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ABSTRACT

This paper proposes a mathematical model of an asymmetric intraguild (IG)
predation system with an exclusive alternative resource. In particular, this pa-
per analyzes the effects that the exclusive alternative resource has on the con-
sumption/predation behaviors of both the IG predator and IG prey species in
the system. The results presented on this paper show that, if the IG predator is
less competitive in consumption and less efficient in conversion of the shared
resource than that of the IG prey, then there exists a lower bound on the value of
the predation rate parameter that should be maintained by IG predator species to
ensure its survival and co-existence in the system.
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1. INTRODUCTION
An intraguild predation (IGP) system refers to simultaneous predation and competition interactions

where both IG predator and IG prey species utilize a common resource while also took benefit from preying
upon one another [1]. The IGP phenomenon is common in nature and its important implications have been
discussed to a large extent from both theoretical and practical perspectives [2]-[4]. IGP systems can exhibit
complex and shifting dynamics between different contrasting behaviors [5] which include among others the
existence of multiple stable states (e.g. species extinction and coexistence) as well as random shifts among
such different dynamics [6], [7]. As the number of species in an IGP system increases, the overall dynamical
complexity and observed biodiversity also increase and eventually shape the functioning of an ecosystem [8].

To date, studies on the dynamics of IGP systems have attracted significant interests from researchers
across various disciplines. Since its introduction in [9], various modeling and analyses of complex dynamics
arising from IGP systems have been investigated in several studies, see for examples [10]-[14]. The work in
[16] demonstrates how IGP systems are found to be widspread in various ecosystems and significantly shape
the trophic structure/biodiversity and the stability/persistence of an ecosystem. The work in [17] reports that the
resource preference of IGP predators play important roles in determining which predators occupy a particular
ecosystem. More recently, an investigation of the impact that prey abundance and diversity have on the strength
of predator-prey interaction in IGP systems are reported in [18]. Despite these developments, studies about IGP
dynamics in the presence of alternative resources remain limited.

This paper proposes a model of an IGP system with exclusive alternative resource and evaluates its
qualitative dynamical properties using concepts from stability and bifurcation theories [19], [20]. Specifically,
this paper identifies the parameter values that ensure the survival/coexistence of both IG predator prey in the
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presence of alternative resources. The main finding in this paper is that if the IG predator is less efficient than
the IG prey in converting the consumed shared resource into its growth utilizations, then the IG predator should
satisfies a minimum predation rate parameter value ensure its survival and co-existence in the ecosystem.

2. AN IGP SYSTEM MODEL
Consider an asymmetric IGP system as shown in Figure 1 which consists of one predator and one

prey which consume three resources. Let N1 and N2, respectively, be the IG prey and IG predator biomasses.
Assume both species compete for a common resource N0 which is essential for their growth/reproduction.
Each species N1 and N2 also has an exclusive alternative resource N3 and N4, respectively, that is essential for
survival. All resources satisfy logistic growth functions and their consumptions by the predator/prey species are
modeled with type 2 response function [7], [21]. The consumption of the IG prey by IG predator is modeled as
type 3 response function, while the death rates of both species are linearly proportional to the number/density
of each species. The IGP system model considered in this paper is therefore defined as (1).

dN0/dt = N0 [r0 (1− (N0/K0))− a10N1/(h0 +N0)− a20N2/(h0 +N0)]

dN1/dt = N1

[
e10a10N0/(h0 +N0)− e13a13N3/(h3 +N3)− c21N1N2/(q

2 +N2
1 )− d1

]
dN2/dt = N2

[
e20a20N0/(h0 +N0)− e24a24N4/(h4 +N4) + c21N

2
1 /(q

2 +N2
1 )− d2

]
dN3/dt = N3 [r3 (1− (N3/K3))− a13N1/(h3 +N3)]

dN4/dt = N4 [r4 (1− (N4/K4))− a24N2/(h4 +N4)]

(1)

In (1), parameters ri,Ki, and hi denote, respectively, the growth rate, carrying capacity, and half saturation
constant of the ith resource (for i = 0, 3, 4), while aji and eji denote the grazing rate and grazing efficiency of
species i on resource j (for j = 1, 2), respectively. Furthermore, dj is the death rate of species j, and ck is the
attack rate of species j on species k = 1, 2 with k ̸= j. The time variable is denoted with t.

Figure 1. Schematic of an asymmetric IGP system with an exclusive alternative resource

Consider a non-dimensional parameterization [21], [22] of state variables dan parameters of (1) as (2).

x0 = N0/K0, x1 = N1, x2 = N2, x3 = N3/K3, x4 = N4/K4, τ = r0t,
k0 = h0/K0, k3 = h3/K3, k4 = h4/K4, γ3 = r3/r0, γ4 = r4/r0, c = c12/r0,
α10 = a10/K0r0, α20 = a20/K0r0, k4 = h4/K4, γ3 = r3/r0, γ4 = r4/r0, c = c12/r0,

ϵ1 = a10e10/r0, ϵ2 = a20e20/r0, ϵ3 = e13a13/r0, ϵ4 = e24a24/r0.
(2)

Define ẋi = dxi/dt. Then a parameterization of the state equation model (1) can be written as (3).

ẋ0 = x0 [(1− x0)− a10x1/(k0 + x0)− a20x2/(k0 + x0)]

ẋ1 = x1

[
ϵ1x0/(k0 + x0) + ϵ3x3/(k3 + x3)− cx1x2/(q

2 + x2
1)− δ1

]
ẋ2 = x2

[
ϵ2x0/(k0 + x0)− ϵ4x4/(k4 + x4) + cx1x2/(q

2 + x2
1)− δ2

]
ẋ3 = x3 [γ3 (1− x3)− α13x1/(k3 + x3)]

ẋ4 = x4 [γ4 (1− x4)− α24x2/(k4 + x4)]

(3)
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All parameters in (3) are chosen to satisfy predation rate efficiency constraints. For instance, |ϵi| <
|αij | must hold to account for conversion efficiency of species i in consuming resource j, or |αi0| < 1 to
account for shared consumption of resource 0 by species i. Assumptions below are also used in model (3).
- Assumption 1: the IG predator is less competitive than the IG prey in consuming the shared resource
- Assumption 2: the IG predator is also less efficient than that of the IG prey in converting the consumed

shared resource into their energy use or reproduction
- Assumption 3: the IG predator and prey have similar consumption rate on their exclusive resource

Assumptions 1 and 2 (as defined by setting ϵ2 < ϵ1 ) suggest that IG prey may survives if its growth
from consuming the shared resource is sufficient enough to overcome the predation pressure from IG predator.
The IG predator, on the other hand, should maintains certain level of predation rate on IG prey to balance its
loss from being less competitive in the consumption and less efficient in the conversion of the shared resource.

3. METHOD
3.1. Equilibrium points characterization

To examine the stability of model (3), we first computed and identified its 13 possible equilibriums
Ei (i = 1, . . . , 13) which consist of 8 trivial and 5 nontrivial equilibriums as (4)-(6).
a) Trivial equilibriums

E1 = [0, 0, 0, 0, 0], E2 = [1, 0, 0, 0, 0], E3 = [0, 0, 0, 1, 0], E4 = [0, 0, 0, 0, 1],

E5 = [1, 0, 0, 1, 0], E6 = [1, 0, 0, 0, 1], E7 = [0, 0, 0, 1, 1], E8 = [1, 0, 0, 1, 1].
(4)

b) Nontrivial equilibriums

– E9 = [x9
0, 0, x

9
2, 1, x

9
4], where x9

0 = k0 (δ1 − (ϵ3/k3 + 1)) /[ϵ1 − δ1 + (ϵ3/k3 + 1)],
x9
2 = (1− x0)(k0 + x0)/α20, and x9

4 = (1− k4)/2±
√
(1− k4)2 − 4 (−k4 + α24x2/γ4).

– E10 = [x10
0 , x10

1 , 0, x10
3 , 1], where x10

0 = [k0 (δ1 − (ϵ4/k4 + 1))]/[ϵ1 − δ1 + (ϵ4/k4 + 1)],
x10
1 = (1− x0)(k0 + x0)/α20, and x10

3 = (1− k3)/2±
√
(1− k3)2 − 4 (−k3 + α24x1/γ3).

– E11 = [x11
0 , x11

1 , x11
2 , 0, x11

4 ], where x11
0 = X (cf. [23] for detailed formula), x11

1 = γ3k3/α13, x11
4 =

−k4 + α24x2/γ4(1− x4), and x11
2 = (δ − ϵx0/(k0 + x0)) /cγ3k3/α13

(
q2 + (γ2

3k
2
3/α13)

)
.

– E12 = [x12
0 , x12

1 , x12
2 , x12

3 , 0], where x12
2 = γ4k4/α24 while the other elements satisfy (5).

ϵ2x
12
0 /(x12

0 + k0) + c
(
x12
1

)2
/[q2 +

(
x12
1

)2
]− δ2 = 0,

x12
1 − (k0 + x12

0 )(1− x12
0 )/α10 − γ4k4α20/α24α10 = 0,

(k3 + x12
3 )(1− x12

3 )− α13x
12
1 /γ3 = 0.

(5)

– E13 = [x13
0 , x13

1 , x13
2 , x13

3 , x13
4 ], where each equilibrium’s element satisfies (6).

(1− x13
0 )− α10x1x

13
0 /(k0 + x13

0 )− α20x2x
13
0 x13

0 /(k0 + x0x
13
0 ) = 0,

ϵ1x
13
0 /(k0 + x13

0 )− ϵ3x
13
3 /(k3 + x13

3 )− cx13
1 x13

2 /(q2 + (x13
1 )2)− δ1 = 0,

ϵ2x
13
0 /(k0 + x13

0 )− ϵ4x
13
4 /(k4 + x13

4 )− c(x13
1 )2/(q2 + (x13

1 )2)− δ2 = 0,

γ3(1− x13
3 )− α13x

13
1 /(k3 + x13

3 ) = 0,

γ4(1− x13
4 )− α24x

13
2 /(k4 + x13

4 ) = 0.

(6)

3.2. Local stability analysis
Based on the equilibriums data obtained in section 3.1, the system’s local stability property at each

equilibrium can be analyzed using linearization method. The main objective in this analysis is to examine
which equilibrium points will ensure stable species co-existence of both IG predator and IG prey species.

Consider nonlinear system model in (3) which satisfies the following general form.

ẋ0(t) = f0(x0, . . . , xn)

...
ẋn(t) = fn(x0, . . . , xn),

(7)
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The linearization of (7) around each of its equilibrium point Eℓ (ℓ = 1, · · · , 13) is defined as (8). ˙̄x0(t)
...

˙̄xn(t)

 =


∂f0
∂x0

. . . ∂f0
∂xn

...
. . .

...
∂fn
∂x0

. . . ∂fn
∂xn


(x=Eℓ)

x̄0(t)
...

x̄n(t)

 =

A1,1, . . . A1,n

...
. . .

...
An,1 . . . An,n


(x=Eℓ)

x̄0(t)
...

x̄n(t)

 = Ax̄(t) (8)

The elements of the linearized system matrix A in (8) are detailed in [23]. The local stability property of
the IGP system at each equilibrium point may then be evaluated using (8), and the results are summarized in
Table 1. It can be seen in this table that most of the equilibrium points of model (3) are unstable.

Table 1. Local stability properties of equilibrium points of model (3)
Equilibrium Eigenvalues Stability

E1 = [0, 0, 0, 0, 0]T (−0.0100,−0.0100, 1.0000, 1.0000, 1.0000) unstable
E2 = [1, 0, 0, 0, 0]T (0,−1.0000, 0.0138, 0.0138, 1.0000, 1.0000) unstable
E3 = [0, 0, 0, 1, 0]T (0, 1.0000,−1.0000,−0.0094,−0.0100, 1.0000) unstable
E4 = [0, 0, 0, 0, 1]T (1.0000,−0.0100,−1.0000,−0.0094, 1.0000) unstable
E5 = [1, 0, 0, 1, 0]T (−1.0000,−1.0000, 0.0144, 0.0138, 1.0000) unstable
E6 = [1, 0, 0, 0, 1]T (−1.0000, 0.0138,−1.0000, 0.0144, 1.0000) unstable
E7 = [0, 0, 0, 1, 1]T (1.0000,−1.0000,−0.0094,−1.0000,−0.0094) stable
E8 = [1, 0, 0, 1, 1]T (−1.0000,−1.0000, 0.0144,−1.0000, 0.0144) unstable

E9 (−0.0164,−0.3546,−0.6856,−1.0000, 0.0000) marginally stable
E10 (−0.6614, 0.0172,−492.0332,−1.0000, 0.0100) unstable
E11 (−6.8750, 0.7178,−0.0087,−0.0047, 0) unstable

4. RESULTS AND DISCUSSION
Since the local stability analysis for a particular parameter set suggests most equilibrium points to be

unstable, bifurcation analysis is further conducted to search for possible existence of multiple stable equilib-
rium points for different combinations of parameter values. The existence of such multiple (nonzero) stable
equilibriums essentially indicates the existence several states where all species can survive and co-exist.

The computation of stable co-existence equilibriums of (3) is challenging as it requires the solution
of polynomial function equations of order 6 with 18 parameters. To compute possible co-existence equilib-
riums, bifurcation analysis which starts at a nominal, stable species co-existence equilibrium was conducted.
The following initial parameter values are chosen in the bifurcation analysis: k0 = 20, k3 = k4 = 15,
α1,0 = 0.6, α2,0 = 0.4, α1,3 = 0.1, α2,4 = 0.15, c = 0.01, q = 2, δ1 = δ2 = 0.01, γ3 = γ4 = 1,
ϵ1 = 0.5, ϵ2 = ϵ4 = 0.1, and ϵ3 = 0.01. Figure 2 shows the resulting trajectories and phase portraits, es-
pecially in Figures 2(a) and 2(b), Figure 2 show a stable co-existence equilibrium at [x0, x1, x2, x3, x4]

T =
[0.8545, 2.1211, 4.4054, 0.9867, 0.9724]T is reached. This stable point is therefore used as the starting point
for the one-parameter bifurcation analysis of model (3). The bifurcation analysis reported in this paper were
obtained using MATCONT toolbox [24] in MATLAB [25].

(a) (b)

Figure 2. The IG predator’s (a) time response and (b) phase portrait, the IG prey dynamics for the nominal
model parameter set with initial condition [x0

0, x
0
1, x

0
2, x

0
3, x

0
4]

T = [1, 5, 5, 0.1, 0.1]T )
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Note that a bifurcation point is essentially a point where the number and qualitative behaviors of an
equilibrium change as the parameters are varied. A Hopf (H) bifurcation is a point where an equilibrium
changes from stable to unstable, or vice versa. A Limit Point (LP ) bifurcation is a threshold point in which an
equilibrium point jumps between two stable states with contrasting qualitative behavior. Finally, a Branching
Point (BP ) is the point from which periodic doubling of equilibriums (such as in logistic map) starts to occur.

4.1. Bifurcation analysis to identify species coexistence equilibriums
The parameters that are examined in this analysis case are εi1 (i1 = 1, . . . , 4), δi2 (i2 = 1, 2),

and c. Other parameters are kept constant. The results of one-parameter bifucation analysis are plotted
in Figure 3. The indicated INIT point in Figure 3 is the initial equilibrium point with response shown in
Figure 2. Each red-star mark is a bifurcation point whose corresponding symbol θij indicates the i-th bifur-
cation point of type θ ∈ {H , BP , LP} under variation of one bifurcation parameter j ∈ {εj , δj , c}. Each
bifurcation point is obtained by computing the forward (increasing) and backward (decreasing) variations of
one bifurcation parameter while keeping the other fixed. For example, Figure 3 shows that forward and back-
ward variations of parameter δi2 produce three bifurcation points which include two Hopf (H1

δ , H
2
δ ) and one

LimitPoint (LP 3
δ ) bifurcation points. Moreover, there exist multiple species co-existence attractors among

which the IGP system may jump from one to another when one bifurcation parameter is varied.
Table 2 summarizes all bifurcation points and their equilibrium points x∗

i which occur in the one-
parameter bifurcation analysis. Figure 4 illustrates the response (4(a)) and phase portrait (4(b)) of model (3) at
the bifurcation parameter ε1 = 6.0507 which differ significantly from the nominal response shown in Figure 2.
The biological interpretation of the results in Figure 3 and Table 2 can be examined based on the corresponding
bifurcation parameter. For instance, consider the impacts of variation on IGP prey’s consumption rate ε1 from
its nominal value of ε1 = 0.5 at the indicated INIT point in Figure 3. It can be seen that forward computation of
ε1 drives the IGP system towards bifurcation points H1

ε2 and H3
ε1 which correspond to ε1 values of ε1 = 1.199

and ε1 = 6.0507, respectively. However, from biological system modeling perspectives, these values are not
reasonable as the consumption rate parameters should always satisfy a constraint of the form |ε1| < 1. Thus,
one may concludes that consumption rate parameter εi that is higher than the nominal value will not change
the stability of IGP system (3). Similar interpretation may also be inferred for other parameters.

Figure 3. One-parameter bifurcation analysis for species co-existence

Table 2. Bifurcation points and the corresponding equilibrium points
Parameter x∗

0 x∗
1 x∗

2 x∗
3 x∗

4 Bifurcation type
ϵ1 = 2.049 0.947785 1.822995 000021 0.988598 0.000011 Branching
ϵ1 = 1.199 0.690866 2.363633 12.4451 70.985214 0.882463 Hopf
ϵ1 = 6.0507 0.240142 4.199785 32.149418 0.973708 0.692697 Hopf
ϵ2 = 0.079 0.845958 2.395845 4.434099 0.985012 0.958322 Hopf
ϵ3 = 0.267 0.745452 2.234137 9.850565 0.986024 0.907112 Hopf
δ1 = 0.0110003 0.850746 2.459088 4.091537 0.984616 0.961549 Hopf
δ1 = 0.13525 0.763841 5.804019 3.552916 0.963642 0.966622 Hopf

Modeling and bifurcation analysis of an intraguild predation system (Tua Agustinus Tamba)
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(a) (b)

Figure 4. Contact time effect on metal ions adsorption in (a) pseudo-second order kinetic model and
(b) ([M2+] = 0.14 mmol L-1, pH=6 at RT)

4.2. Bifurcation analysis in the presence of consumer’s alternative resource
One main question on the IGP model (3) is whether the IG predator can survive by only consum-

ing the shared alternative resource and without preying upon the IG prey. We examine this question for the
case when the IG predator is less efficient than the IG prey in converting the consumed shared resource into en-
ergy/reproduction uses. Formally, this case can be defined as a constraint on parameters of the form: |ε2| < |ε1|.

The backward computation on predation rate c was conducted and the bifurcation curve of the IG
predator density with respect to parameter c is plotted in Figure 5. This plot shows that, depending on the
values of c, two types of equilibriums for the IG predator may occur, namely a stable equlibrium (horizontal
curve) and an unstable equilibrium (vertical curve). On one hand, the unstable equilibrium curve shown in
Figure 5 tends to result in IG predator extinction at a BP bifurcation point for the value of c = 0.007238.
This suggests that c = 0.007238 is a lower bound value of predation rate c which should be maintained by IG
predator to avoid extinction. On the other hand, the LP bifurcation which occurs at c = 0.006269 corresponds
to the threshold value c which will guarantee the IG predator survival for some time before eventually extincts.
Based on the results shown in Figure 5, one may thus defines the following three partitioned values of parameter
c which also correspond to different equilibriums/behaviors of the IGP system dynamics:
- if 0 ≤ c ≤ 0.006269 (LP ), then the IG predator will extinct without any chance to grow/reproduce.
- if (LP ) 0.006269 < c ≤ 0.007238 (BP ), then the IG predator will exist and survive for some period of

time before eventually extincts.
- if c > 0.007238 (BP ), then the IG predator will survive and co-exist with other species. Its dynamics will

exhibit limit cycles below c = 0.0085 and become asymptotically stable above c = 0.0085.
From biological perspective, the partitioned values of parameter c suggest that, even when alternative

resources exist, if the IG predator is less efficient than the IGP prey in converting the consumed shared resource
into energy/reproduction uses, there still exists a lower bound value of c that the IG predator should maintains
to ensure its co-existence survival. Moreover, even when the IGP predator consumption rate on alternative
resource is c = 1 (100% efficiency), it cannot survive without predating on the IGP prey. One may thus
concludes that, to ensure species co-existence in IGP system, the IG predator predation rate on IG prey is a
more dominant factor than its consumption rate on the shared alternative resource.

In contrast to the IG predator species, the IG prey consumption rate ε3 on its alternative resource does
not play significant roles to ensure its co-existence in the system. As shown in Figure 6, the IG prey density
which starts at the INIT point will increase towards the LP bifurcation point as ε3 is increased. However, since
the constraint 0 < ε3 < 1 must holds, the LP bifurcation point (ε3 = 1.109 ) will never be realized. Thus, the
IG predator is guaranteed to survive even without consuming the alternative resource. Specifically, the Hopf
bifurcation point H4 where IG prey extincts will never be reached since the system dynamics must follow the
bifurcation curve by first visiting points LP,H2, H3, BP which, in particular, are also not reachable.
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Figure 5. Bifurcation curve for variation on parameter c

Figure 6. Bifurcation curve for variation on parameter ε3

5. CONCLUSION
This paper has developed and analyzed the qualitative properties of an IGP system model in the pres-

ence of exclusive alternative resource. Local stability and bifurcation analyses were performed on the model
to examine the values of parameter set which guarantee the existence of stable equilibriums where both IG
predator and IG prey species can survive and co-exist. One main finding in this paper suggests that, in the
presence of alternative exclusive resource, if the IG predator is less efficient than the IGP prey in converting
the consumed shared resource into energy/reproduction utilizations, then there is a lower bound on the value
of predation rate parameter which the IG predator should maintains to ensure the co-existing survival of both
the IG predator and IG prey in the ecosystem. The results presented in this paper also suggest that in order to
ensure species co-existence in the ecosystem, the IG predator’s predation rate on IG prey is a more dominant
parameter/factor than its consumption rate parameter on the alternative resource.
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