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 Greenhouse gas emissions continue to increase due to increased energy 

consumption. One of the largest emission-contributing sectors is the 

manufacturing industry. Therefore, the manufacturing industry is required to 

minimize carbon emissions. One of the efforts to solve the emission problem 

is to minimize machine downtime throughout the production procedure, 

which stands for no-idle permutation flowshop scheduling (NIPFSP). This 

article uses two metaheuristic algorithms, giant trevally optimizer (GTO) 

and African vultures optimization algorithm (AVOA), to solve the carbon 

emission problem. Both algorithms are tested on 3 cases with 30 runs for 

every population and iteration. To compare the outcomes of each algorithm, 

an independent sample t-test was employed. The results show that the GTO 

algorithm has better results than the AVOA algorithm on small and large 

case data. The findings indicate that both the GTO and AVOA algorithms 

yield comparable results when applied to medium-sized research datasets, 

suggesting their effectiveness in such scenarios. 
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1. INTRODUCTION 

The high use of carbon emissions has become a concern in the world, and one of the sectors that 

contribute the highest carbon emissions is the manufacturing industry [1]. According to research [2], high 

carbon emissions can be caused by high energy consumption from machine operation [3], and the energy-

efficiency problems in the manufacturing sector are closely related to scheduling [4]. There are two practical 

techniques to reduce carbon emissions in manufacturing: using energy-efficient equipment [5] and 

implementing an optimal low-carbon production strategy [6]. In the carbon-efficient scheduling model 

proposed by Ding et al. [7], carbon emissions are only related to energy consumption but ignore carbon 

emissions caused by preparation time and idle time on machines [8]. Furthermore, Asmatulu et al. [9] 

showed that when idle machines can consume a large quantity of energy, the manufacturing process can 

reduce carbon emissions by minimizing idle machines [10]. One exciting solution is to use no-idle machine 

scheduling to minimize carbon emissions. This approach is much more effective in reducing carbon 

emissions in the manufacturing process [7]. 

No-idle permutation flow shop problem (NIPFSP) is different from other permutation flow shop 

problems (PFSP) because, in NIPFSP, each machine must process jobs without idle time from the start of the 

job until the last job is completed [11]. NIPFSP is categorized as a constraint problem [12]. This is because 

the NIPFSP involves constraints that must be satisfied to find a feasible solution. For example, in the 

https://creativecommons.org/licenses/by-sa/4.0/
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NIPFSP, there is a constraint that no-idle time is allowed between the processing of jobs on different 

machines. This constraint must be satisfied in order to find a feasible solution to the problem. In real life, 

NIPFSP has been applied in the production process of glass fiber processing [13]. Then various methods 

were introduced by several researchers such as heuristic algorithms [14], to solve NIPFSP. There is also 

research on Flow Shop Dependent Sequence Setup scheduling using the ant-lion optimizer algorithm to 

minimize carbon emissions [15]. 

Some research on NIPFSP uses several algorithms. However, NIPFSP research aimed at minimizing 

carbon emissions has not been carried out, so NIPFSP research is needed to minimize carbon emissions. 

Thus, the metaheuristic algorithm can be applied in solving NIPFSP to minimize carbon emissions. Due to 

the absence of such research, this research is exciting to be researched further by presenting new algorithms, 

namely giant trevally optimizer (GTO) and African vultures optimization algorithm (AVOA), to solve the 

NIPFSP problem to minimize carbon emissions. GTO is a metaheuristic algorithm that mimics giant trevally 

fish's behavior when hunting seabirds [16]. Furthermore, AVOA mimics the behavior of African vultures 

when hunting prey [17]. GTO is proposed because it is proven to perform problem-solving for global 

optimization, capable of solving optimization problems and sustainable global engineering design [16]. 

However, GTO has never been used to solve the NIPFSP problem. Whereas AVOA has also solved various 

problems such as shell and tube heat exchanger optimization [18], membrane fuel cell optimization [19], and 

multi-objective flexible job shop scheduling problems [20]. However, AVOA has never been used to 

minimize carbon emissions. 

From the aforementioned explanation, it can be inferred that the NIPFSP issue in minimizing carbon 

emissions needs additional research using the most recent algorithms. This research proposes the GTO and 

AVOA algorithms because they are novel and have never been applied to solve NIPFSP problems focusing 

on minimizing carbon emissions. Thus, this research aims to implement two of the newly developed 

algorithms, GTO and AVOA, to solve the NIPFSP problem by minimizing carbon emissions and comparing 

the results of the GTO and AVOA algorithms on the NIPFSP problem to minimize carbon emissions. 

 

 

2. DESCRIPTION OF NIPFSP 

2.1.  Assumptions and mathematical formula 

The terminology and mathematical model formulation utilized in the NIPFSP problem are described 

in this section. Machines can be idle after finishing work in a typical PFSP scenario [21]. However, in 

NIPFSP, it is presumed that the machine must remain active and not idle once the tasks are accomplished. 

Completion time on the machine: job identification: machine identification: speed rate identification: The job 

processing time on the machine completes one job [22]. Researchers use several assumptions that will be 

used in this study. The assumptions used for NIPFSP scheduling include: i) the entire set of n jobs must be 

processed on the set of m machines in the same process order, ii) all processes arrive and are ready for 

processing at time 0, iii) to fulfill the no-idle requirement, the processing start time for the first job on each 

machine must be delayed, iv) every machine can only process one job and can only be processed on one 

machine at a certain time, v) when the first job starts processing, it cannot be interrupted until the completion 

time of the last job, vi) job processing time includes setup time, and vii) no-idle machines are allowed in 

between job processing. The notations used in the NIPFSP problem are shown in Table 1. 

 

 

Table 1. The notation used in the NIPFSP problem 
Notation NIPFSP problem 

𝑚 Number of machines  

𝑛 Number of jobs 

𝑗 Index of the machine 

𝑖 Index of the job  

𝑆𝑗  Start time on machine j  

𝐶𝑖,𝑗 Time required for completing the job I on machine j  

𝐹𝑗 Completion time of the j machine  

𝑃𝑖,𝑗 Processing time of job i 

𝐶𝑖,𝑗 Completion time on machine j  

𝜑𝑗 Consumption of energy during the machine is idle 

𝜏𝑗 Energy consumption during machine i is operating 

𝐶𝑚𝑎𝑥 Total time or completion time 

𝑇𝐸𝐶 Cumulative energy consumption  

𝐸𝐶 Total carbon emission 

𝐸𝑓 Factor emission 
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The following is a mathematical formulation to minimize carbon emission in NIPFSP problems 

presented in the mixed integer programming (MIP) model: 

Decision Variable 

 

𝑋𝑖,𝑗,𝑟  = {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑗𝑜𝑏 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

 

𝑌𝑖,𝑗,𝑟  =  {
1, 𝐼𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑎𝑡 𝑠𝑝𝑒𝑒𝑑 𝑟 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

 

Objective purpose 

 

Min EC =  TEC ∗ Ef  (1) 
 

Constraint: 

 

𝐶𝑖,1 ≥ ∑ 𝑃𝑖1∗𝑌𝑖𝑙𝑟       ∀𝑖= 𝑙
𝑟=1  {1, . . , n}  (2) 

 

𝐶𝑖𝑗−𝐶𝑖,𝑗−1  ≥ ∑ 𝑃𝑖1∗𝑌𝑖𝑙𝑟         ∀𝑗= 𝑙
𝑟=1 {2, . . , m}, 𝑖 =  {2, . . , n}  (3) 

 

𝐶𝑖𝑗−𝐶𝑘𝑗 + 𝐷𝑋𝑖𝑘 ≥ ∑ 𝑃𝑖1∗𝑌𝑖𝑙𝑟         ∀𝑗= 𝑙
𝑟=1 {1, . . , m}, 𝑖 =  {1, . . , n}, 𝑘 =  {1, . . , n}  (4) 

 

𝐶𝑖𝑗−𝐶𝑘𝑗 + 𝐷𝑋𝑖𝑘 ≤ 𝐷 − ∑ 𝑃𝑖1∗𝑌𝑖𝑙𝑟         ∀𝑗= 𝑙
𝑟=1 {1, . . , m}, 𝑖 =  {1, . . , n}, 𝑘 =  {1, . . , n} (5) 

 

𝐶𝑚𝑎𝑥  ≥  𝐶𝑖𝑚       ∀𝑖  =  {1, . . , n} (6) 

 

∑ 𝑌𝑖𝑗𝑟
𝑙
𝑟=1 =  1    ∀𝑖 =  {1, . . , n}, j = {1, . . , m}c (7) 

 

𝑌𝑖𝑗𝑟 = 𝑌𝑖,𝑗+1,𝑟     ∀𝑖  =  {1, . . , n}, j = {1, . . , m}, r = {1, . . , l} (8) 

 

𝜃𝑗 = 𝐶𝑚𝑎𝑥 − ∑ ∑
𝑃𝑖1 𝑌𝑖𝑙𝑟

𝜇𝑟

𝑙
𝑟=1

𝑛
𝑖= 1         ∀𝑗  =  {1, . . , m} (9) 

 

𝑇𝐸𝐶 = ∑ ∑ ∑
𝑃𝑖𝑗 𝜏𝑗𝜆𝑟

60𝜇𝑟

𝑙
𝑟=1

𝑚
𝑗=1

𝑛
𝑖=1  𝑌𝑖𝑗𝑟 + ∑

𝜑𝑗 𝜃𝑗  𝜏𝑗

60

𝑚
𝑗=1  (10) 

 

𝑆𝑗  ≤  𝐶𝑖𝑗  −  ∑
𝑃𝑖1 𝑌𝑖𝑙𝑟

𝜇𝑟
        ∀𝑖= 𝑙

𝑟=1  {1, . . , n}, 𝑗 = {1, . . , m} (11) 

 

𝐹𝑗  ≥  𝐶𝑖𝑗      ∀𝑖= {1, . . , n}, 𝑗 = {1, . . , m} (12) 

 

𝐹𝑗  ≥  𝑆𝑗 + ∑ ∑
𝑃𝑖1 𝑌𝑖𝑙𝑟

𝜇𝑟

𝑙
𝑟=1

𝑛
𝑖= 1      ∀𝑖= {1, . . , n}, 𝑗 = {1, . . , m} (13) 

 

Equation (1) represents the objective function for minimizing carbon emissions. The amount of time 

needed to finish each task on the first machine is depicted in Constraint (2). Constraint (3) guarantees that the 

subsequent operation will commence only if the preceding one has been finalized. The sequencing of every 

job is outlined in Constraints (4), (5). The makespan, or finishing time, is calculated in Constraint (6). 

Constraints (7) and (8) ensure that all machines process every job at the same machining. 

 

 

3. RESEARCH METHOD 

3.1.  Giant trevally optimizer (GTO) 

The first used algorithm is giant trevally optimizer (GTO) [16], The GTO algorithm's foundation is 

the behavior displayed by diving giant trevallies when hunting seabirds. As a result, the GTO algorithm's 

optimization process comprises three distinct steps: a comprehensive search employing Levy flight, the 

selection of an area for hunting, and the pursuit and attack of prey by leaping out of the water. The positional 

representation of an individual within the GTO population is defined by (14). 
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𝑋 =    

[
 
 
 
 
𝑋1

⋮  
𝑋𝑖

⋮  
𝑋𝑁]

 
 
 
 

=  

[
 
 
 
 
 
 𝑥1,1 ⋯ 𝑥1,𝑗 … 𝑥1,𝐷𝑖𝑚

⋮ ⋱ ⋮    ⋰ ⋮
 

 𝑥1,1 ⋯ 𝑥1,𝑗 … 𝑥1,𝐷𝑖𝑚

⋮ ⋰ ⋮    ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 … 𝑥𝑁,𝐷𝑖𝑚]

 
 
 
 
 

 (14) 

 

Step 1: Extensive search 

Giant trevally fish are capable of covering considerable distances. The foraging movement pattern 

of giant trevally fish is simulated with (15): 

 

X (𝑡 + 1)  =  𝐵𝑒𝑠𝑡𝑝 𝑥 𝑅 + ((𝑚𝑎𝑥𝑖𝑚𝑢𝑚 –  𝑚𝑖𝑛𝑖𝑚𝑢𝑚) 𝑥 𝑅 +  𝑚𝑖𝑛𝑖𝑚𝑢𝑚) 𝑥 𝑙𝑒𝑣𝑦 (𝐷𝑖𝑚)   (15) 

 

X (𝑡 + 1) represents the vector of position for the subsequent iteration giant gannets, The selection of 

currently available search space by the giant gannets is denoted by 𝐵𝑒𝑠𝑡𝑝, which is based on the best position 

discovered during their previous search. The variable R represents a random number ranging from 0 to 1. The 

Levy (Dim) term corresponds to a Levy flight, which is a specific type of non-Gaussian stochastic process. 

The step size in the Levy flight is determined by the Levy distribution [23]. 

One of the primary benefits of employing Levy flights is the ability to circumvent local optima, 

leading to enhanced convergence speed [24]. The calculation of Levy (Dim) is performed according to (16). 

A step size of 0.01, referred to as "step," is utilized. The Levy flight distribution function index, denoted as β, 

is set to 1.5 in this particular investigation, adhering to the range of 0 to 2. Random variables u and v follow a 

normal distribution within the interval of 0 to 1. The computation of σ is determined by applying in (17). 

 

𝑙𝑒𝑣𝑦 (𝐷𝑖𝑚) =  𝑆𝑡𝑒𝑝 𝑥
𝑢−𝜎

|𝑣|
1

𝛽

 (16) 

 

σ = (
Г (1+𝛽)𝑥 sin 𝑒(

𝜋𝛽

2
)

Г (
1+𝛽

2
) 𝑥 𝛽 𝑥 2 (

𝛽−1

2
)
) (17) 

 

Step 2: Selecting an area 

During the area selection step, the giant trevally employs a strategy to identify and choose the 

optimal region within the selected search space, considering the abundance of food sources (seabirds) 

available for hunting prey. This behavior is mathematically simulated by (18). 

 

X (t + 1)  =  𝐵𝑒𝑠𝑡𝑝  𝑥 𝐴 𝑥 𝑅 +  𝑀𝑒𝑎𝑛_𝐼𝑛𝑓𝑜 − 𝑋𝑖  (𝑡)𝑥 𝑅 (18) 

 

Equation (19) calculates the 𝑀𝑒𝑎𝑛_𝐼𝑛𝑓𝑜, which represents the mean value obtained from utilizing all 

accessible information from prior points. 𝑋𝑖(𝑡) denotes the i-th position of the giant trevally at the latest 

iteration, while X (t + 1) signifies the location vector of the giant trevally for the subsequent iteration. 𝐴, a 

parameter controlling the position change, ranges between 0.3 and 0.4. 

 

𝑀𝑒𝑎𝑛_𝑖𝑛𝑓𝑜 =
1

𝑁
∑ 𝑋𝑖(𝑡)𝑁

𝑖=1  (19) 

 

Step 3: Attack 

During the GTO algorithm's exploitation (intensification) step, the goby engages in chasing and 

attacking its prey, the bird. This pursuit involves the goby getting close to the bird and executing an acrobatic 

leap out of the water to catch it. To replicate this behavior, the GTO algorithm incorporates the concept of 

visual distortion caused by light refraction, which occurs when light waves cross the boundary between 

different media such as glass, air, and water. 

Based on [25], at the refractive point, both the incident and refracted rays must form an angle with 

the normal line to the surface. The medium through which light rays pass is equally essential. Snell's law 

clarifies this relationship using a refractive index, a fixed value for a given medium. Here, if we know the 

angle of incidence, we can predict the refractive angle. Likewise, if we are aware of the refractive angle, the 

incidence angle is predictable. Snell's law is shown in (20). Where Ƞ1=1.00029 and Ƞ2=1.33 are the precise 

refractive indices of water and air, respectively, and 1 and 2 are the incidence and refractive angles. 2 is the 

arbitrary range between (0 and 360). The (11) can be determined using (19). Following that, the visual 

distortion V can be calculated using (22). 
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Ƞ1 Sin θ1 =  Ƞ2 Sin θ2 (20) 

 

Sin θ1 =  
Ƞ1

Ƞ2
 sin θ2 (21) 

 

V =  𝑠𝑖𝑛 (𝜃1
○) x 𝒟 (22) 

 

The calculation of sin involves taking the sine of the variable in degrees. The distance between the 

prey and the attacker denoted as 𝓓, is determined using (23). In this equation, 𝐵𝑒𝑠𝑡𝑝 represents the best 

solution obtained, which denotes the quarry location. The action of the giant trevally during the pursuit and 

leaping out of the water is a mathematical simulation by (24). The solution for the next iteration, X(t+1), is 

generated through the attack step. The launch velocity, L, used to mimic the bird chase, can be calculated 

using (25). In this equation, 𝐹_𝑜𝑏𝑗(𝑋𝑖(𝑡)) denotes X’s fitness value as the latest iteration, (𝑡). The jump 

slope function, 𝐻, in (23) facilitates the adaptive transition from the exploration phase to the exploitation 

phase, and its calculation is determined by (26). 

 

𝒟 =  |(𝐵𝑒𝑠𝑡𝑝  –  Xi(t))| (23) 

 

𝑋 (𝑡 + 1)  =  ℒ x 𝒱 x ℋ (24) 

 

ℒ =  Xi (t) x 𝑠𝑖𝑛 (𝜃1
○) x 𝐹_𝑜𝑏𝑗(𝑋𝑖(𝑡)) (25) 

 

ℋ =  𝑅 x (2 –  t x 
2

𝑇
 ) (26) 

 

In the aforementioned context, the variables 𝑡 and 𝑇 respectively denote the latest iteration and the 

highest value of iterations. 𝑅 represents a random value that signifies the giant trevally fish's specific motion 

sensing during the exploitation process. It is important to note that the value of 𝐻 decreases gradually from 2 

to 0 as the iterations progress. During the exploitation step, the algorithm endeavors to exploit the solution 

environment, utilizing this decreasing trend of H. Algorithm 1 shows the developed pseudocode of the GTO 

algorithm. 

 

Algorithm 1. Pseudocode GTO 
1. Begin 

2. Enter a number for 𝓐 parameter 

3. Indicate the number of giant trevallies; N 

4. Define the termination condition, maximum iterations (T) 

5. Create a Giant Trevally population (X)  at random using (21) 

6. for t = 1: T  

7. apply LRV to change the best position to job sequences and calculate objective 

function f (X)for each search agent  

8. Classify the populace 

9. Identify the greatest global solution (𝐵𝑒𝑠𝑡𝐺) 

10. Identify 𝐵𝑒𝑠𝑡𝑝 as the prey’s position (best location) 
11. for i = 1: N 
12. Comprehensive Investigation Step 
13. Using (19) and (20), compute the levy flight distribution function levy.  
14. Determine new  

15. If f (𝐵𝑒𝑠𝑡𝑁𝑃) < f (X(I,: )) 

16. X (I, : ) = 𝐵𝑒𝑠𝑡𝑁𝑃 

17. 𝐼𝑓 𝑓 (𝐵𝑒𝑠𝑡𝑁𝑃)  <  𝑓(𝐵𝑒𝑠𝑡𝑃) 
18. 𝐵𝑒𝑠𝑡𝐺 = 𝐵𝑒𝑠𝑡𝑁𝑃 

19. 𝐸𝑛𝑑 𝑖𝑓 
20. 𝐸𝑛𝑑 𝑖𝑓 
21. Selecting area step 
22. Using (19), compute the mean of X 

23. Using (18), Calculate 𝐵𝑒𝑠𝑡𝑁𝑃  

24. Steps 15 – 20 should be repeated 
25. Attacking move 

26. Using (22), Determine distortion of visual 𝓥  

27. Determine the launch speed 𝓛 using (25) 
28. Using (24), Determine 𝐵𝑒𝑠𝑡𝑁𝑃 

29. The transition from exploration to exploitation using (26) 
30. Steps 15 - 20 should be repeated 

31. 𝐸𝑛𝑑 𝑓𝑜𝑟 𝑡 
32. Best solution and visualization after the process 
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3.2.  African vultures optimization algorithm (AVOA) 

AVOA is a metaheuristic method developed by modeling and simulating African vulture foraging 

behavior [17]. Based on the four requirements outlined above, the AVOA technique can be divided into five 

stages in the foraging stage to emulate the behavior of different vultures. 

Phase 1: Clustering 

After the formation of the original population, the appropriateness of all solutions is selected in this 

step. The best vulture is acknowledged as the finest option. Using (27), the first, and second solution is 

regarded as the second-best vulture, while the third group is given the other vultures. 

 

𝑅(𝑖)  =  {
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1 𝑖𝑓 𝑃𝑖 = 𝐿1 
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2 𝑖𝑓 𝑃𝑖 = 𝐿2

 (27) 

 

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1 represents the best vulture, 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2 represents the second-best, 𝐿1 and 𝐿2 are two 

random numbers between (0.1) and the sum is 1. 𝑃𝑖 , is used in (28) through the roulette-wheel approach. 

Here, Fi represents the fitness of the first and second groups of vultures, and n is the total number of the two 

vultures. 

 

𝑃𝑖  =  
𝐹𝑖

∑ 𝐹𝑖
𝑛
𝑖=1

 (28) 

 

Phase 2: Starvation rate of vultures 

Assume a bunch of vultures is not hungry. In that situation, they have enough energy to travel 

further distances to find food. However, if they are hungry, they will not be able to preserve their long-

distance travel. As a result, hungry vultures will exhibit hostile behavior. This behavior can be calculated 

using (29), which indicates the vultures' shift from exploration to exploitation. F indicates that the vultures 

are full, 𝑟𝑎𝑛𝑑𝑖  is a variable with a number that fluctuates between (0.1), 𝑡 is computed by (30), and z is a 

random number in the range (1.1) that changes with every repetition. 

 

𝐹 =  (2 x 𝑟𝑎𝑛𝑑𝑖 + 1)x z x ( 1 − 
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) + 𝑡) (29) 

 

𝑡 =  ℎ x (𝑠𝑖𝑛𝑤(
𝜋

2
 𝑥  

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 )  +  (𝑐𝑜𝑠𝑤 (

𝜋

2
 𝑥  

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 ) − 1    (30) 

 

The predefined parameter w determines the probability of a vulture performing the exploitation stage. In 

addition, the latest value 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 is the number of total iterations, ℎ is a random value between denoted as 

iteration, and h is a random value between values (-2.2). Based on (29), 𝐹 will steadily decrease as the 

number of iterations increases. When the number of |𝐹𝑖 | exceeds one, vultures enter the stage of exploration 

and search for new food in diverse locales. Otherwise, vultures reach the exploitation stage, where they look 

for better food in the surrounding area. 

Phase 3: Exploration phase 

In AVOA, two alternative techniques are employed to inspect various random places, and a 

parameter designated P1 in the range of (0.1) is utilized to select one of the strategies. To determine one of 

the strategies during the phase, a random strategy 𝑟𝑎𝑛𝑑 𝑃1 between (0.1) is used. If the value is better or 

equal to the parameter P1 using in (31) in (32) is used if the value of 𝑟𝑎𝑛𝑑𝑖 is smaller than the parameter P1. 

 

𝑃(𝑖 + 1)  =  𝑅(𝑖) –  𝐷(𝑖) 𝑥 𝐹𝑖 (31) 

 

𝑃(𝑖 + 1)  =  𝑅(𝑖)  − 𝐹𝑖  +  𝑟𝑎𝑛𝑑2 x ((𝑢𝑏 –  𝑙𝑏) x 𝑟𝑎𝑛𝑑3 + 𝑙𝑏) (32) 

 

𝑅(𝑖) was selected as one of the finest vultures in the current iteration based on (27), 𝐹𝑖 is the current 

iteration's vulture saturation rate determined in the most recent iteration based on (29), 𝑟𝑎𝑛𝑑2 is a random 

value between (0.1), and 𝑙𝑏 and 𝑢𝑏 are the variable’s upper and lower bounds, respectively. 𝑟𝑎𝑛𝑑3 is 

accustomed to offering a high random coefficient on the scale of the search neighborhood to boost the variety 

and look for different sections of the search space. Equation (33) computes D(i), which shows the distance 

between the current and optimal vultures. P(i) denotes the i-th vulture's position, while X is a random number 

between (0.2). 

 

𝐷(𝑖)  =  |𝑋 𝑥 𝑅(𝑖) –  𝑃(𝑖)| (33) 
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Phase 4: Exploitation (first stage) 

At the moment, the efficiency stage of AVOA is being explored. If |Fi| is less than one, AVOA 

starts the first stage of exploitation. 𝑃2 is a parameter with a value between (0.1) that determines the chosen 

strategy. At the beginning of the first stage of exploitation, and 𝑃2 a random value between (0.1) is 

generated. In (34) illustrates this procedure. 

 

P(i + 1)  =  {
𝐷(𝑖) 𝑥 (𝐹𝑖 + 𝑟𝑎𝑛𝑑4) − 𝑑(𝑡)     𝑖𝑓 𝑃2  ≥ 𝑟𝑎𝑛𝑑𝑝2 

𝑅(𝑖) − ( 𝑆1 + 𝑆2)                        𝑖𝑓 𝑃2  <  𝑟𝑎𝑛𝑑𝑝2
 (34) 

 

𝑟𝑎𝑛𝑑4 is a random number between (0.1), and 𝑑(𝑡) is the separation between the vultures and one of the two 

groups' best vultures, as calculated by (35). 𝑆1 and 𝑆2 are determined using (36) and (37), respectively. 

Where, 𝑟𝑎𝑛𝑑5 and 𝑟𝑎𝑛𝑑6 are random values between (0.1), respectively. 

 

𝑑(𝑖)  =  𝑅(𝑖) –  𝑃(𝑖) (35) 

 

𝑆1  =  R(i) x (
𝑟𝑎𝑛𝑑5 𝑥 𝑃(𝑖)

2𝜋
)  x cos (𝑃(𝑖)) (36) 

 

𝑆2  =  R(i) x (
𝑟𝑎𝑛𝑑6 𝑥 𝑃(𝑖)

2𝜋
)  x sin (𝑃(𝑖)) (37) 

 

Phase 5: Exploitation (second stage) 

This phase of the algorithm is conducted if |𝐹𝑖| is smaller than 0.5. 𝑟𝑎𝑛𝑑3 is produced in the range 

of (0.1) at the start of this phase. Thus, if 𝑃3 is higher than or equal to 𝑟𝑎𝑛𝑑3, the approach is to attract 

different vultures to the food source, resulting in competitive behavior. As a result, (38) can be used to update 

the vultures' position. Equations (39) and (40) are used to calculate 𝐴1 and 𝐴2. 

 

P(i + 1)  =  
𝐴1+𝐴2

2
 (38) 

 

𝐴1  =  𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1  −  
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1 (𝑖)𝑥𝑃(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖)−(𝑃(𝑖))
2  𝑥 𝐹𝑖 (39) 

 

𝐴2  =  𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1  −  
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2  (𝑖)𝑥𝑃(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)−(𝑃(𝑖))
2  𝑥 𝐹𝑖 (40) 

 

As AVOA progresses to the second stage, to scavenge for leftovers, vultures congregate around the 

best vulture. As a consequence, (41) can be used to update the vultures' position. In this case, D represents 

the problem dimension, and the AVOA efficacy is improved by employing 𝑡ℎ𝑒 𝐿é𝑣𝑦 𝑓𝑙𝑖𝑔ℎ𝑡 (𝐿𝐹) pattern, 

which is calculated using in (42). Where, 𝑣 and 𝑢 are each random values between (0.1), and β is a fixed 

number of 1.5. Algorithm 2 shows the development of the AVOA algorithm. 

 

𝑃(𝑖 + 1)  =  𝑅(𝑖)  −  |𝑑(𝑡)| 𝑥 𝐹𝑖  𝑥 𝑙𝑒𝑣𝑦(𝑑) (41) 

 

𝐿𝐹 (𝑥)  =  0,001 x 
𝑢𝑥 𝜎

|𝑣|
1
𝜌

 (42) 

 

𝜎 = (
Г (1+ 𝛽)𝑥 sin( 

𝜋𝛽

2
)

Г (1+ 𝛽2) 𝑥 𝛽 𝑥 2 𝑥 ( 
𝛽−1

2
)
)

1

𝛽

 (43) 

 

Algorithm 2. AVOA 
1. The population size N and the maximum number of iterations T are inputs. 

2. Outputs: The location of the vulture and its fitness value 

3. Start the random population 𝑃𝑖 (i = 1,2,…,N) 

4. do while  (no halting condition satisfied)  

5. Use LRV to alter the best position in job sequences. 

6.    Vulture carbon emission values 

7.    Make 𝑃𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1, the Vulture's location (Best Vulture Category 1 first best 

location). 

8.    Make 𝑃𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2, the Vulture's position (the second best location in Best Vulture 

Category 2). 

9.    do for (each vulture (𝑷𝒊))  
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10.  Using Equation (27) determine R(i) 
11.       Use Equation (34) to update the F 

12.       if (|𝑭| ≥ 1) then 

13.           if (𝑷𝟏 ≥  𝒓𝒂𝒏𝒅𝑷𝟏) then  

14.                   Update the location of the vulture using Equation (31) 
15.            else 
16.       Using Equation (32) update the location vulture 

17.    if (|𝑭| < 1) then 
18.        if (|𝑭| >0.5) then 
19.            if (𝑷𝟐 ≥ 𝒓𝒂𝒏𝒅𝑷𝟐) then 

20.                 Using Equation (34) Update the location vulture 
21.          else 
22.                 Using Equation (35) Update the location vulture 
23.        else 

24.           if (𝑷𝟑 ≥  𝒓𝒂𝒏𝒅𝑷𝟑) then 

25.                 Using Equation (39) Update the location vulture 
26.           else 
27.                 Using Equation (42) Update the location vulture 

28. Return 𝑃𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1 

 

3.3.  Experimental data and procedures  

This research uses 3 different case studies and energy emissions per kWh of 0.998 kg in all 3 case 

studies. In the first case study [26] with a problem of 10 jobs 6 machines, the second case study [27] with a 

problem of 50 jobs 6 machines, and the third case study [28] with a problem of 100 jobs 10 machines. The 

experimental procedure in both algorithms is run 30 times to find the minimum energy consumption. Each 

case study consists of two variations of iterations (100 and 200) and population (100 and 200) in each 

algorithm. To determine which method is superior and more successful between AVOA and GTO, an 

independent test was used to examine the sig value (2-tailed). When the value is > 0.05, then GTO and 

AVOA algorithms perform similarly. When the value is < 0.05, the GTO and AVOA algorithms behave 

differently. The results of the experiment will also be presented in a boxplot diagram. This experiment was 

carried out using a Windows 10 device with an Intel Core-i5 processor. 

 

 

4. RESULTS AND DISCUSSION 

This section describes and explains the study's results by considering the effect of different 

population numbers and the number of iterations on carbon emission consumption. In addition, this section 

will compare the effectiveness of the GTO and AVOA algorithms with the independent sample t-test. The 

following are the results and discussion of the AVOA and GTO algorithms. 

Table 2 shows the comparison of populations and iteration experiment results using the GTO and 

AVOA algorithms. In Case 1, the best experimental result is at iteration 100, population 200. The most 

effective result in Case 2 is at iteration 200 population 200. The most effective result in Case 3 is at iteration 

100 population 100. According to the experimental results, the larger the population and iteration, the lower 

the carbon emission consumption. And, conversely, as the population and iterations decrease, so do the 

carbon emissions produced. Table 3 displays the outcomes of running EC with the GTO and AVOA 

algorithms. The results reveal that the EC in Cases 1, 2, and 3 have different values. Case 1 demonstrates that 

the GTO and AVOA algorithms have the same variation in data distribution. Case 2 demonstrates that the 

GTO data distribution is more diversified than the AVOA data distribution. In example 3, the GTO data 

distribution is smaller than the AVOA data distribution. 

 

 

Table 2. Results of iteration and population comparison experiments utilizing the GTO and AVOA 

algorithms 
Research Number of machines and jobs Iteration Population GTO EC consumption AVOA EC consumption 

Case 1 10 jobs and 6 machines 

100 
100 16833.58 16868.96 

200 16833.58 16867.14 

200 
100 16833.58 16867.14 

200 16833.58 16868.96 

Case 2 50 jobs and 10 machines 

100 
100 11988.12 11996.24 
200 11995.99 11995.29 

200 
100 11993.37 11995.34 

200 11990.34 11995.73 

Case 3 100 jobs and 10 machines 
100 

100 2068.451 2226.769 

200 2069.28 2228.185 

200 
100 2069.014 2235.167 
200 2069.521 2222.163 
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Table 3. Test result carbon emission consumption of GTO and AVOA algorithms 
Cases  Result GTO  AVOA 

Case 1 

Average  16833.585 16883.517 
Standard Deviation  0.000 19.543 

Minimum  16833.590 16867.136 

Maximum  16833.590 16930.437 

Case 2 

Average  11995.077 11995.533 

Standard Deviation  4.207 1.505 

Minimum  11990.245 11992.212 
Maximum  12002.951 11998.288 

Case 3 

Average  2069.239 2237.446 

Standard Deviation  0.245 21.524 
Minimum  2068.635 2198.696 

Maximum  2069.656 2278.357 

 

 

Table 4. Results of the independent sample t-test 

 Case 1 Case 2 Case 3 

 AVOA GTO AVOA GTO AVOA GTO 

Mean  16883.517 16833.59 11995.53 11995.08 2237.446 2069.239 

Standard Deviasi  19.54305 0 1.505 4.207 21.524 0.245 

t  -13.676 0.559 42.799 

Sig.(2-tailed)  0 0.578 0 

 

 

5. CONCLUSION 

This study proposes GTO and AVOA to minimize carbon emissions. To answer the NIPFSP 

problem, these techniques are compared. The experimental results reveal that in case 1, with small data, the 

GTO method is more effective at minimizing carbon emissions. In Case 2 which is medium data, AVOA and 

GTO algorithms are effectively used to minimize carbon emissions, and In Case 3, the GTO method is 

utilized more efficiently to minimize carbon emissions, which is a large amount of data in the NIPFSP 

problem. The parameter testing of the GTO and AVOA algorithms reveals that the higher the iteration and 

population, the less carbon is consumed. Suggestions for future research are to compare with other 

algorithms with different objectives and approaches. 
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