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 Integrating field rainfall data with satellite data improves data accuracy and 

overcomes rainfall data limitations for rain thresholds. Integration can 

involve field rainfall data, satellite rainfall data, or a different satellite 

dataset. Merging these rainfall data sources provides more spatial coverage 

of satellite data. To determine how well rainfall thresholds predict rainfall-

triggered landslides, the threshold model must be validated. This study will 

evaluate satellite rainfall data before and after integration in developing a 

rainfall threshold model for landslide prediction in Badung Regency. To do 

so, the study used a cumulative rainfall threshold over 3, 7, 15, and 30 days 

and two rainfall satellite products (integrated merged multi-satellite 

retrievals (IMERG) and precipitation estimation from remotely sensed 

information using artificial neural networks (PERSIANN)). Median, first, 

and third quartiles were used to set thresholds. The area under the curve 

(AUC) was calculated to validate rainfall threshold outcomes using receiver 

operating characteristic (ROC) curves. Analysis showed that integrating 

satellite rainfall data into the rainfall threshold model for landslide prediction 

yields better results than other methods. An AUC value of 0.903 (90.3%) for 

the 30-day cumulative rainfall thresholds supports this claim. This model 

could be a good input for a landslide early warning system in Badung 

Regency. 

Keywords: 

Badung 

Integration 

Landslide 

Rainfall 

Threshold 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Putu Aryastana 

Department of Civil Engineering, Faculty of Engineering and Planning, Warmadewa University 

Denpasar, Bali 80235, Indonesia 

Email: aryastanaputu@yahoo.com 

 

 

1. INTRODUCTION 

Precipitation in a particular geographic area may be the cause of landslides. Rain-induced landslides 

are a result of the buildup of hydrostatic pressure within the soil [1]. The occurrence of landslides has 

extensive ramifications, encompassing the loss of human lives, material destruction, and substantial 

degradation of the environment. To reduce the number of casualties, it is crucial to implement mitigation 

strategies, which make it necessary to establish an effective early warning system [2]. One method that can 

be employed is the incorporation of rain thresholds within the context of the early warning system. The 

accessibility of components related to rainfall predictions is a crucial factor in this system [3]. A multitude of 

scholars have undertaken endeavors to establish precise thresholds of rainfall in order to effectively predict 

slope collapse and landslides. The parameters taken into consideration include average rainfall, duration of 

the rainfall event, the ratio of rainfall to daily rainfall, previous rainfall in relation to the annual average 

rainfall, and the ratio of daily rainfall to the maximum previous rainfall [1], [4]–[9]. Rainfall is the 

predominant factor considered in the examination of rainfall thresholds that initiate landslide occurrences. 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 13, No. 2, June 2024: 197-208 

198 

Therefore, the incorporation of additional rainfall data is imperative in order to complement the existing data 

obtained from rainfall stations. 

The collection and analysis of rainfall data play a crucial role in the identification of changes in 

climate patterns and the comprehension of the hydrological cycle. However, the collection of rainfall data 

using rain gauges is subject to limitations and spatial irregularities, which restrict its applicability to a 

specific geographic area. This phenomenon is especially noteworthy in areas that are distinguished by 

complex topographical features [10]. An alternative methodology entails utilizing satellite-derived rainfall 

grid datasets (SRGDs) to produce information that is not only more precise but also by actual environmental 

circumstances [11]. A number of SRGDs are commonly utilized, including the tropical rainfall measuring 

mission (TRMM), global satellite mapping of precipitation (GSMaP), global precipitation measurement-

integrated merged multi-satellite retrievals (GPM-IMERG), climate hazards group infrared precipitation with 

station (CHIRPS), climate prediction center morphing method (CMORPH), precipitation estimation from 

remotely sensed information using artificial neural networks (PERSIANN) [12]–[17]. 

Numerous scholars have conducted prior research to investigate the utilization of satellite-derived 

precipitation data in the determination of rainfall thresholds that trigger landslides. Prominent studies have 

examined the contributions of TRMM [15], [18]–[20], GSMaP [21], [22], IMERG [11], [18], [22]–[24], 

PERSIANN [12], [22], and CMOPRH [9]. Previous studies have identified variations in the effectiveness of 

SRGDs, which can be attributed to regional factors. In addition, there is a certain degree of error that remains 

when comparing this data with measurements obtained from rainfall stations located on the ground. In 

contrast, the aforementioned studies exclusively utilized a singular dataset obtained from satellites in their 

examination of the precipitation thresholds that trigger landslides. Therefore, an alternative methodology 

involves the incorporation of multiple satellite images of rainfall, intending to reduce the inherent uncertainty 

in determining the rainfall thresholds that lead to landslides. 

The amalgamation of earth-based and weather satellite information can be employed to improve the 

accuracy of early rainfall detection, thereby reducing the potential consequences of landslides. The 

enhancement of data accuracy and resolution of limitations associated with rainfall data to determine rainfall 

thresholds can be achieved through the implementation of an integrated approach that combines field rainfall 

data and satellite information. The integration of rainfall data results in a spatial coverage that is more evenly 

distributed in comparison to the exclusive reliance on individual satellite datasets [10]. The integration of two 

separate satellite rainfall datasets to determine rainfall thresholds that trigger landslides is currently subject to 

significant limitations. Previous studies have explored the integration of satellite-derived rainfall data, with a 

prominent example being the merging of SM2RAIN and IMERG datasets. The fusion underwent analysis in 

order to develop a rainfall threshold model within the Indian context. The integration of different satellite 

data products allows for the utilization of the unique advantages offered by each product, while also 

addressing the limitations associated with SM2RAIN's tendency to underestimate rainfall or IMERG's 

tendency to overestimate it, especially in cases of low-intensity rainfall events [24]. The results indicated 

that, among the products evaluated in India, the IMERG dataset performed the best on an hourly basis, while 

the SM2RAIN dataset had a comparatively low error rate. Overall, the analysis of rainfall patterns using the 

combined SM2RAIN and IMERG datasets yielded more accurate results contrasted to the data acquired from 

traditional rainfall measurement sites. Previous research has identified certain constraints in the utilization of 

daily precipitation data to establish thresholds that trigger landslides. Therefore, this study employs a 

methodology that incorporates hourly rainfall data. The successful implementation of a slope instability early 

detection system relies on the effective application of rainfall thresholds that are derived from the integration 

of hourly data [25]. 

Previous scholars analyzed the rainfall events that induce landslides to determine rain threshold 

values using daily, basic, and monthly rainfall data and using only one rain satellite [1], [4]–[9], [26]. 

Furthermore, scholars on the utilization of SRGDs such as IMERG in the development of rain thresholds 

have better performance for hourly rainfall data [24]. Furthermore, the utilization of rainfall thresholds in the 

advancement of early detection systems has been undertaken in previous research. Several researchers have 

attempted to establish the threshold for rainfall in accurately predicting slope instability or landslides. This 

has been achieved by considering parameters such as average rainfall, the duration of rainfall events, the ratio 

of rainfall to daily rainfall, previous rainfall to average annual rainfall, and daily rainfall to the maximum 

ratio of previous rainfall [1], [4]–[9], [27]. The utilization of SRGDs in determining rain thresholds for 

landslide events is still limited, especially in Bali Province [22]. Moreover, previous studies have not 

analyzed rainfall thresholds based on the integration of high temporal-spatial resolution of SRGDs. 

Therefore, the novelty of this research involved establishing the precipitation threshold through the 

integration of datasets with high temporal-spatial resolution, specifically the IMERG and PERSIANN 

datasets. Conversely, there has been no prior investigation into the examination of rainfall thresholds causing 

landslides in Badung Regency. Therefore, the recent study would like to evaluate satellite rainfall data before 
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and after integration in developing a rainfall threshold model for landslide prediction in Badung Regency. 

This investigation aims to enhance the effectiveness of SRGDs, providing another option for identifying 

rainfall thresholds that lead to landslide events. 

 

 

2. RESEARCH METHOD 

2.1.  Study area 

This research was conducted in the Badung Regency, located in Bali (Figure 1). Geographically, 

Badung Regency spans an area of 418.52 km², constituting approximately 7.43% of Bali Province's total land 

area. The geological conditions of Badung Regency are mostly young volcanic products consisting of 

volcanic breccia, passive tuff, and lava deposits. Most of the soils in Badung Regency are classified as 

Inceptisols made from intermediate volcanic ash and tuff. Meanwhile, when viewed from the topographic 

conditions, the slope of Badung Regency is grouped into 7 (seven), namely slope 0-3%, is a flat area, slope 

>3-5%, is a gentle area, slope >5-10% is an undulating hilly area, slope >10-15% is a slightly sloping area, 

slope >15-30% is a sloping area, and slope >30-70% is a very steep area. The further north the slope is the 

higher [28]. 
 

 

 
 

Figure 1. The map of Badung Regency contains the distribution of the landslide events, rain gauge stations, 

and elevation 

 

 

2.2.  Landslide event 

The information utilized in this study comprises landslide data spanning from 2015 to 2022. 

Landslide data required includes the location of the incident, date of the incident, coordinates of the incident 

location, area affected, and level of loss. The landslide data was obtained from the report of the Regional 

Disaster Management Agency of Badung Regency. Landslide data is required to conduct rainfall threshold 

analysis. Petang District has the highest number of landslide events, amounting to 57% of the total landslide 

events in Badung Regency. This is indicated because the Petang district which is located in the northernmost 

area of Badung Regency has an area with a slope above 45% (very steep). Followed by Mengwi District with 

20% of landslides, then Abiansemal District with 16% of landslides. Other districts in this regency tend to be 

dominated by sloping areas (slope 0-8%), namely Kuta, North Kuta, and South Kuta. It also shows that the 

incidence of landslides in these areas is the lowest among other areas, see Figure 2. 
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Figure 2. The percentage of landslide occurrences in each district over Badung Regency 

 

 

2.3.  Rainfall dataset 

This study uses two rainfall data, namely rainfall data consisting of hourly rainfall measurements 

obtained from the Balai Wilayah Sungai Bali-Penida (BWSBP), Ministry of Public Works and Human 

Settlements of Indonesia with selected rainfall stations namely Mambal, Sading, and Unud. Meanwhile, the 

SRGDs used are IMERG and PERSIANN. IMERG data exhibits a spatiotemporal resolution of 0.1°×0.1° at 

30-minute intervals. IMERG satellite rainfall (Integrated Multi-satellite Retrieval for GPM or Global Rainfall 

Measurement) is the latest replacement for the TRMM satellite. As an earth-orbiting satellite, IMERG data 

provides a 30-minute, daily, and monthly report of the total rainfall that falls in an area [16], [29], [30]. 

IMERG data can be downloaded from the GPM National Aeronautics and Space Administration (NASA) 

website [31]. This study uses the PERSIANN-cloud classification system (CCS) which can estimate global 

rainfall with a spatial acuity of 0.04° (nearly 4×4 km) [32]. The rainfall data from the PERSIANN satellite 

was acquired from the website of the Center for Hydrometeorology and Remote Sensing (CHRS) [33]. 

 

2.4.  Determination of rainfall thresholds 

The precipitation threshold for landslide occurrences is characterized as the pivotal limit of rainfall 

conditions that can either initiate or abstain from causing landslides [34]. The identification of these 

precipitation conditions involves an examination of the statistical correlation between the intensity and 

duration of rainfall, as illustrated in a scatter diagram [1]. The probability of the rainfall amount during 

landslide-triggering events has also served as a basis for establishing thresholds in numerous prior studies 

aimed at developing an early warning system [1], [20], [35]. This threshold was defined using cumulative 

rainfall parameters. These thresholds are defined using cumulative rainfall parameters. Cumulative rainfall 

for precipitation events is computed for various time intervals, such as 3, 7, 15, and 30 days leading up to the 

occurrence of landslides, see Figure 3. To ascertain the threshold rainfall value, this study employs statistical 

location measures including the primary quartile (Q1), secondary quartile (Q2), and tertiary quartile (Q3). 
 

 

 
 

Figure 3. Definition of rainfall conditions before landslide occurrences 

 

 
Figure 1. Definition of rainfall events before landslide events 
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2.5.  Fusion of rainfall dataset 

The combination or fusion of satellite rainfall data involves applying weights determined by the 

correlation coefficient of each satellite rain data with the rainfall station [24], [36]. In this research, to 

amalgamate rainfall estimates acquired through various methods for landslide prediction, a composite 

satellite rainfall product was generated by merging IMERG and PERSIANN data, which was then employed 

as input for establishing rainfall thresholds. The merging of satellite rainfall data serves to address 

discrepancies in individual satellite datasets, like PERSIANN underestimating or IMERG overestimating 

during low-intensity rainfall occurrences [24]. The combination of satellite data is obtained using the (1). 

 

𝑆𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑆𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁 + 𝑤𝑖(𝑆𝐼𝑀𝐸𝑅𝐺 − 𝑆𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁) (1) 

 

In this context, 𝑤𝑖  denotes the integration weight, varying between 0 and 1, and is computed for each pixel 

according to (2) [36]. 

 

𝑤𝑖 =
𝜌𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁 .𝑅 − (𝜌𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁.𝐼𝑀𝐸𝑅𝐺 .𝜌𝐼𝑀𝐸𝑅𝐺.𝑅 ) 

𝜌𝐼𝑀𝐸𝑅𝐺.𝑅 −(𝜌𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁.𝐼𝑀𝐸𝑅𝐺 .𝜌𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁 .𝑅 )+𝜌𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁 .𝑅−  (𝜌𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁.𝐼𝑀𝐸𝑅𝐺 .𝜌𝐼𝑀𝐸𝑅𝐺.𝑅 .) 
 (2) 

 

2.6.  Performance analysis of rainfall thresholds 

Threshold performance is calculated by a confusion matrix that contains actual landslide events with 

predicted landslide events which results in four conditions that can occur. True Positive occurs if rainfall 

triggers a landslide in both the actual event and the predicted event (1, 1). True Negative is when rainfall 

does not trigger landslides in the actual or predicted event (0, 0). A false Positive is when rainfall does not 

trigger landslides in the actual event, but according to the prediction, rainfall can trigger landslides (0, 1). 

False Negative is when rainfall can trigger landslides in the actual event, but according to prediction, it does 

not trigger landslides (1, 0) [23]. The evaluation of the thresholds' efficacy was assessed using various 

statistical quantifiers derived from computations, as outlined in Table 1. Table 2 presents the specific 

statistical quantifiers used in the analysis. 

In this research, ROC analysis is employed to assess the precision of the rainfall threshold model in 

predicting whether rainfall events will induce landslides or not. The region below the curve, indicating the 

accuracy of the experimental model, is determined using a calculation method referred to as the area under 

the curve (AUC), as illustrated in Figure 4. The AUC represents a square-shaped area, with its value 

consistently falling between 0 and 1. A value of 0.5 is associated with random performance, as it produces a 

curve in the shape of a diagonal line connecting points (0, 0) and (1, 1). The categorization of AUC levels is 

detailed in Table 3. 

 

 

Table 1. Cross-tabulation table [23] 

Predictions made by the model 
Occurrences of landslides 

Yes No 

> Criterion True positive (TP) False positive (FP) 

≤ Criterion False negative (FN) True negative (TN) 

 

 

Table 2. Metrics employed for evaluating the effectiveness of the thresholds [23] 
Statistical Indices Equation 

True positive rate (TPR) 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False positive rate (FPR) 
𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Accuracy 
𝐴𝑐𝑐 =  

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁
 

 

 

Table 3. Categorization of AUC values [23] 
Value AUC Description 

0.5 No discrimination, random guesses 

0.5 < 𝐴𝑈𝐶 ≤ 0.6 Poor discrimination 

0.6 < 𝐴𝑈𝐶 ≤ 0.7 Acceptable discrimination 

0.7 < 𝐴𝑈𝐶 ≤ 0.8 Excellent discrimination 

0.9 < 𝐴𝑈𝐶 Outstanding discrimination 
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Figure 4. ROC and AOC for rainfall threshold models [37] 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Rainfall threshold results 

Derived from the approach employed in the analysis of rainfall threshold values in this investigation, 

it was found that there was an increase in value for each cumulative rainfall variation. The three threshold 

values have different patterns, the largest threshold is obtained from the 30-day cumulative rainfall for 

IMERG (Figure 5), PERSIANN (Figure 6), and the integration between IMERG and PERSIANN (Figure 7). 

The result shows that some landslide events are associated with very low rainfall. However, in general, 

landslide events occur after heavy rainfall and last for several days. Based on the results of the rainfall 

threshold analysis for all 3, 7, 15, and 30 days of cumulative rainfall from three satellite rainfall products, the 

largest threshold value is obtained from the third approach (Q3), subsequently, the second approach (Q2) and 

finally the first approach (Q1) as shown in Figures 5(a)-(d), Figures 6(a)-(d), and Figures 7(a)-(d). The 

threshold of the third approach has the largest value in the cumulative 30 days, namely 413.50 mm for 

IMERG; 437.00 mm for PERSIANN, and 413.95 mm for the integration between IMERG-PERSIANN. 

Followed by the second method's thresholds of 284.71; 285.50; and 287.66 mm. Last is the lowest threshold 

of the first method, with threshold values of 208.31; 205.00; and 213.35 mm. Then for the smallest threshold 

value obtained from the 3-day cumulative rainfall of the three satellite rainfall products IMERG, 

PERSIANN, and IMERG-PERSIANN integration. The thresholds of the third method are 62.58; 67.75; and 

62.44 mm. Then for the second method of 38.75; 32.00; and 38.79 mm. As for the values of 19.07; 18.00; 

and 17.52 mm for the first method. 
 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 5. Various accumulation rainfall thresholds of the IMERG dataset: (a) for 3 days period,  

(b) over 7 days, (c) across 15 days, and (d) within 30 days 
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(a) (b) 

  

  
(c) (d) 

  

Figure 6. Various accumulation rainfall thresholds of PERSIANN dataset: (a) for a 3-day period,  

(b) over 7 days, (c) across 15 days, and (d) within 30 days 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 7. Various accumulation rainfall thresholds of the IMERG and PERSIANN Fusion:  

(a) for a 3-day period, (b) over 7 days, (c) across 15 days, and (d) within 30 days 

 

 

Thresholds for landslides, determined from cumulative rainfall, exhibit a wide range, spanning from 

under 17 mm to over 400 mm. This variability underscores the significant influence of factors such as 
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location and the methodology employed in establishing the threshold line [1]. Regions characterized by 

elevated terrain featuring steep slopes and low-lying areas with relatively flat slopes will experience distinct 

rainfall intensities preceding landslides, leading to varied rainfall thresholds. Furthermore, when determining 

landslide thresholds for a specific location, factors such as seasonal variations, land cover, and soil conditions 

should be taken into account, contributing to divergent threshold values even when assessing identical 

locations. 

 

3.2.  Performance analysis 

Based on 316 landslide events spread across Badung Regency, the number of rainfall events that 

caused landslides (TP), no landslides (TN), and accuracy (ACC) were obtained. Figure 8 shows the results of 

ROC analysis showed that for 3,7,15, and 30 days of cumulative rainfall from the IMERG dataset  

(Figure 8(a)), PERSIANN dataset (Figure 8(b)), and Fusion of IMERG and PERSIANN (Figure 8(c)). The 

accuracy level of the AUC and rainfall threshold is reasonably high, as indicated by the results lying above 

the diagonal line. Of the three methods (Q1, Q2, and Q3) used, the first method (Q1) is the best method 

among the other two methods. The first method shows a "good" TPR value with 0.77 for IMERG; 0.76 for 

PERSIANN, and 0.78 for the integration of IMERG and PERSIANN. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 8. ROC for rainfall satellite data: (a) IMERG, (b) PERSIANN, and (c) fusion IMERG-PERSIANN 

 

 

According to the analysis of the confusion matrix results, among the three approaches employed to 

establish rainfall thresholds, the initial method proves to be the most accurate in predicting both landslide and 

non-landslide conditions for each integration of satellite rainfall products. Furthermore, this approach 

exhibits a low prediction error rate when compared to the actual occurrence of landslide events. In addition, 
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the second approach also gives a good prediction for the integration of IMERG-PERSIANN rainfall data 

products (Table 4). 

The AUC value for the rainfall threshold signifies the accuracy level in identifying rainfall events 

that either trigger or do not trigger landslides. The cumulative rainfall of 3, 7, 15, and 30 days for IMERG, 

and PERSIANN satellite data shows that 30 days of rainfall yields better performance. Considering the AUC 

derived from the ROC, the rainfall threshold demonstrates a reasonably high level of accuracy. The results 

obtained for each satellite rainfall product are AUC = 0.755 (75.5%) for PERSIANN and AUC = 0.769 

(76.9%) for IMERG, as presented in Table 5. However, for this study, it is necessary to optimize rainfall data 

both in the correction of rain station data and satellite rain products. This is because in previous research that 

has been done the rainfall threshold 15 days before the landslide event has the highest accuracy (86%) [19]. 

The findings of this investigation reveal that combining IMERG and PERSIANN satellite data yields 

superior outcomes compared to not employing the fusion method when establishing the rainfall threshold 

model for landslides in Badung Regency, indicated by an AUC value of 0.903 (90.3%). A higher accuracy 

value denotes an improved threshold model. The outcomes of this threshold model are anticipated to be 

valuable in the establishment of the landslide preemptive notification system for Badung Regency. 

 

 

Table 4. Threshold model performance 
Method Threshold Line TPR TNR ACC 

Q1 IMERG  Good Good Good 

PERSIANN Good Good Good 

IMERG-PERSIANN Good Good Good 

Q2 IMERG  Not good Good Good 

PERSIANN Not good Good Good 

IMERG-PERSIANN Good Good Good 

Q3 IMERG  Not good Good Not good 

PERSIANN Not good Good Not good 
IMERG-PERSIANN Not good Good Not good 

 

 

Table 5. AUC values for rainfall thresholds 

Satellite rainfall 
Cumulative rainfall (days) 

3 7 15 30 

PERSIANN 0.701 0.733 0.754 0.755 

IMERG 0.711 0.726 0.777 0.769 

IMERG-PERSIANN 0.757 0.766 0.805 0.903 

 

 

3.3.  Discussion 

This investigation exclusively examined the thresholds for the entire region of Badung Regency, 

overlooking variations in local conditions such as seasonal discrepancies, disparities in land cover, and soil 

conditions. These outcomes are influenced by various factors, including intricate topography and climate, 

elevated altitudes in mountainous regions, and the limited and uneven distribution of rain stations in these 

areas. Numerous prior studies have similarly suggested that the accuracy of satellite data may be impacted by 

the complexity of the terrain [38], [39]. The analysis of satellite data in this research indicates that IMERG 

satellite data outperforms PERSIANN satellite data. This result stems from IMERG's superior capability in 

identifying light precipitation. Additionally, IMERG boasts a shorter temporal resolution of 30 minutes, 

facilitating the recording of short-lived rainfall events. Furthermore, IMERG exhibits a superior spatial 

resolution of 0.1°, enhancing its ability to detect small-scale rainfall events. This observation aligns with 

prior studies that utilized IMERG satellite data for analyzing rainfall thresholds in the establishment of a 

landslide preemptive notification system. The results of this investigation revealed that IMERG satellite data 

had better performance for hourly rainfall data [24]. In addition, previous researchers also observed that the 

use of hourly rainfall data has better capabilities compared to daily rainfall data, which causes a decrease in 

general predictability [25]. However, the assessment of the PERSIANN dataset revealed its inferiority when 

compared to IMERG and GSMaP in identifying intense rainfall [40]. 

The threshold defined in this study was applied across the entire Badung Regency during the rainy 

season. When compared to thresholds that do not incorporate fusion methods, the newly proposed thresholds, 

which involve the integration of IMERG and PERSIANN rain satellite data, exhibit superior performance, 

characterized by higher rainfall thresholds. Cumulative rainfall-derived landslide thresholds display a wide 

range, spanning from 17 to over 400 mm. This variability underscores the strong dependence of landslide 

thresholds on factors such as location, climate, and the methodology employed to establish the boundary line 

[1]. Mountainous regions characterized by steep slopes and low-lying areas with relatively gentle gradients 
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will require varying levels of rainfall intensity preceding landslide incidents, resulting in unique rainfall 

thresholds. Steeper slopes amplify the landslide risk [38], [39], a phenomenon previously noted by 

researchers who highlight the prevalence of landslides on sloped surfaces influenced by gravitational forces 

[41]. The new thresholds presented in this study are not applicable for predicting landslides caused by snow, 

earthquakes, or human activities. In this research, a novel approach is proposed for implementation within the 

Badung Regency Disaster Management Agency. This approach takes into account the differentiation in 

rainfall classification as a means of enhancing the landslide preemptive notification system. It is expected 

that these findings will facilitate decision-makers in formulating landslide disaster mitigation strategies in the 

Badung Regency. 

The evaluation of rainfall threshold-induced landslides was conducted based on the AUC score. The 

AUC scores suggest that the effectiveness of the thresholds obtained through SRGDs is similar to those 

obtained from rain gauge station data in Badung Regency. The integration of IMERG and PERSIANN 

achieved the highest AUC score of 0.903, indicating that the predictive accuracy of integrating SRGDs 

thresholds surpasses that of individual SRGDs thresholds. Previous research has demonstrated AUC scores 

for various single SRGDs (TRMM, GSMaP, CMORPH, and IMERG) in determining rainfall thresholds in 

different locations across Indonesia ranging from 0.64 to 0.893 [23], [42], [43]. Furthermore, these findings 

align with earlier studies that advocate for the suitability of high-temporal datasets in determining rainfall 

thresholds for landslide early alert [12], [25]. Hence, the integration of two high-resolution SRGDs can 

enhance the performance of rainfall thresholds triggering landslides.  

 

 

4. CONCLUSION 

Based on the analysis of the outcomes of the threshold model, a significant conclusion arises. Out of 

the three methods used, the first approach (using Q1) shows excellent performance in all statistical measures 

(TPR, TNR, and ACC). In addition, when the two satellite datasets are combined, the resulting AUC value 

for a 30-day cumulative rainfall period is 0.903. The threshold mentioned here is a dependable indicator of 

landslide occurrences, distinguished by a minimal rate of mistakes. Therefore, it is recommended to 

incorporate this model into the structure of a landslide preemptive notification system for implementation in 

Badung Regency. Moreover, in future research endeavors, broadening the scope to encompass additional 

geographical regions could augment the generalizability of these findings and further substantiate the 

efficacy of the proposed model. 
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