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 Soil-transmitted helminth (STH) infection remains a significant global 

health challenge, affecting millions of people, particularly in developing 

countries. A convolutional neural network (CNN) approach to optimize the 

detection of STH infections in microscopic images. The study aims to assess 

the effectiveness of the CNN model in identifying and classifying STH 

worm eggs accurately. The research employs MATLAB as the primary tool 

for conducting experiments and validation tests. By implementing image 

preprocessing techniques to enhance image quality and applying precise 

segmentation methods, the CNN model is trained on a dataset of 

microscopic images to learn and classify STH infections effectively. The 

validation test results demonstrate that the CNN model achieved a high 

accuracy rate of 92.31% in classifying STH infections. This accuracy 

surpasses traditional methods, which are time-consuming and susceptible to 

human errors. This study underscores the importance of integrating artificial 

intelligence, particularly CNN, into the healthcare domain to support 

detecting and diagnosing diseases requiring specialized expertise, such as 

STH infections. The findings of this research can serve as a valuable 

reference for researchers, medical practitioners, and data scientists in 

leveraging artificial intelligence to enhance the quality of healthcare 

services, leading to positive impacts on society worldwide. 
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1. INTRODUCTION 

Soil-transmitted helminth (STH) infections are significant and pose a substantial global health 

problem, especially in impoverished nations with subpar sanitation and limited access to healthcare facilities 

[1]–[7]. STH is a group of parasitic worms commonly found in the soil that can infect humans through direct 

contact with contaminated soil or by consuming food or water contaminated with worm eggs [8]–[12]. 

Infections induced by STH are among the most widespread infections in the world, with an estimated 1.5 

billion infected people or 24% of the world's population [2], [3], [12]–[16]. In Indonesia, STH infections 

remain a major concern due to close links with socio-economic conditions, personal hygiene, and 

environmental factors [12], [14], [17]–[20]. The prevalence of worm infections among children aged 1-12 

years in several provinces is relatively high, ranging from 30% to 90% [13], [14], [21]. 

The primary challenge that this research attempts to solve is how inadequate the present approaches 

are for identifying infections caused by STH, especially in areas with poor resources and restricted access to 
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medical care. Even though STH infections are quite common and have a big effect on public health, the 

methods of identification that are now in use have a lot of drawbacks [22]. These include laborious 

procedures, a high risk of human error, and inefficiency. 

Despite the scale of the problem, early and accurate detection of STH infections is hindered by the 

time-consuming and labor-intensive nature of traditional microscopic image analysis which is crucial for 

reducing the disease burden and preventing serious complications that may arise from undetected infections 

[5], [16], [17], [23]. One commonly used detection method involves analyzing microscopic images of human 

stool samples, where the presence of worm eggs can be identified and counted [9], [24]–[26]. Although 

microscopic image analysis has proven effective in detecting STH worm eggs, the process often requires 

significant time and effort as it needs to be carried out by skilled personnel and may be prone to human 

errors. The need for skilled personnel increases the likelihood of human errors, underscoring the urgency for 

a faster and more automated approach. Therefore, a faster and more automated approach is needed for 

detecting STH infections in microscopic images [22]. 

Recent advancements in artificial intelligence, specifically convolutional neural network (CNN), 

offer a promising avenue for addressing this challenge. In the past decade, particularly CNN has shown great 

potential in image analysis. A perfect illustration of a neural network created artificially is CNN architecture, 

inspired by human visual processing and has been used advantageously to solve a variety of pattern 

recognition concerns, including medical image analysis. In the context of detecting STH infections in 

microscopic images, the use of CNN holds promising solutions [2], [15], [27]. By training CNN on properly 

annotated microscopic image datasets, the neural network can learn to recognize and distinguish STH worm 

eggs from other elements in the images efficiently. The anticipated outcome is an automated and efficient 

detection method that minimizes the need for manual intervention in the image analysis process. 

This research aims to optimize the approach of STH infection detection using CNN on microscopic 

images. The practical use of CNN is anticipated to enhance diagnosis speed and accuracy while eliminating 

requirements of personal involvement across the image analysis process [28]–[31]. The results of this 

research are expected to make a significant contribution to efforts in preventing and controlling STH 

infections, especially in regions with high prevalence rates [5], [9], [23]. With an automated and efficient 

detection method, the handling of STH infections can be more timely and effective, thereby minimizing their 

negative impact on public health. Moreover, this research may pave the way for the application of artificial 

intelligence technology in other healthcare fields that require image analysis, with the potential to expand AI 

applications in the healthcare sector. The current research changes the path to highlight the urgent need for 

automation and innovation in the domain of STH infection diagnosis in light of these difficulties. The 

awareness of the shortcomings of current methods serves as a stimulus for promoting a paradigm change for 

the adoption of more sophisticated and effective techniques. It lays out an explicit path for the next portions 

of the research, which will concentrate on using CNN abilities to transform the field of STH infection 

identification in microscopic photographs. 

 

 

2. RESEARCH METHOD  

The research methodology employed in this study leverages the CNN method, a dynamic and 

evolving approach within the realm of image analysis and pattern recognition [32]–[34]. The CNN known as 

CNN, is strongly influenced by the manner in which human visual perception operates. This method has 

brought significant changes in various applications related to image processing, including in the health sector, 

such as detecting STH infection in microscopic images. CNN is designed to process image data in the form 

of a pixel matrix and study the patterns and distinctive features contained therein [35]–[39] In contrast to 

traditional methods that require manual feature extraction, CNN can automatically extract important features 

from images during the training process. 

There are some notable issues in the context of our work that require further attention and research. 

The following crucial elements stand for open issues and areas that need improvement. Even though STH can 

be detected using CNN, our study still faces difficulties in automatically extracting pertinent features from 

microscopic pictures [22]. Improving the network's capacity to recognize and extract minor but important 

elements on its own might improve STH classification accuracy even more. In the context of STH 

classification, it is necessary to enhance the interpretability and explainability of CNN decisions because they 

function as intricate, opaque models. More confidence and acceptance of the suggested strategy in clinical 

settings would result from the development of techniques to clarify the reasoning behind CNN-based 

diagnoses [22]. 

In this research, utilizing a CNN for classifying STH is a direct and effective method, highlighting 

the desirability of transfer learning [37], [40]–[42]. This approach enables faster implementation with 

reduced code and complexity. This research example showcases seven straightforward steps for 

implementing the STH classification: dataset loading, dataset splitting into training and validation sets (80:20 
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ratio), dataset resizing to fit the CNN's input layer size, examination of the network to identify the feature 

learner and classification layer, modification of these layers as necessary, definition of training options, and 

finally, training the network. The methodology presented in this study delineates seven straightforward steps 

for the STH classification implementation. These steps are as shown in this research are i) load the dataset, ii) 

divide the dataset in an 80:20 ratio into training and validation datasets, iii) resize the dataset to match the 

input layer size of the CNN, iv) inspect the network and identify the feature learner and classification layer, 

v) modify the feature learner layer and classification layer as needed, vi) define training options, and vii) 

train the network. 

By following these steps, the CNN can be effectively utilized for classifying STH, saving time, and 

effort in the implementation process. Figure 1 illustrates the overview of the transfer learning process. CNN 

will update its weights based on the values of each image pixel in the training dataset and perform a 

convolution process on each predetermined filter [43], [44]. Then the convolution results will be processed 

using the activation function and used as input for the next layer. This process will continue to repeat until, 

finally, the model is sufficiently precise to the desired level [30], [45]. Once the CNN model has been 

trained, it may be applied to new microscopic photographs to generate predictions [46]–[48]. The image to be 

predicted will go through the same process as the test dataset: the convolution process, the activation 

function, and the next layer to produce the predicted output. In detecting STH infection, the prediction output 

of the CNN model will show the probability of STH infection in the faeces images. If the probability is above 

a predetermined threshold, the image can be classified as an STH-infected stool image. Conversely, if the 

probability is below the threshold, then the image can be classified as a stool image that is not infected with 

STH. Our CNN-based STH detection technology must be translated into real-world clinical situations, which 

means real-time deployment and execution issues. To enable realistic, rapid implementations in healthcare 

settings, more research is needed to optimize the computational efficiency and resource requirements of the 

model. By acknowledging and actively seeking solutions to these unsolved problems and areas requiring 

improvement, our manuscript aims to contribute not only to the advancement of STH detection 

methodologies but also to the broader field of medical image analysis and artificial intelligence in healthcare. 

 

 

 
 

Figure 1. STH detection using CNN 
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3. RESULTS AND DISCUSSION 

In this study, the CNN method can be used to detect STH infection in microscopic faeces images 

using processed faeces image datasets. The CNN model training process is carried out by updating the 

weights on each image pixel in the training dataset and performing a convolution process on each 

predetermined filter. After being trained, the CNN model can be used to make predictions on new faeces 

images by showing the probability of STH infection in the faeces images using the parameter shown in Table 1. 

To test for the presence or failure to detect Ascaris lumbricoides, trichuris trichiura, and hookworm 

eggs in the faeces, descriptive cross-sectional MATLAB code was utilized in this experiment. The training 

and validation loss and accuracy graphs shown in Figure 2 provide insight into how a CNN model performs 

during the training and testing process. In this study, we have monitored the loss and accuracy graphs to 

understand to what extent the CNN model successfully recognizes and classifies STH infection on 

microscopic images using MATLAB. Figure 2 shows the accuracy graph of how the CNN model improves 

its ability to recognize STH infections over time. Initially, the accuracy value in training and validation may 

be relatively low because the model is not yet effective in classifying infections. However, as the epoch 

progresses, the accuracy increases as the model learns and improves the classification of STH infections. 

 

 

Table 1. GoogleNet architecture parameter used 
Parameter Value 

Mini batch size 5 
Max epochs 6 

Initial learn rate 0.0003 

Optimizer adam 
Weight learn rate factor 10 

Bias learn rate factor 10 

 

 

 
 

Figure 2. Training and validation of accuracy 

 

 

The loss graph, as shown in Figure 3 is the change in the value of the loss function at each epoch 

during the training and validation process. At the beginning of training, the Loss value tends to be high 

because the model has not yet received a proper representation of the features of STH infection. However, as 

the epoch progresses, loss values gradually decrease as the model learns to recognize the distinctive patterns 

and features associated with STH infection. 

From the training and validation graphs of loss and accuracy, we can conclude that the CNN model 

in this study successfully identified STH infection on microscopic images with a high degree of accuracy. 

The graph shows that the model effectively learns the characteristic features of STH infection and can 

classify them appropriately. In addition, high validation accuracy demonstrates the ability of the model to 

generalize to new data, highlighting the model's accuracy and dependability in spotting STH infection in 

general as shown in Figure 4. 

CNN testing using MATLAB with training data of more than 1,500 images resulted in an accuracy 

rate of STH detection reaching 92.31%, as shown in Figure 3. The achieved accuracy of 92.31% 

demonstrates the efficacy of using CNN for detecting STH infections in microscopic images. This high 
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accuracy rate showcases the CNN model's ability to learn and recognize distinctive features associated with 

STH worm eggs, enabling precise classification. 

The accuracy level achieved in this study highlights the reliability of CNN for enhancing the 

efficiency and accuracy of STH infection detection. Compared to traditional methods, which often require 

manual intervention and may lead to errors, the CNN-based approach is more robust and less prone to human 

biases. Furthermore, the high accuracy rate achieved in this research indicates the possibility of employing 

this CNN model as an assistive tool for healthcare professionals. By automating the STH detection process, 

the CNN can potentially save valuable time and resources, eventually allowing prompt treatment and earlier, 

more precise diagnostics. 

 

 

 
 

Figure 3. Training and validation of loss 

 

 

 
 

Figure 4. Result of training and validation loss and accuracy 

 

 

4. CONCLUSION 

Based on the results of the conducted research, it can be concluded that optimizing microscopic 

image detection of STH infection using a CNN is a highly promising and effective approach. By 

implementing image preprocessing techniques to enhance image quality and employing accurate 

segmentation techniques, the CNN model can identify and classify STH worm eggs in microscopic images 
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with a high level of accuracy. The incorporation of clinical data, such as patient demographics and associated 

symptoms, could significantly enrich the context of STH infection detection. Integrating this information into 

the CNN model presents an area for improvement, potentially enhancing the diagnostic capabilities and 

contributing to a more holistic understanding of infection patterns. Using CNN to detect STH infections in 

microscopic images offers significant advantages over traditional methods that are time-consuming and prone 

to human errors. This technology provides a quick, accurate, and efficient solution for diagnosing STH 

infections, aiding in global disease control and management efforts. Furthermore, this research also 

highlights the importance of using artificial intelligence technology in healthcare, particularly in supporting 

the detection and diagnosis of diseases that require specialized expertise, such as STH infections. It is hoped 

that this study can serve as a valuable guide for researchers, medical practitioners, and data scientists in 

harnessing artificial intelligence to improve the quality of healthcare services and positively impact society 

globally. 
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