.

Figure 3. SSD architecture

3. RESULTS AND DISCUSSION
For our experiments, we used the common objects in context (COCO) database [23] for training and

the daimler mono pedestrian dataset [24] for testing, experiments are executed on a computer with Intel Xeon
CPU E3-1226 v3 Quard-core 3.3 GHz and 12 GB of RAM, Ubuntu 20 OS, Python 3.8.5, and Tensorflow 2.4.1
deep-learning framework. Our testing dataset consists of the following items: 4097 images captured from
a vehicle at video graphics array (VGA) resolution (640x480) [25], and each image has a ground-truth [26]
file indicating the real position of pedestrians existing in the image. For model evaluation we used: i) Time
prediction represents the time that the model takes to predict the bounding boxes and the category class of
objects; and ii) Average precision is a widely used metric for evaluating the accuracy of object detectors, it
represents the surface under the precision-recall curve. In this paper, we calculated the average precision using
the Cartucho code source [27]. Experimental findings presented in Table 1 reveal several interesting points: i)
Faster R-CNN has better detection capabilities. however, is not suitable for real-time solutions; and ii) YOLOv3
is the best object detection model than SSD for Pedestrians in terms of detection and time prediction.

Table 1. Models performance
Model AP(%) Prediction time/image(s)

Faster R-CNN neural architecture search(NAS) 39.4 21.398288
SSD ResNet50 feature pyramid network(FPN) 22.68 0.822386

Yolo V3 DarkNet59 31.6 0.38899

4. CONCLUSION
In this paper, various types of pre-trained object detection models for pedestrians are implemented

and tested. Results are compared using the performance parameters average precision, and time prediction.
YOLOv3 is the best object detection model than others for pedestrians in terms of detection and time predic-
tion. Results are very promising, but there are still some perspectives for our future research. Firstly, detect
pedestrians in hard conditions (weather conditions and night vision). Secondly, investigating the impact of loss
function on pedestrian detection models.
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