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 The expansion of cellular network coverage facilitates the advancement of 

research on network-based positioning. We are interested in the signal 

fingerprinting method to predict the location of a mobile device. By this 

method, the device must be within the fingerprint coverage to have a 

successful location prediction. However, any disturbance in the signal 

propagation would decrease the prediction accuracy. We propose an 

optimization model based on generalized triangulation combined with a 

signal fingerprint which is treated more adaptively in responding to any 

signal disturbance. The triangulation method determines the most likely 

region where the device is located. The solution provides the estimated 

longitude and latitude of the device. An illustration of the implementation of 

the model is presented. The model is assessed using the Indosat cellular 

network in three distinct testbeds in Indonesia, which are: South Jakarta, a 

metropolitan area; South Tangerang, a buffer area adjacent to the 

metropolitan area; and Malang, a city surrounded by rural areas. The most 

favorable outcome yields an average prediction error of 39.6 m, a maximum 

error of 197.08 m, a minimum error of 0.05 m, and a standard deviation of 

error of 39.22 m. 
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1. INTRODUCTION 

Network-based positioning is considered a viable alternative to satellite-based positioning methods, 

i.e., the global positioning system (GPS), for geolocation. The system makes use of the available attributes 

found in the network measurement report (NMR) of the surrounding base transceiver stations (BTSs or 

“towers”), i.e., reference signals received power (RSRP) in long-term evolution (LTE) networks or received 

signal strength indication (RSSI) in global system for mobile communications (GSM) networks. Previous 

research in [1] and [2] examines the variability in RSSI caused by shadowing effects. This research employs 

Bayes' rule to derive probability density functions that describe the distribution of propagation distances from 

all reported (i.e., serving and neighboring) cellular base stations. The location of the device is determined by 

combining probability density functions of involved cells, and Bayes’ rule is used to find the most probable 

location. The field experiment yields a mean error of 52.8 meters, which is the distance from the actual 

position. Research by Liu et al. [3] examines the relationship between signal attenuation and RSSI using the 

Pearson correlation coefficient (PCC), as well as incorporating Bayes' rule. The location of the device is 

determined by the one having the highest PCC. The results of the test indicate that 80% of the mean error 

was under 300 m. Given the intricate relationship between signal strength and distance, some research 
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proposes the utilization of signal fingerprinting as an alternative to signal propagation models. The 

enhancement of fingerprint-based prediction techniques discussed in [4] considers the handover procedure 

dynamics between serving cell towers. Approximately 67% of the errors exhibit values that are lower than 

124 m. Research by Ibrahim and Youssef [5] utilizes a combination of deterministic and probabilistic grid-

based fingerprinting techniques, resulting in median errors of 105 m in rural and 30 m in urban areas, 

respectively. An infrastructure-free ubiquitous localization system is given in [6], giving median accuracies 

of 152 m in urban and 224 m in rural areas. The subsequent research employs the utilization of relative RSSI 

to estimate the geographical coordinates of a device in both urban and rural environments [7], revealing that 

the rural area exhibited a maximum error of 500 m, while the urban area displayed a maximum error of  

400 m. Research by Meniem et al. [7] enhances the previous findings by incorporating the consideration of 

relative RSSI ordering, yielding a mean error of 29 m in urban areas and 55 m in rural areas. A technique of 

customized triangulating signal strength across three BTSs is proposed in [8]. 

Research by Kosasih and Sabri [9] employs a weighted centroid method that relies on signal 

strength. The estimated location of the device is given by the aggregated-cells centroid, which is obtained 

based on the weighted average of the BTSs coordinates. The weight of each BTS depends on its RSSI value. 

This approach can be implemented without the need to ascertain the potential overlap of signal strengths 

across each BTS [10]–[13]. Based on the findings, the maximum error recorded was 837.9511 meters, while 

the mean error was calculated to be 214.8366 meters. Nevertheless, the quantity of BTS identified by the 

device fluctuates along with the relocation of the device. 

Improving the previous results, we employ a dynamic weighted centroid model that considers the 

variability in the number of BTSs reported in the nuclear magnetic resonance (NMR) [14]. We find that the 

cumulative distribution functions (CDFs) error of the dynamic weighted centroid model demonstrates a 

reduction of approximately 48.28% for errors under 100 m, 74.47% for errors under 150 m, 89.72% for 

errors under 200 m, and 97.81% for error under 250 m. Research by Ezema and Ani [15] employs a multi-

linear regression model that relies on RSSI. The research yielded findings indicating that approximately 67% 

of positioning errors were below 64 m, and 95% of positioning errors were below 115 m. It was observed 

that the maximum error reached 275 m in urban areas. Nevertheless, the employed model exhibits a high 

degree of complexity. 

In addition to employing RSSI, there exist research investigations that utilize time-based 

measurement techniques. The proposed signal attenuation method by Lin and Juang [16] demonstrates a 

mean error of 272.4 m in rural areas and 55 m in urban areas when considering time differences. Making use 

of timing advances in LTE networks, as discussed in [17], presents a theoretical opportunity to achieve a 

level of accuracy that is less than 0.5 meters. This method can be considered one of the most theoretically 

optimistic approaches based on network analysis. Nevertheless, there was no empirical assessment or 

experimental validation of this approach. As per the authors' assertions, the implementation during the 

specified period in 2011 remained limited because of the absence of adequate field-testing facilities that were 

compatible with a fully operational LTE network and testing equipment software. 

According to Shakir et al. [18], it is found that activating timing advances in an established LTE 

network leads to an increase in network signaling load caused by multipath effects. With the current 

smartphone operating system, timing advance attributes are often unavailable. As alternatives, researchers 

examine the attributes of RSRP and PCI instead. The field tests yield a maximum error of 320 meters, as 

determined by optimal conditions.  

It is noteworthy to mention several outcomes of indoor localization. In contrast to outdoor 

localization, indoor localization exhibits a narrower spatial coverage, albeit with a higher density of reference 

points. This methodology enables the generation of a fingerprint with enhanced resolution, thereby 

facilitating a more accurate estimation. The initial precise GSM indoor localization method, achieving a 

median accuracy of 5 meters in extensive multi-floor buildings, is presented in [19]. A more precise approach 

is proposed in [20] by employing vector similarity, resulting in an error margin of 0.4 m. See for more recent 

results in [21]–[23]. 

Common deterministic fingerprinting techniques for network-based localization store a vector 

representing the signal strength (RSSI, RSRP, or RSRQ) from a series of reported cell towers at the device 

location. According to Ibrahim and Youssef [5], to serve a location request, the vector of signal strength at an 

unknown location of the device is compared to the vectors recorded in the fingerprint by using the k-nearest 

neighbors (kNN) algorithm, in terms of signal strength space. The results are k-closest fingerprint locations, 

which are averaged as the estimated location. However, any actual disturbance in the signal propagation 

would make the situation deviate from the pre-recorded fingerprint. This could fail the method to predict the 

device location, even if it lies inside the coverage. 

Our method proposes a combination of fingerprinting and triangulation optimization. This allows 

one to obtain the result even if there are signal propagation disturbances. The optimization model treats the 

fingerprint more adaptively in responding to any signal disturbance. Instead of calculating tower-to-device 
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distance by wave propagation models with shadowing terms, the fingerprint gives a more realistic tower-to-

device distance that corresponds with the actual signal strength at the location of the device. The fingerprint’s 

tower-to-device distance would then be used in the constraints of the triangulation optimization model, in 

which the towers act as reference points. Triangulation is employed to determine the most likely location of 

the device by utilizing the parameters obtained from the fingerprint. Our research gives two contributions: the 

first is to combine fingerprinting and triangulation methods to get more realistic tower-to-distance 

parameters, and the second is to get wider coverage beyond the fingerprint space. 

This manuscript represents the expanded iteration of our concise paper that was delivered at the 

ACOMP 2021 conference [24]. The rest sections of the paper are as follows: in section 2, the construction 

and conceptual framework underlying the model as well as the detailed account of the methodology 

employed for constructing and implementing the model; section 3 provides a comprehensive analysis of the 

model's implementation and evaluation. Lastly, section 4 provides a concise conclusion of the findings. 

 

 

2. RESEARCH METHOD 

The triangulation formula is given by the simultaneous as (1): 

 

(𝑥𝐿 − 𝑥𝑃)2 + (𝑦𝐿 − 𝑦𝑃)2 = 𝑑𝑃𝐿
2

(𝑥𝑀 − 𝑥𝑃)2 + (𝑦𝑀 − 𝑦𝑃)2 = 𝑑𝑃𝑀
2

(𝑥𝑁 − 𝑥𝑃)2 + (𝑦𝑁 − 𝑦𝑃)2 = 𝑑𝑃𝑁
2

} (1) 

 

where 𝐿, 𝑀, and 𝑁 are noncollinear points at known coordinates (𝑥𝐿 , 𝑦𝐿), (𝑥𝑀 , 𝑦𝑀), (𝑥𝑁 , 𝑦𝑁), respectively, 𝑃 

is a point at an unknown coordinate (𝑥𝑃 , 𝑦𝑃), and 𝑑𝑃𝐿 , 𝑑𝑃𝑀, 𝑑𝑃𝑁 are known distances to 𝑃 from 𝐿, 𝑀, 𝑁, 

respectively. 

By the triangulation, the location of an object at an unknown position (𝑥𝑃 , 𝑦𝑃) is discoverable since 

the three reference points' coordinates and their distances to 𝑃 are known. The object location is at the 

intersection point of three circles centered in 𝐿, 𝑀, 𝑁 with a radius 𝑑𝑃𝐿 , 𝑑𝑃𝑀 and 𝑑𝑃𝑁, respectively. In case 

𝑑𝑃𝐿 , 𝑑𝑃𝑀 and 𝑑𝑃𝑁 exceeds the actual distance, then the object is located somewhere inside the intersection 

region of the three circles (see Figure 1). In this case, all the ′ = ′ relations in the triangulation formula  

are replaced by ′ ≤ ′. We address this case as loose triangulation, and as loose n-angulation if it involves  

𝑛 > 3 reference points. 

 

 

 
 

Figure 1. The case where the intersection of the three circles is a region instead of a point 

 

 

On the surface of a great sphere (i.e., earth), the distance between point 𝐿 at coordinate (𝑥𝐿 , 𝑦𝐿) and 

𝑀 at (𝑥𝑀 , 𝑦𝑀), measured in radians, is given by the haversine formula (2) [25]–[27]. 

 

𝑑𝐿𝑀 = 2𝑟 sin−1 (√sin2 (
𝑥𝑀−𝑥𝐿

2
) + cos 𝑥𝐿 cos 𝑥𝑀 sin2 (

𝑦𝑀−𝑦𝑁

2
)) (2) 

 

where 𝑟 is the earth's curvature radius (6,371 km). 

For a small area on a round surface, with several kilometers (for instance, a small part of a city), the 

formula of equirectangular is used instead of harvesine as (3):  

 

𝑑𝐿𝑀 = 𝑟√((𝑦𝑀 − 𝑦𝐿) cos
𝑥𝑀+𝑥𝐿

2
)

2

+ (𝑥𝑀 − 𝑥𝐿)2 (3) 
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in (3) maps a round surface into a flat rectangular grid while maintaining size, shape, and area. Compared to 

harvesine for calculating small distances, the equirectangular formula gives a smaller relative mean of error 

[28]. 

To estimate the location of the device, we propose an optimization model whose parameters are 

determined by the current reported NMR and pre-developed fingerprint from up to seven reported cells from 

the covered area (collected through wardriving), constrained by general loose triangulation of the cells. The 

estimated location coordinate of the device is given by the solution of the model. The attributes recorded in 

the fingerprint are explained in Table 1. 

 

 

Table 1. The attributes in the fingerprint and their meaning 
Attribute Explanation 

𝑐𝑖 Cell-ID (CID) of the 𝑖-th cell tower. 

𝑠𝑐𝑖
 Signal strength that corresponds to 𝑐𝑖, measured in dBm. 

𝐶𝑖 = (𝑥𝑖, 𝑦𝑖) The latitude 𝑥𝑖 and longitude 𝑦𝑖 of cell tower 𝑐𝑖 in radians. 

𝐿 = (𝑥𝐿, 𝑦𝐿) The latitude 𝑥𝐿 and longitude 𝑦𝐿 of the location where the device records the measurement, in radians. This location 

is the ground truth of the device's location by GPS. 

𝑑𝐶𝑖𝐿 The distance from 𝐶𝑖 (cell tower 𝑐𝑖) to 𝐿 (device) in kilometers. 

 

 

The following notions underlie the development of the prediction model. 

Definition 1. Let p = (𝑝1, 𝑝2, , … , 𝑝𝑛) and q = (𝑞1, 𝑞2, … , 𝑞𝑛) be vectors with distinct components. 

i. The similarity of vector p to vector q is the number of components of p that match the components of 

q. 

ii. If 𝑉 is a set of vectors, then vector(s) in 𝑉 that are most similar to q are those in 𝑉 that have the largest 

similarity to 𝑞. 

Definition 2. Let p = (𝑝1, 𝑝2, , … , 𝑝𝑛) and q = (𝑞1, 𝑞2, … , 𝑞𝑛) be vectors with distinct components arranged 

in decreasing order. The alignment vector p to q, denoted by ap,q = (𝑎1, 𝑎2, … , 𝑎𝑛), is a vector such that 𝑝𝑖  

matches with 𝑞𝑎𝑖
, and 𝑎𝑖 = 0 if 𝑝𝑖  does not match any component of q. 

Definition 3. Given alignment vector ap,q = (𝑎1, 𝑎2, … , 𝑎𝑛). The matching vector mp,q = (𝑚1, 𝑚2, … , 𝑚𝑛) is 

a vector where 𝑚𝑖 = 0 if 𝑎𝑖 = 0, and 𝑚𝑖 = 1 if 𝑎𝑖 ≠ 0. 

Definition 4. Given vectors p = (𝑝1, … , 𝑝𝑛) q = (𝑞1, 𝑞2, … , 𝑞𝑛), with alignment vector ap,q =

(𝑎1, 𝑎2, … , 𝑎𝑛). The closeness between vector p and q based on vector a is defined as (4): 

 

𝜅p,q = ∑ 𝑚𝑖|𝑞𝑎𝑖
− 𝑝𝑖|𝑛

𝑖=1  (4) 

 

where 𝑚𝑖 is the 𝑖-th element of matching vector m. 

Vector c𝐴 = (𝑐𝐴1, 𝑐𝐴2, … , 𝑐𝐴7) is a vector of reported CIDs at an unknown location 𝐴, arranged in 

decreasing order; vector s𝐴 = (𝑠𝑐𝐴1
, 𝑠𝑐𝐴2

, … , 𝑠𝑐𝐴7
) is a vector of reported signal strengths that correspond to 

𝑐𝐴𝑖 . If there is no reported CID and signal strength from the 𝑖-th cell, then 𝑐𝐴𝑖 = 𝑠𝑐𝐴𝑖
= 0.  The set 𝐹 is 

defined as the collection of rows in the fingerprint, which contains: 

i. Row vector of CIDs (possibly there were multiple rows) that are most similar to c𝐴 (denoted by c𝐹 =
(𝑐𝐹1, 𝑐𝐹2, … , 𝑐𝐹7)), and 

ii. Row vectors of signal strength denoted by s𝐹(𝑖), where 𝑖 is the row number in 𝐹.  

For a given vector of CIDs c𝐹 , the vector C𝐹 = ((𝑥𝑐𝐹1
, 𝑦𝑐𝐹1

), (𝑥𝑐𝐹2
, 𝑦𝑐𝐹2

), … , (𝑥𝑐𝐹7
, 𝑦𝑐𝐹7

)) provides 

the coordinates of the location of the cell 𝑐𝐹1, 𝑐𝐹2, … , 𝑐𝐹7, respectively. 

Definition 5. Let 𝑑𝐶𝑖𝐿  be the values of the tower-to-device distance column in the fingerprint, and 𝑅 be the set 

of some rows of 𝑑𝐶𝑖𝐿. Then (5). 

 

𝐷𝑖 = max(𝑑𝐶𝑖𝐿|𝑅) (5) 

 

In other words, 𝐷𝑖  is the maximum value in 𝑑𝐶𝑖𝐿 column of all rows in 𝑅. 

Definition 6. Given c𝐴 and c𝐹 vectors of the length 𝑛, where 𝑐𝑖 the 𝑖-th component of c𝐴. Let ac𝐴,c𝐹
=

(𝑎1, 𝑎2, … , 𝑎𝑛) be the alignment vector of c𝐴 and c𝐹. The notion (6): 

 

𝛿𝑖 = 𝐷𝑎𝑖
 (6) 

 

denotes the fingerprint’s maximum tower-to-device distance of the tower having CID 𝑐𝑖 . 
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For a given c𝐴 (the vector of reported cell-IDs) and s𝐴 (the vector of signal strengths of the reported 

cells), the values of the following parameters are assigned from the fingerprint: i) c𝐹 (the most similar vector 

to c𝐴), ii) C𝐹 (the vector containing the latitude and longitude of each cell in c𝐹), iii) acA,c𝐹
 (the alignment 

vector), and iv) mc𝐴,c𝐹
 (the matching vector).  

Next is to define our triangulation optimization model. The solution is the prediction of device 

location. Let 𝑃 be the predicted location of the device with latitude 𝑥𝑃 and longitude 𝑦𝑃 in radians, 𝐶𝑖𝑃 be 

the vector that begins at 𝐶𝑖 and ends at 𝑃, 𝑑𝐶𝑖𝑃 be the distance from 𝐶𝑖 to 𝑃. The dynamic triangulation 

model is defined as (7). 

 

max |𝑚1𝐶1𝑃 + 𝑚2𝐶2𝑃 + ⋯ + 𝑚7𝐶7𝑃|  

Subject to: 

(1) 𝑑𝐶1𝑃 ≤ 𝛿1,   

(2) 𝑑𝐶2𝑃 ≤ 𝛿2,  

                  ⋮  

(7) 𝑑𝐶7𝑃 ≤ 𝛿7, (7) 

where 𝑑𝐶𝑖𝑃 = 6371√((𝑦𝑃 − 𝑦𝐶𝑖
) cos

𝑥𝐶𝑖+𝑥𝑃

2
)

2

+ (𝑥𝑃 − 𝑥𝐶𝑖
)

2
,  

𝑥𝑃 , 𝑦𝑃 unbounded,  

constraint 𝑖 is added if 𝑚𝑖 = 1 

 

The objective function is to find the location 𝑃 such that the absolute of the summation of vectors 𝑃𝐶𝑖 is 

maximum. See Figure 2 for an illustration of these vectors, restricted to four cells’ involvement. 

 

 

 
 

Figure 2. Predicted position 𝑃 and actual position 𝐴. Location 𝑃 is determined such that the absolute of the 

summation of vectors 𝑃𝐶𝑖 is maximum 

 

 

The prediction error 𝑑𝐴𝑃 is determined by the distance between the actual position (𝑥𝐴, 𝑦𝐴) and 

predicted position (𝑥𝑃 , 𝑦𝑃). It is calculated by (3). Our method consists of two stages: development and 

implementation. In brief, the development stage is to develop the system by creating the signal fingerprint 

and client/server-side codes. The fingerprint is collected by wardriving to record 𝑐𝑖 ,  𝑠𝑐𝑖
,  𝐶𝑖,  𝐿 and 𝑑𝑐𝑖𝐿 

attributes (explained previously in Table 1). The wardriving records NMR of up to seven cells per second. 

Typical our fingerprint is shown partially in Table 2. The table shows grouped consecutive columns 

𝑐𝑖 , 𝑠𝑐𝑖
, 𝑑𝐶𝑖𝐿, that record CID, signal strength, and tower-to-device distance, respectively, while the device’s 

position is at (𝑙𝑎𝑡𝐴, 𝑙𝑜𝑛𝐴) as shown by the two rightmost columns. Each row records NMR for every second 

of wardriving. The implementation stage is to put the developed system into action. At this stage, the client 

sends a request for location service to the server, and the server responds by solving the optimization model 

based on the NMR sent from the client, and finally sending the result (i.e., the estimated location) to the 

device. 
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Table 2. The sample of rows in the fingerprint 
𝑐1 𝑠𝑐1

 𝑑𝐶1𝐿 𝑐2 𝑠𝑐2
 𝑑𝐶2𝐿 𝑐3 𝑠𝑐3

 𝑑𝐶3𝐿 𝑐4 𝑠𝑐4
 𝑑𝐶4𝐿 𝑐5 𝑠𝑐5

 𝑑𝐶5𝐿 𝑐6 𝑠𝑐6
 𝑑𝐶6𝐿 𝑐7 𝑠𝑐7

 𝑑𝐶7𝐿 𝑙𝑎𝑡𝐴 𝑙𝑜𝑛𝐴 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

62493 -71 0.3937 62491 -79 0.9380 34501 -77 0.0930 20801 -81 0.6356 17633 -79 0.6191 17632 -75 0.2870 17631 -51 0.2439 -6.2835 106.7305 

62493 -71 0.3955 62491 -79 0.9369 34501 -77 0.0919 20801 -81 0.6356 17633 -79 0.6174 17632 -75 0.2886 17631 -51 0.2417 -6.2835 106.7305 
62493 -71 0.4055 62491 -79 0.9289 34501 -79 0.0907 20801 -81 0.6321 17633 -81 0.6075 17632 -77 0.2981 17631 -59 0.2313 -6.2835 106.7306 

62493 -71 0.4071 62491 -79 0.9274 34501 -79 0.0914 20801 -81 0.6310 17633 -81 0.6059 17632 -77 0.2997 17631 -59 0.2300 -6.2834 106.7306 

62493 -71 0.4080 62491 -79 0.9268 34501 -81 0.0910 20801 -81 0.6310 17633 -81 0.6051 17632 -77 0.3005 17631 -57 0.2289 -6.2834 106.7306 
62493 -71 0.4092 62491 -79 0.9267 34501 -81 0.0892 20801 -81 0.6321 17633 -81 0.6040 17632 -77 0.3014 17631 -57 0.2270 -6.2835 106.7306 

62493 -73 0.4153 62491 -79 0.9224 34501 -81 0.0883 20801 -83 0.6311 17633 -83 0.5981 17632 -77 0.3071 17631 -57 0.2202 -6.2834 106.7307 

62493 -73 0.4165 62491 -79 0.9222 34501 -81 0.0867 20801 -83 0.6322 17633 -83 0.5971 17632 -77 0.3081 17631 -57 0.2183 -6.2835 106.7307 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 

 

To construct the model based on NMR sent by the device, the following parameters need to be 

acquired in advance: i) 𝐶𝑖 = (𝑥𝑖 , 𝑦𝑖), the latitude and longitude of the 𝑖-th cell tower, ii) 𝛿𝑖, the estimated 

distance to the device from the 𝑖-th cell tower, and iii) 𝑚𝑖, a boolean value, where 𝑚𝑖 = 1 if the 𝑖-th cell 

tower is not null, 𝑚𝑖 = 0 otherwise (i.e., to include constraint 𝑖 in the model if 𝑚𝑖 = 1, or otherwise if  

𝑚𝑖 = 0). 

The parameter 𝐶𝑖, is assigned directly from the fingerprint with a simple look-up command based on 

CID 𝑐𝑖. A special procedure is needed to obtain the values of the parameters 𝛿𝑖 and 𝑚𝑖. For an input vector of 

reported CIDs c𝐴 = (𝑐𝐴1, 𝑐𝐴2, … , 𝑐𝐴7) and the vector of its corresponding signal strength  

s𝐴 = (𝑠𝐴1, 𝑠𝐴2, … , 𝑠𝐴7), the procedure looks up for the set of rows 𝑅 having a vector c𝐹 = (𝑐𝐹1, 𝑐𝐹2, … , 𝑐𝐹7) 

that is most similar to c𝐴 (by definition 1), along with c𝐹’s corresponding vector of signal strength s𝐹 =
(𝑠𝐹1, 𝑠𝐹2, … , 𝑠𝐹7) that is the closest to s𝐴 (by definition 4). From the rows in 𝑅, we obtain 𝐷1, 𝐷2, … , 𝐷7 (by 

definition 5), the maximum tower-to-device distance of each cell. The maximum values are chosen so that 

the circles of cells intersect, creating a region in which the device is possibly located. From this set of 𝐷𝑖 , we 

obtain 𝛿𝑖 (by definition 6) based on the alignment vector aCA,C𝐹
 (by definition 2) and its matching vector 

mCA,C𝐹
 (by definition 3). 

In the implementation stage, the request for location service is performed by the device. The server 

received c𝐴, s𝐴 sent through an internet connection from the device at the unknown location 𝐴. At the server, 

the system looks for the fingerprint for c𝐹 , C𝐹 , ac𝐴,c𝐹
, mc𝐴,c𝐹

 that correspond to c𝐴 and s𝐴. If success, then it 

assigns a value to each 𝛿𝑖, followed by passing 𝐶𝑖, 𝛿𝑖, 𝑚𝑖 to the model expressed by the optimization model 

in (7). The system then solves the model, and the result (which is the estimated latitude/longitude of the 

device), is transfered back to the device. In the following, we summarize the procedure for developing a 

network-based positioning system. Figure 3 gives the method schematically. 

a. Stage 1: development 

i. Create a raw NMR fingerprint of the desired area by wardriving. 

ii. Preprocessing: for each row of the fingerprint, sort the NMR of each tower by CID in descending 

order. The NMR with a larger CID number comes to the left of the smaller ones. 

iii. Referring to the cell tower database, calculate the tower-to-device distance by using (3). 

iv. Upload the fingerprint to a cloud database server. 

v. Create a server-side code to receive location requests and NMR sent from the client, to look up the 

appropriate fingerprint instances based on received NMR, and to solve the model whose 

parameters correspond to the current NMR and appropriate fingerprint instances. 

b. Stage 2: implementation (serving location request from the client device) 

i. The client sends location requests by sending its current NMR c𝐴 and s𝐴 to the server by internet 

connection. 

ii. The server-side code looks up the fingerprint for c𝐹, the CID vectors that most similar to c𝐴. This 

look-up procedure produces an alignment vector ac𝐴,c𝐹
 and matching vector mc𝐴,c𝐹

. 

iii. Among these most similar vectors c𝐹, find those having s𝐹 the closest to s𝐴 (based on alignment 

vector ac𝐴,c𝐹
). 

iv. Among the closest vectors within c𝐹, get the furthest tower-to-device distance 𝛿𝑖 for each CID 

(based on alignment vector ac𝐴,c𝐹
). 

v. Construct optimization model by parameters given by vector CF (containing the coordinates of the 

cell towers), mc𝐴,c𝐹
, and 𝛿𝑖. 

vi. Solve the model to get the estimated location (the coordinates) of the device.  

vii. Send back the result to the client. 
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Figure 3. Methodology 

 

 

3. RESULTS AND DISCUSSION 

This section begins with providing an instance in the implementation stage and evaluation of the 

performance. The fingerprint, the instance, and the evaluation are created and performed within the Indosat 

cellular network, a major service provider in Indonesia. The implementation in other cellular network 

providers is made possible by creating the appropriate fingerprint of the network. 

 

3.1.  An instance of location service request 

Suppose a device requests a geolocation and sends the following NMR to the system: 

 

c𝐴 = (62493, 34501, 20801, 17633, 17632, 17631,0),  

 

s𝐴 = (−73, −83, −85, −85, −69, −57, 0)  

 

A fingerprint has already been built previously, and it covers the area where the device sends the request. 

Figure 4 shows the construction of c𝐹 from the part of the fingerprint having the vector that most similar to 

c𝐴. We refer to these rows as the set 𝐹. At this point we have 

 

c𝐹 = (62493, 62491, 34501, 20801, 17633, 17632, 17631)  

 

Vector c𝐹 has 6 similar CIDs to c𝐴, except the second element 62,491. By definition 2, the alignment vector 

c𝐴 to c𝐹 is aC𝐴,C𝐹
= (1, 3, 4, 5, 6, 7, 0). Figure 5 shows the steps to obtain aC𝐴,C𝐹

 from vectors c𝐴 and c𝐹. 

 

 

 
 

Figure 4. Constructing c𝐹 from the fingerprint. The collection of all rows in this part is referred to as 𝐹 
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Figure 5. Assigning value to the vector a𝐂𝐴,𝐂𝑭
 

 

 

From the fingerprint, we have the following vectors of signal strength s𝐹(𝑗) =

(𝑠𝐹1(𝑗), 𝑠𝐹2(𝑗), … , 𝑠𝐹7(𝑗)), where 𝑗 is the relative row number in 𝐹. 

 

𝐬𝐹(1) = (−71, −79, −77, −81, −79, −75, −51),  

𝐬𝐹(2) = (−71, −79, −77, −81, −79, −75, −51),  

𝐬𝐹(3) = (−71, −79, −79, −81, −81, −77, −59),  

𝐬𝐹(4) = (−71, −79, −79, −81, −81, −77, −59),  

𝐬𝐹(5) = (−71, −79, −81, −81, −81, −77, −57),  

𝐬𝐹(6) = (−71, −79, −81, −81, −81, −77, −57),  

𝐬𝐹(7) = (−73, −79, −81, −83, −83, −77, −57),  

𝐬𝐹(8) = (−73, −79, −81, −83, −83, −77, −57).  

 

The assignment of s𝐹(𝑗) above is explained in Figure 6. 

 

 

 
 

Figure 6. The part of the fingerprint containing 𝐜𝐹 and the formation of s𝐹(𝑗), 𝑗 = 1,2 … ,8 

 

 

The next step is to calculate 𝜅s𝐴,s𝐹(𝑖), the closeness between s𝐴 to each s𝐹(𝑖) (by definition 4). The 

closeness is calculated based on a = acA,c𝐹
= (1, 3, 4, 5, 6, 7, 0), and the corresponding matching vector 

mcA,c𝐹
= (1,1,1,1,1,1,0). The closeness 𝜅s𝐴,s𝐹(𝑖) is obtained by (8). 

 

𝜅s𝐴,s𝐹(𝑗) = ∑ 𝑚𝑖 |s𝐹𝑎𝑗
(𝑗) − s𝐴𝑖|

7
𝑖=1  (8) 

 

For example, to calculate 𝜅𝐬𝐴,𝐬𝐹(1), 

 

𝜅s𝐴,s𝐹(1) = 𝑚1|s𝐹1(1) − s𝐴1| + 𝑚2|s𝐹3(1) − s𝐴2| + 𝑚3|s𝐹4(1) − s𝐴3| + 𝑚4|s𝐹5(1) − s𝐴4| +

𝑚5|s𝐹6(1) − s𝐴5| + 𝑚6|s𝐹7(1) − s𝐴6| + 𝑚7|s𝐹0(1) − s𝐴7|  
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The last term becomes zero since 𝑚7 = 0. For convenience, s𝐹0(𝑖) = 0 for all 𝑖. It follows that 

 

𝜅𝐬𝐴,𝐬𝐹(1) = |−71 + 73| + |−77 + 83| + |−81 + 85| + |−79 + 85| + |−75 + 69| + 

|−51 + 57| = 30  

 

By a similar calculation, we have: 

 

𝜅𝐬𝐴,𝐬𝐹(2) = 30,  

𝜅𝐬𝐴,𝐬𝐹(3) = 𝜅𝐬𝐴 ,𝐬𝐹(4) = 24,  

𝜅𝐬𝐴,𝐬𝐹(5) = 𝜅𝐬𝐴 ,𝐬𝐹(6) = 20,  

𝜅𝐬𝐴,𝐬𝐹(7) = 𝜅𝐬𝐴 ,𝐬𝐹(8) = 14.  

 

The results show that s𝐹(7) and s𝐹(8) have the least closeness to s𝐴. Next is to obtain the furthest 

tower-to-device distance from the rows that contain s𝐹(7) and s𝐹(8). Let 𝑅 ⊂ 𝐹 be the set of rows in 𝐹 that 

contains s𝐹(7) and s𝐹(8). In this case, 𝑅 is the 7th and 8th rows of 𝐹 (see Figure 7). The furthest tower-to-

device distance is obtained by applying definition 5 on 𝑅 as: 

 

𝐷1 = max(𝑑𝐶1𝐿|𝑅) = max(0.41528, 0.41650) = 0.4165,  

𝐷2 = max(𝑑𝐶2𝐿|𝑅) = max(0.92238,0.92224) = 0.92238,  

𝐷3 = max(𝑑𝐶3𝐿|𝑅) = max(0.08833, 0.08671) = 0.08833,  

𝐷4 = max(𝑑𝐶4𝐿|𝑅) = max(0.63105, 0.63220) = 0.63220,  

𝐷5 = max(𝑑𝐶5𝐿|𝑅) = max(0.59809, 0.59705) = 0.59809,  

𝐷6 = max(𝑑𝐶6𝐿|𝑅) = max(0.30711, 0.30805) = 0.30805,  

𝐷7 = max(𝑑𝐶7𝐿|𝑅) = max(0.22024, 0.21829) = 0.22024.  

 

The assignment of 𝐷𝑖  is explained in Figure 7. 

 

 

 
 

Figure 7. The assignment of 𝐷𝑖  from the fingerprint 

 

 

𝐷𝑖  is the furthest-recorded distance from tower 𝑖 to the device. Then by definition 6, we assign 𝛿𝑖 to 

𝐷𝑎𝑖
, where 𝑎𝑖 is the 𝑖-th element of the alignment vector aCA,C𝐹

= (1, 3, 4, 5, 6, 7, 0): 

 

𝛿1 = 𝐷𝑎1
= 𝐷1 = 0.4165,  

𝛿2 = 𝐷𝑎2
= 𝐷3 = 0.08833,  

𝛿3 = 𝐷𝑎3
= 𝐷4 = 0.63220,  

𝛿4 = 𝐷𝑎4
= 𝐷5 = 0.59809,  

𝛿5 = 𝐷𝑎5
= 𝐷6 = 0.30805,  

𝛿6 = 𝐷𝑎6
= 𝐷7 = 0.22024.  

 

Recall the matching vector which corresponds to aCA,𝐶𝐹
= (1, 3, 4, 5, 6, 7, 0) is mc𝐴,c𝐹

= (1,1,1,1,1,1,0). This 

vector indicates that the prediction model includes the first to the sixth constraint. By dynamic triangulation 

model (7), the optimization model of this instance is given by (9): 
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max |𝐶1𝑃 + 𝐶2𝑃 + ⋯ + 𝐶6𝑃| (9) 

Subject to: 

𝑑𝐶1𝑃 ≤ 𝛿1 = 0.41650  

𝑑𝐶2𝑃 ≤ 𝛿3 = 0.08833  

𝑑𝐶3𝑃 ≤ 𝛿4 = 0.63220  

𝑑𝐶4𝑃 ≤ 𝛿5 = 0.59809  

𝑑𝐶5𝑃 ≤ 𝛿6 = 0.30805  

𝑑𝐶6𝑃 ≤ 𝛿7 = 0.22024  

where 𝑑𝐶𝑖𝑃 = 6371√((𝑦𝑃 − 𝑦𝐶𝑖
) cos

𝑥𝐶𝑖+𝑥𝑃

2
)

2

+ (𝑥𝑃 − 𝑥𝐶𝑖
)

2
,  

𝑥𝑃 , 𝑦𝑃 unbounded. 

 

The 𝑖-th cell tower location coordinates (𝑥𝐶𝑖
, 𝑦𝐶𝑖

) is acquired from the tower database. Solving this 

optimization yields 𝑥𝑝 and 𝑦𝑃  in radians, which is dedicated to the estimated location of the device. 

 

3.2.  Evaluation 

The accuracy of the model is measured by the prediction error, which is the distance between the 

actual position and the predicted position. We test the model in three testbeds: South Jakarta, a typical 

metropolitan city having buildings and dense BTSs; South Tangerang, a buffer city of Jakarta, having less 

dense BTSs and is less crowded than South Jakarta; and Malang city, a medium-sized city surrounded with 

rural areas, having BTSs placed more distantly to each other. The recapitulation of the test results for each 

testbed is given in Tables 3 to 5, respectively. The prediction errors are evaluated in terms of average, 

maximum, minimum, and standard deviation, and categorize them based on the number of reported BTSs 

(from 3 to 7 and aggregate of all). Normally, fewer BTSs are reported if the device is surrounded by 

obstacles or situated in a less dense BTSs area. The “count” row measures the number of occurrences in the 

test. The test results give insight into how those metrics are affected by the number of reported BTSs. The 

metrics for aggregate are obtained by considering all numbers of reported BTSs. We will later in this section 

discuss the results by looking at the graph. 

 

 

Table 3. Prediction error in South Jakarta (in meters) 

Measurements 
Reported BTSs 

3 4 5 6 7 Aggregate 

average 161.43 120.86 114.23 83.79 72.16 105.12 

max 353.34 328.40 286.57 285.74 197.08 353.03 
min 25.28 3.21 2.23 2.09 0.66 0.66 

st. dev 125.65 81.14 63.29 60.56 56.77 73.65 

count 82 270 567 443 139 1501 

 
 

Table 4. Prediction error in South Tangerang (in meters) 

Measurements 
Reported BTSs 

3 4 5 6 7 Aggregate 

average 362.63 156.68 128.35 80.31 39.60 144.83 

max 692.11 632.64 389.94 409.04 235.76 692.11 

min 45.03 0.05 0.98 2.33 2.43 0.05 
stdev 190.89 129.98 101.20 77.25 39.22 143.19 

count 149 446 402 303 94 1394 

 

 

Table 5. Prediction error in Malang (in meters) 

Measurements 
Reported BTSs 

3 4 5 6 7 Aggregate 

average 221.97 131.97 118.27 65.02 61.28 136.03 

max 906.48 644.68 391.95 266.52 212.66 906.48 
min 3.32 3.20 0.99 2.11 0.96 0.96 

stdev 182.43 130.44 102.56 50.84 55.36 138.95 

count 312 237 349 218 62 1178 

 

 

Figure 8 shows the CDF of errors, the CDFs of error in our three testbeds are given in Figures 8(a) 

to 8(c). They are presented based on the number of reported towers BTSs. In general, the CDFs tend to skew 
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more to the left for a higher number of reported towers, which means better accuracy. An interesting finding 

is shown by the CDFs of 3 towers in all testbeds, which deviates significantly to the far right from the rest 

CDFs. This phenomenon is caused by the area of the cell intersection being too large. Our test reveals that 

the largest prediction error of the model in each testbed is given by the three towers' involvement (see again 

Tables 3 to 5). On the contrary, the best accuracy is generally given by 7 towers involvement. The best of our 

test is shown by CDF of 7 towers for South Tangerang, see Figure 8(b), which gives 91.49% of prediction 

error being less than 80 m with an error average of 39.60 m and a standard deviation of 39.22 m. 

The aggregate results (joined 3 to 7 towers) are shown in Figure 8(d). The best results are given by 

the aggregate CDF of South Jakarta, with 90.85% of prediction errors being less than 200 m. Almost similar 

CDFs are given by South Tangerang and Malang, with 90.60% of prediction errors being less than 350 m 

(South Tangerang), and 89.45% of prediction errors being less than 360 m (Malang). We find also that the 

CDFs of the aggregates are close to the CDFs of 5 towers of their respective testbeds. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 8. CDF of errors In (a) South Jakarta, (b) South Tangerang, (c) Malang, and (d) the aggregate 

 

 

Figure 9 shows a range of errors concerning the number of reported towers. Among all testbeds, 

South Jakarta gives a more stable range of prediction errors for any number of reported towers. This is shown 

by the graph in Figure 9(a), where the minimum, average, and maximum lines tend to be horizontal, 

compared to Figure 9(b) (South Tangerang) and Figure 9(c) (Malang), which give more steep maximum and 

average lines. However, the minimum lines in the three testbeds tend to be stable and close to zero. Overall, 

the results propose that the accuracy is more stable in the region having more dense BTSs. 

 In terms of standard deviation, the trend is decreasing concerning the number of reported towers. It 

means that the prediction errors are distributed more closely around their respective average as the number of 

reported towers increases. The graph in Figure 9(d) shows this phenomenon. An interesting result is that the 

standard deviation line for South Tangerang and Malang seems to be almost similar, while that of South 

Jakarta lies below them. This suggests that in general, the area having more dense BTSs gives less standard 
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deviation. The aggregate standard deviation supports this suggestion (see the graph in Figure 10). Another 

interesting finding is that the standard deviations of the three testbeds tend to converge when the number of 

reported towers increases (refer again to Tables 3 to 5 and Figures 9(a) to 9(c)). 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 9. Range of error concerning the number of reported towers in (a) South Jakarta,  

(b) South Tangerang, (c) Malang City, and (d) standard deviation of error in each city 

 

 

 
 

Figure 10. Aggregate mean and standard deviation of error in each testbed. More dense BTSs decrease errors 

(as shown by the results of South Jakarta testbed) 
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In terms of the number of reported towers, their distributions approximate a normal curve with a 

median of 5 for all testbeds. This is coherent with our previous finding that the CDFs of 5 towers are close to 

those of the aggregates as shown in Figure 11. Table 6 gives the resume of the results from merged testbeds, 

based on the smallest prediction error of each metric. The resume shows that three of the four best results are 

given by 7 Towers involvement, and also three of the four best results are from the South Tangerang testbed. 

The resume suggests that better results are likely achieved when there are more towers involved within the 

region having a lot of open space. For comparison, here we give the test results from other research in their 

testbed: i) Relative received signal strength [6]: 29 m mean error (Cairo, Egypt); ii) CellSense [7]: 30 m 

median (Cairo, Egypt); iii) Bayesian [7]: 52.8 m mean error (Tokyo, Japan); and iv) Pearson coefficient 

correlation [8]: 80% of error is below 300 (unmentioned location). 

 

 

 
 

Figure 11. Distribution of reported towers among testbeds 

 

 

Table 6. The smallest prediction error in each metrics 
Metric The best result (meters) The testbed and the number of reported towers  

Average 39.60 South Tangerang, 7 towers  

Maximum 197.08 South Jakarta, 7 towers 
Minimum 0.05 South Tangerang, 4 towers 

Standard deviation 39.22 South Tangerang, 7 towers 

 

 

4. CONCLUSION 

This research presents an optimization model for the prediction of mobile device location using 

NMR and fingerprinting techniques. The proposed method demonstrates a notable level of accuracy in 

comparison to other prominent methods. The present research yields several consistent patterns that have 

been observed in our findings. Generally, a greater number of reported towers corresponds to a narrower 

range of error predictions, as well as a lower average and standard deviation of errors. The stability and 

consistency of error predictions, error average, and standard deviation increase as the density of BTSs in each 

observed area increases. The observed distribution of reported towers tends to approximate a normal 

distribution. By considering a range of 3 to 7 reported towers, the CDF of the aggregate tends to approach the 

CDF of 5 reported towers. 
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