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 The utilization of games in training the reinforcement learning (RL) agent is 

to describe the complex and high-dimensional real-world data. By utilizing 

games, RL researchers will be able to evade high experimental costs in 

training an agent to do intelligence tasks. The objective of this research is to 

generate intelligent agent behaviors in multi-agent game artificial 

intelligence (AI) using deep reinforcement learning (DRL) algorithm. A 

basic RL algorithm called deep Q network is chosen to be implemented. The 

agent is trained by the environment's raw pixel images and the action list 

information. The experiments conducted by using this algorithm show the 

agent’s decision-making ability in choosing a favorable action. In the default 

setting for the algorithm, the training is set into 1 epoch and 0.0025 learning 

rate. The number of training iterations is set to one as the training function 

will be repeatedly called for every 4-timestep. However, the author also 

experimented with two different scenarios in training the agent and 

compared the results. The experimental findings demonstrate that our agents 

learn correctly and successfully while actively participating in the game in 

real time. Additionally, our agent can quickly adjust against a different 

enemy on a varied map because of the observed knowledge from prior 

training. 
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1. INTRODUCTION 

Technology is developed to help humans perform complicated work that either involves dangerous 

work or complex computation. Inventions such as computers and smartphones are some good examples of 

technological development that enables humans to work in a smart, simple, and efficient manner through a 

variety of smart programs. An example of a smart program is the virtual intelligence assistant developed by 

Google which can recognize and process our voice as an input, the Google Assistant. This smart program has 

a trainable intelligence that will get better in recognizing voice and processing tasks as long as it has a decent 

amount of input and training time. This man-made intelligence is called artificial intelligence (AI). 

Google DeepMind and OpenAI are companies that show AI potential in solving problems that can be 

trained in a simulated environment. Reinforcement learning (RL), one of the machine learning (ML) methods, is 

utilized by these companies to train an expert agent who outperforms humans in the game. The utilization of the 

game in training the RL agent is to describe the complex and high-dimensional real-world data [1]–[9]. By 

utilizing games, RL researchers will be able to evade high experimental costs in training an agent to do 

intelligence tasks [10]. However, RL application is still impacted by high sample complexity, especially in 
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multi-agent systems. To solve this problem, Loftin et al. [11] formally define the concept of strategically 

effective exploration in Markov games and use this to create two finite Markov game learning algorithms. 

In an end-to-end framework, the combination, known as deep reinforcement learning (DRL), 

significantly enhances the generalization and scalability of conventional RL algorithms by instructing agents to 

make decisions in high-dimensional state space, such as playing video games, controlling robots, and making 

decisions in various real-world applications. Examine the evolution of DRL research with a particular emphasis 

on AlphaGo and AlphaGo Zero [12], [13]. Research by Li [14] discusses key components, significant 

mechanisms, and a range of applications while providing an overview of DRL achievements. Meanwhile, 

Perakam et al. [15] introduce the first deep-learning model that can successfully learn control policies from 

high-dimensional sensory input. The model is a convolutional neural network that was trained using a variation 

of Q-learning, with raw pixels as its input, and an estimation of future rewards as its output. More recently, the 

RL algorithm was implemented in [15]–[22] which mostly aims to generate intelligent agent behavior. This 

research implements RL as the ML algorithm in creating an agent that could outperform humans in the Atari 

game by using the algorithm that is proposed in [23] and the agent is trained by the environment raw pixel 

images and the action list information. 

 

 

2. RESEARCH METHOD 

2.1.  The Markov property 

The state in the RL should satisfy the Markov property. The Markov property defines that a current 

state completely characterizes the state of the world, hence the current state is independent both towards the 

future and past state [24]. In the agent’s environment, the agent transitions to another state through the taken 

action. If the next state could be predicted without knowing/dependent on the preceded events, then the 

mathematical equation of the property is given in (1). 

 

𝑃𝑟{𝑠𝑡+1 = 𝑠́ , 𝑟𝑡+1 = 𝑟 |𝑠𝑡 , 𝑟𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … 𝑟1, 𝑠0, 𝑎0} (1) 

 

2.2.  Markov decision models 

The Markov decision process is the mathematical formulation of the RL defined by the tuple 

(𝑆, 𝐴, ℛ, ℙ , 𝛾), where 𝑆 represents the set of possible states, 𝐴 represents the set of possible actions, ℛ 

represents the distribution of the reward given a (state, action) pair, ℙ represents the transition probability 

i.e., distribution of the next state given (state, action) pair, and 𝛾 represents the discount factor. 

The Markov decision process works will be represented as the main task of the RL’s agent which is 

described through the pseudocode: i) The agent initializes by sampling the environment's initial state 

𝑠0 ~ 𝑝(𝑠0) and ii) Then, from t=0 until done: agent select action 𝑎𝑡, environment samples reward given the 

state and action given 𝑟𝑡  ~ 𝑅( . |𝑠𝑡 , 𝑎𝑡), Environment sample the next state 𝑠𝑡+1 ~ 𝑃( . |𝑠𝑡 , 𝑎𝑡), and Agent 

receives reward 𝑟𝑡 and move to the next state 𝑠𝑡+1. 

Based on this, the agent policy can now be stated as 𝜋𝑡(𝑠, 𝑎) that specifies the choosing action 

mechanics for the agents in each state. The objective of the RL agent is to find the optimum policy 𝜋∗ that 

maximize the cumulative discounted reward ∑ 𝛾𝑡𝑟𝑡𝑡>0 . The optimum policy should be stochastic to fulfill the 

Markov property. Thus, to handle the randomness, the maximum expected sum of reward is taken. 

 

𝜋∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜋

𝔼[∑ 𝛾𝑡𝑟𝑡𝑡≥0 |𝜋] (2) 

 

Initial state sampled from the initial state distribution s0 ~ p(s0), action sampled from the policy given by the 

state at ~ π( . | st), and the next state sampled from the transition probability distribution st+1 ~ p( . | st, at). 

 

2.3.  Value function and Q-value function 

Finding the optimum policy means that the agent has to learn the goodness of a state and the 

goodness of a state-action pair. The value function is the expected cumulative reward from following the 

policy from a state that quantifies the good and bad state. 

 

𝑉𝜋(𝑠) = 𝔼[∑ 𝛾𝑡𝑟𝑡𝑡≥0 |𝑠0 = 𝑠, 𝜋] (3) 

 

The Q-Value function at state 𝑠 and action 𝑎 is the expected cumulative reward from taking the action 𝑎 on 

state 𝑠. 

 

𝑄𝜋(𝑠, 𝑎) = 𝔼[∑ 𝛾𝑡𝑟𝑡𝑡≥0 |𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] (4) 
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2.4.  Q-learning 

The Q-learning uses an action-value function, Q, to approximate the optimal action-value function, 

Q*. Q-learning utilizes the Bellman Equation which is a mathematical equation that is mainly used to solve 

the optimization problem and it is mainly utilized in Dynamic Programming. The equation that is utilized for 

RL is shown in (5). 

 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +  𝛾 max
𝛼

𝑄(𝑠′, 𝑎) (5) 

 

The (5) is a processed Bellman Equation that is used to fit a state and action pair into it. The Q(s, a), 

commonly referred to as the Q value, is calculated through the addition of the immediate reward r(s, a) 

added by the maximum value of the highest possible Q value from the next state (s’) in the response of taking 

an action (a) time a discount factor gamma (γ). A discount factor, a number between 0 and 1, is used to 

control the importance of the short-term and long-term rewards. When given the chance to obtain a short-

term reward, an agent will be compelled to act avariciously and grab the largest reward as soon as possible, 

which leads to the development of exploitation behavior. In contrast, a long-term reward will have the 

opposite effect. Thus, the goal of Q-learning is to maximize the future cumulative reward that could be 

achieved. The characteristic of this algorithm made it to be called a greedy algorithm. 

The Q-learning algorithm is a reliable solution in the field of RL, especially in uncharted territory. 

Known for its ease of use, Q-learning has fewer parameters, strong exploratory powers, and a convergence 

guarantee. Its independence from the requirement for an explicit model of the environment is one of its 

unique characteristics. Because of this feature, Q-learning is especially useful in situations where it is 

difficult or impractical to obtain an accurate model [25]. Because of its effectiveness in path planning, an 

area where outcomes are optimized, Q-learning has attracted a lot of attention and investigation in academic 

study. The algorithm's adaptability and usefulness in many real-world circumstances are highlighted by its 

capacity to navigate unfamiliar environments and determine optimal policies without the need for a pre-

existing model. 

 

2.5.  Deep Q-network 

A deep Q network combines the deep neural network with the Q-learning mechanics. The neural 

network will replace the Q values tables, and as a result, the neural network will replace the table function to 

approximate Q values. By minimizing the cost function, which will be similar to the mean square error 

function, the algorithm aims to minimize the difference between the initial learning state and the goal state 

where the Q value reaches its final converged value. The cost function of the deep Q network is defined as 

(6): 

 

𝐶𝑜𝑠𝑡 = [𝑄(𝑠, 𝑎;  𝜃) − ( 𝑟(𝑠, 𝑎) +  𝛾 max
𝛼

𝑄(𝑠′, 𝑎))]
2

 (6) 

 

where 𝑄(𝑠, 𝑎;  𝜃) is the new state-action value function which takes trainable weights of the neural network 

(𝜃). 

The main problem of training an agent is to introduce the agent’s independence towards state 

transition. The agent that depends on learning from the exact previous state has a risk of being trapped in the 

unwanted scenario as the agent does not have any other source to learn. Hence, experience replay is 

introduced to stochastically handle the problem. The algorithm is shown in Algorithm 1. 

 

Algorithm 1. Deep Q-learning with experience replay 
Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights 

for episode=1, M do 

 Initialize sequence s1={x1} and preprocessed sequenced ϕ1=ϕ(s1) 

 for t=1, T do 

  With probability ϵ select a random action at 

  otherwise select at=maxaQ*(ϕ(st),a;θ) 

  Execute action at in the emulator and observe reward rt and image xt+1 

  Set st+1=st,at,xt+1 and preprocess ϕt+1=ϕ(st+1) 

  Store transition (ϕt,at,rt,ϕt+1) in D 

  Sample random minibatch of transitions (ϕj,aj,rj,ϕj+1) from D 

  Set yj={
rj                  

rj+γmaxa'Q(ϕj+1,a';θ)
 

for terminal ϕj+1 

for non-terminal ϕj+1 

  Perform a gradient descent step on (yj−Q(ϕj,aj;θ))
2 according to equation 3 

 end for 

end for 



Int J Adv Appl Sci  ISSN: 2252-8814  

 

Generating intelligent agent behaviors in multi-agent game AI using deep reinforcement … (Rosalina) 

399 

3. RESULTS AND DISCUSSION 

Ms. PacMan's environment satisfies the Markov properties, as the agent does not need to know the 

previous state to predict the next state. For example, the agent does not need to know how the bonus fruit 

appears in the game, instead, it could predict in the future to approach the bonus fruit when it does appear on 

the game screen. The system processes high-dimensional pixel data. Therefore, the game’s frame is pre-

processed by the user-defined function to a smaller size (84, 84) with the grayscale color scheme. Figure 1 

illustrates the process of the game frame transformation. 

 

 

 
 

Figure 1. The transformation of the preprocessed game frame 
 

 

The agent's performance in the initial episode is shown in Figure 2. The initial result when the first 

episode runs shows that the agent still trying to explore the surrounding area (Figure 2(a)). The agent 

movement is not smooth which means that the agent did not take 1 action per direction it’s heading into 

(Figure 2(b)). Instead, the agent tries different random actions that cause it to stutter around and end up dying 

while it gathers a 90 score (Figure 2(c)). 

 

 

   
(a) (b) (c) 

 

Figure 2. The agent's performance at the initial episode, (a) the interface of the agent’s initial behavior, (b) 

the agent’s collision with a ghost, and (c) the agent out of lives 

 

 

The states that will be used in the paper will be the pre-processed game frames. The state space 

consists of a lot of states as Ms. PacMan has 1293 distinct locations in the maze. A complete state of Ms. 

PacMan’s model consists of the location of Ms. PacMan, the ghosts, the power pills, along with the ghost's 

previous move, and the information on whether the ghost is edible. 

The agent has nine actions that could be performed at the game which are represented by a single 

integer. These actions are ['NOOP', 'UP', 'RIGHT', 'LEFT', 'DOWN', 'UPRIGHT', 'UPLEFT', 

'DOWNRIGHT', 'DOWNLEFT']. Meanwhile, Ms. PacMan’s reward could be obtained by gathering the 

foods (Pac-Dot), bonus fruit (Fruit), power-up items (Power Pellet), eating a ghost, and chain-eating the 

ghosts. The reward list is shown in the Tables 1 and 2. 
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Table 1. Ms. PacMan's reward space–the foods and ghost-eating scores 
Image Name Score 

  
Pac-Dot 10 points 

  

Power Pellet 50 points 

 

1 Ghost 200 points 

 

2 Ghost 400 points 

 

3 Ghost 600 points 

 

4 Ghost 800 points 

 
 

Table 2. Ms. PacMan's reward space–the bonus fruits 
Image Name Score 

 

Cherry 100 points 

 
Strawberry 200 points 

 
Orange 500 points 

 
Pretzel 700 points 

 
Apple 1000 points 

 
Pear 2000 points 

 
Banana 5000 points 

 

 

The testing was conducted in the local machine in the PyCharm IDE. The observation is conducted 

by observing the output of the neural network per game episode, analyzing the video output, and creating a 

gameplay graph. The initial result when the first episode runs shows that the agent still trying to explore the 

surrounding area. The agent's movement is not smooth which means that the agent did not take 1 action per 

direction it’s heading into. Instead, the agent tries different random actions that cause it to stutter around the 

hall and end up dying. At the end of its life, the agent manages to gather 220 episodes without any utilization 

of power pills which can power up Ms. PacMan to eat the ghost without dying. 

In the default setting for the algorithm, the training is set into 1 epoch and 0.0025 learning rate. The 

number of training iterations is set to one as the training function will be repeatedly called for every 4-

timestep. However, the author also experimented with two different scenarios in training the agent and 

compared the results. The full training scenario is shown in Table 3. 
 

 

Table 3. Testing scenario 
 Epoch Learning rate 

Case A 1 0.3 

Case B 100 0.025 

Default 1 0.025 

 

 

The first scenario, case A, is to set 1 epoch and 0.3 learning rate. The time used to train 100 episodes 

with 1 epoch and 0.3 learning rate is 6 hours. During its 100th gameplay, the agent has undergone 12,595 

training sessions. The agent got a 180 score when it reached the 100th episode. The scores from episode 80 to 

episode 110 mostly dominated around the range of 200–250, the highest score that the agent can reach occurred 

at episode 97 with the score 590. In this case, the agent still tends to act like the initial test. 

The author uses 100 epochs to test whether the agent could run well if the number of training is 

increased. The second scenario, case B, is to set 100 epochs and 0.025 learning rate. The time used to train 

100 episodes is 1 day and 2 hours, or 26 hours in total. During its 100th gameplay, the agent has undergone 

13,023*102 training sessions. In this scenario, the agent behavior has resulted in a more consistent 

exploration, detecting that a lot of the road is emptied from the food that is previously lying around. In this 

scenario, there exist three high scores achieved by the agent which are found at episodes 85, 100, and 104 

with a value of 940, 1,040, and 1,340. Seeing the amount of resources that are exhausted in this testing 

scenario, the author decides that this testing scenario is not feasible to be tested. 
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For the default case, the training is conducted in three different phases because the author 

encountered a technical error during the training session which interrupted the training session. The first 

phase has 547 episodes which is running for 29 hours and 27 minutes. The second phase has 601 episodes 

which is running for 9 hour and 43 minutes. The third phase has 1,001 episodes which is running for 20 hours 

and 8 minutes. Hence, in total, the default scenario was going through 2,149 episodes in 59 hours and 19 

minutes. In this scenario, the agent can reach 100 episodes/hour. However, as the training went on, the 

training speed declined to around 35-40 episodes/hour starting from the 700th–1,001th episode of the second 

phase. The training speed declined as the agent consumed a lot of memory and storage throughout the 

training session. At the start of a training session, the agent only needs less than 2 GB of RAM whereas at the 

halfway of the training, around the 600th episode, the agent consumes around 6.5–8.7 GB of RAM. 

In the first phase, the agent explored any possible actions it could take which is shown by the low 

score achieved (ranging around 200-400 points) and stuttering behavior. Thus, the number of high scores 

achieved at this point cannot be said as a result of an intelligent decision. The average scores graph, depicted 

in Figure 3, shows the trends of improvement in the agent’s performance through 547 episodes. 

The agent started to frequently achieve scores of more than 400 points as shown in the scores history 

graph depicted by Figure 4. The number of high scores achieved also shows an improvement as the score 

graph is updated to more than 2,500 points. The epsilon is set to follow the progress that has been made in 

the first phase with a 0.05 value addition. 

At the third phase of the training session, the agent is also loaded with the second phase training’s 

weight and the latest epsilon of the second phase. The agent's performance at the beginning is much more 

improved than the agent’s performance at the beginning of the first phase. At the end of the third phase, the 

agent reached a maximum score at the 462nd episode with 4,020 points as shown in Figure 5. Around the 

700th episode, the maximum average score peaked at 877.7. The second evaluation agent gained 651.8 

evaluation points. 

The agent performance in the default case shows promising behavior (indicated by the agent’s 

performance improvement in achieving a new higher score). The average scores history graph is presented to 

give more details on the agent’s performance through Figure 6. The figure shows that throughout the learning 

the agent has shown a good trend of improvement. However, after the agent passes the 500th episode, the 

agent shows stagnant performance that almost leads to performance deterioration. 

An additional experiment was carried out on a simpler game environment, Breakout. Breakout is a 

game where a layer of bricks is stationed on the top third of the screen and the goal of the game is to destroy 

all of the bricks using a bouncing ball that the player can hit using a panel that can move horizontally. The 

agent shows similar performance in the game of Breakout as shown by the average score graph in Figure 7. 

In 1000 episodes, the agent still iterates through the exploration phase as shown by the fluctuation of the 

average score graph. 

In this research, the author implements the algorithm featured in [9], where the result of this paper is 

shown in Figure 8. However, due to the experimental parameters, which are a combination of experimental 

and recommended values, the code’s performance may not be optimal. There are a lot of sources that give a 

better approach to either construct the algorithm or set the recommended parameters, but these approaches 

require more expert knowledge that needs to be understood and studied which requires a lot of time. 

 

 

  
  

Figure 3. The first phase score graph Figure 4. The second phase score graph 
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Figure 5. The third phase score graph Figure 6. The third phase average score graph 

 

 

 
 

Figure 7. The Breakout average score graph 

 

 

 
 

Figure 8. The average reward per episode on Breakout and Seaquest result in paper [9] respectively during 

training 

 

 

4. CONCLUSION 

Even though the agent training progress shows a good trend of improvement, this research cannot be 

said successful in creating an agent that could master and exploit Ms. PacMan. The author found that the 

choosing action mechanism works as intended. The agent first discovers new possibilities until the agent 

exploits a good approach to get a better result. The agent’s got a stagnant score after passing the 500th 

episode followed by the downfall in the latest episode. This pattern is assumed to happen because of the 

agent’s behavior to exploit the action that is not resulting in the desirable result as the agent’s performance 

and behavior around 1000 episodes is not perfect which means the agent is still learning. Hence, the agent 

that exploits the non-desired action got a downgrade in its performance. 
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At the end of the experiment, the agent can move with less stuttering per frame explore a large 

amount of area, and utilize some power pills before it runs out of life. Looking at the results of the 

experiment, the author believes that the RL could be a great approach to solving real-world problems. The 

author encourages other students to study this field. It should be noted that further knowledge is required as 

the real-world problem is more complicated than a game which means that a basic RL algorithm will only be 

fundamental to solve the problem. 
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