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 In this research paper, a new improved golden jackal optimization (IGJO) 

algorithm is applied to address the combined economic emission dispatch 

(CEED) problem, along with various thermal generator constraints such as 

valve point loading (VPL) effect, generator limits (GL) in power system. 

The hunting behavior of the golden jackals is mimicked in the golden jackal 

optimization (GJO) algorithm. The main aim of the CEED problem is to find 

the best optimal generation scheduling while minimizing both fuel cost and 

emission besides meeting the different power system constraints. The 

original GJO algorithm faces challenges when dealing with high-

dimensional optimization problems, as it tends to get trapped in local 

optima. To address this issue the opposition-based learning (OBL) method 

was adopted in this GJO algorithm to obtain the global optimal solution and 

ensure enhanced performance in finding the solution for the CEED 

problems. To assess the competitiveness of the IGJO algorithm, it is used for 

various CEED test problems available in the literature, and results are 

contrasted with other recent heuristic optimization algorithms. Simulation 

results show that the proposed IGJO performs more effectively than the 

other compared algorithms in terms of solution quality, and robustness. 
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1. INTRODUCTION  

Electricity generation using conventional fossil fuels releases large amounts of greenhouse gases 

such as carbon oxides (COX), sulfur oxides (SOX), and nitrogen oxides (NOX). These pollutants affect not 

only humans but also other plants and animals. With increasing concerns over global warming and air 

pollution, it is increasingly important that electrical power systems reduce their carbon footprint and other 

harmful emissions. The combined economic emission dispatch (CEED) problem is a critical optimization 

problem in power system engineering that involves allocating all electricity demand among available thermal 

generation units to achieve the lowest fuel cost while meeting environmental regulations. This problem is 

considered challenging because it requires the solution of a nonlinear, non-convex, and multi-centric 

optimization problem, i.e., the fuel cost and emission constraints. The traditional gradient-based optimization 

methods such as linear programming [1], Newton-Raphson [2], and goal programming (GP) [3], might not 

reach the global optimal solutions for such non-differentiable and discontinuous complex functions. On the 

contrary, population-based heuristic optimization methods like genetic algorithm (GA), ant colony 

optimization (ACO), and particle swarm optimization (PSO), explore the complex solution space using the 

population of solution and iteratively improve the obtained solutions towards the best optimal solution. These 

https://creativecommons.org/licenses/by-sa/4.0/
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algorithms do not rely on the type of the optimization problem. These heuristic techniques have advantages 

over the traditional methods in solving the CEED problem.  

Several meta-heuristic optimization techniques have been developed to reduce the drawbacks of 

conventional approaches. A few such techniques proposed in the literature to solve CEED problems in power 

systems are as follows, dynamic programming (DP) [4], tabu search algorithm (TSA) [5], artificial bee 

colony (ABC) [6], differential evaluation (DE) [7], GA [8], modulated particle swarm optimization (MPSO) 

[9], gravitational search algorithm (GSA) [10], modified shuffle frog leaping algorithm (MSFLA) [11], 

flower pollination algorithm (FPA) [12], simulated algorithm (SA) [13], competitive swarm optimization 

(CSO) [14], bacterial foraging algorithm (BFA) [15], hybrid ant colony optimization (HACO) [16], 

lightening flash algorithm (LFA) [17], cuckoo search based algorithm (CSA) [18]. Various heuristic 

techniques reported in the literature use two kinds of approaches to solve the CEED problems. In the first 

approach, Emission from the thermal generator is considered as the constraint but it becomes difficult to find 

the tradeoff between fuel costs and emission costs. The second method considers price penalty for emission 

constraints, and because of this bi-objective function becomes a single objective function. In this research, 

the penalty-factor based CEED problem formulation is considered because of its relevance to the practical 

situations. 

Recently, Chopra and Ansari [19] introduced a swarm-based intelligence algorithm named the 

golden jackal optimization (GJO) algorithm. It is used in many engineering optimization problems to find the 

optimal solution. A thorough examination of GJO exposes various drawbacks. Such as, GJO populates initial 

populations created using random agents. Each agent changes its position based on the previous optimal 

solutions during further searching steps. The GJO algorithm many times gets trapped in the local optimum 

points and converges prematurely. To address the above problems, this paper presents an improved variant of 

GJO known as the opposition-based GJO algorithm. The opposition-based learning (OBL) concept used in 

addition to the original GJO algorithm improves the global solution searching ability. The proposed 

improved golden jackal optimization (IGJO) algorithm has better explorations and exploitation capability in 

finding solutions for optimization problems. IGJO is tested on two CEED problems of 10-unit, and 40-unit 

thermal generating units and compared with the original GJO and erstwhile algorithms in the literature. The 

benchmark results prove that IGJO is more efficient than others and has better convergence characteristics.  

This paper is structured into the following sections: CEED formulation is presented in section 2. 

IGJO algorithm and its implementation for the CEED problem are presented in section 3. The details of the 

simulation and findings are discussed in section 4, and the conclusion of the research work is presented in 

section 5. 

 

 

2. COMBINED ECONOMIC EMISSION DISPATCH PROBLEM FORMULATION 

The CEED problem is to find the best way to generate electricity at the lowest cost while also 

minimizing pollution. This is a difficult problem because the two objectives are often in conflict. For 

example, using cheaper fuel sources may produce more pollution. The CEED problem is formulated as 

follows. 

 

2.1.  Economic load dispatch 

The main aim of the ELD optimization problem is to minimize the fuel cost of the thermal 

generators. Normally fuel cost curve of the thermal generators is represented by a quadratic function. It is 

indicated in Figure 1. Consideration of the valve point loading (VPL) effect in thermal generators makes the 

fuel cost function non-convex and has multiple minimum points. 

 

𝐹𝑇 = ∑ 𝐹𝑖(𝑃𝑖)
𝑁
𝑖=1 = ∑ (𝑎𝑖𝑃𝑖

2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 + |𝑑𝑖 sin⁡{ 𝑒𝑖 ∗ (𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)}|)

$

ℎ𝑟

𝑁
𝑖=1  (1) 

 

Here, N indicates the total number of generators and FT denotes the total fuel cost of the system. a, b, c, d, 

and e are the fuel cost coefficients, 𝐹𝑖 is the fuel cost, Pi is the output of ith unit. The fuel cost function for a 

typical thermal generator is shown in Figure 1. 

 

2.2.  Pollutant emission 

The aim of the economic emission dispatch (EED) issue is to reduce overall environmental harm or 

the collective release of pollutants coming from the combustion of fuels in generating power to fulfill energy 

demands. The complete emissions resulting from burning fossil fuels in thermal power stations can be 

expressed as the combination of a quadratic and an exponential function. This expression is depicted in (2). 
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𝐸𝑇 = ∑ 𝐸𝑖(𝑃𝑖)
𝑁
𝑖=1 = ∑ (𝛼𝑖𝑃𝑖

2 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖) + 𝜁𝑖 exp(𝜆𝑖𝑃𝑖) ⁡𝑡𝑜𝑛𝑠/ℎ𝑟𝑁
𝑖=1  (2) 

 

where 𝛼, β, γ, ζ, λ are the emission parameters, and the total emission caused by N-generating units is ET. 

 

2.3.  Combined economic emission dispatch 

Fuel cost and gas emissions released from the power plant are considered simultaneously for 

minimization. Here, bi-objective functions are modified into single-objective functions by introducing the 

price penalty factor. It is represented as (3) and (4). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡⁡𝑍 = 𝐹 + ℎ × 𝐸 (3) 

 

ℎ𝑖 =
𝐹𝑇(𝑃𝑖

𝑚𝑎𝑥)

𝐸𝑇(𝑃𝑖
𝑚𝑎𝑥)

⁡⁡⁡⁡⁡(
$

𝑡𝑜𝑛𝑠
) (4) 

 

Where, 𝑃𝑖
𝑚𝑎𝑥  is the highest generation limit of the ith generator, hi is the price penalty factor of the ith 

generator. Consideration of the price patently factor makes the objective function as (5). 
 

𝑍(𝑃𝐷) = ∑
(𝑎𝑖𝑃𝑖

2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 + |𝑑𝑖 𝑠𝑖𝑛⁡{ 𝑒𝑖 ∗ (𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖)}|)

+∑ ℎ𝑖 ∗ (𝛼𝑖𝑃𝑖
2 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖) + 𝜁𝑖 𝑒𝑥𝑝(𝜆𝑖𝑃𝑖)

𝑁
𝑖=1

𝑁
𝑖=1  (5) 

 

2.4.  Constraints 

Power output generated by the generators must adhere to various operational restrictions. These 

constraints are broadly classified into equality and inequality constraints. Equality constraints ensure a 

specific balance, while inequality constraints set permissible limits. The subsequent sections provide a 

detailed elucidation of these critical operational considerations. 
 

 

 
 

Figure 1. Thermal generators' fuel cost characteristics 

 

 

2.4.1. Active power balance constraints 

This is the equality constraint which models that the thermal power generation should be equal to 

the power system's electrical load demand in addition to the power transmission losses. This condition 

mathematically can be conveyed as (6). 
 

∑ 𝑃𝑖
𝑁
𝑖=1 = ⁡𝑃𝐷 + 𝑃𝐿 (6) 

 

Here PD, PL are the total load demand and system loss respectively. The transmission losses are indicated as 

(7). 
 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑁
𝑗=1 + ∑ 𝐵𝑜𝑖𝑃𝑖

𝑁
𝑖=1 + 𝐵𝑜𝑜

𝑁
𝑖=1  (7) 

 

To calculate the system loss, B coefficient is adopted. Loss coefficients of the generators are represented as 

𝐵𝑖𝑗 , 𝐵𝑜𝑖 , 𝐵𝑜𝑜. 

 

2.4.2. Limits of active power generation 

Power generation from thermal generators is restricted by their characteristics. This is known as the 

limits of active power generation. The minimum possible power generation is represented by 𝑃𝑖
𝑚𝑖𝑛  and 

maximum possible power generation is denoted by 𝑃𝑖
𝑚𝑎𝑥 . 

 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥 (8) 
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3. PROPOSED OPTIMIZATION ALGORITHM 

3.1.  Golden jackal optimization algorithm 

Chopra and Ansari [19] introduced a swarm-based intelligence algorithm named the GJO algorithm 

in 2022. It copies the real-time hunting of golden jackals. Typically, male and female golden jackals hunt 

cooperatively. There are three distinct phases to the golden jackal's hunting behavior: i) locating and 

approaching the prey, ii) containing and agitating the prey up to its moving cease, and iii) bouncing against 

the prey. In an initialization phase, a set of random distributions of prey location is created. 

 

𝑃𝑖.𝑗 = 𝐿𝐵𝑖,𝑗 + 𝑟𝑎𝑛𝑑(𝑈𝐵𝑖,𝑗 − 𝐿𝐵𝑖,𝑗) (9) 

 

Where P denotes prey, LB, UB denotes the lower and upper boundary of solution space, and the rand is the 

random number between (0, 1). Initialize population size N, dimension D, and max iteration T. 

 

𝑃 =

[
 
 
 
 
 

𝑃1,1 … 𝑃1,𝑗 … 𝑃1,𝐷

𝑃2,1 … 𝑃2,𝑗 … 𝑃2,𝐷

… … … … …
⋮ ⋮ ⋮ ⋮ ⋮

𝑃𝑁−1,1 … 𝑃𝑁−1,𝑗 … 𝑃𝑁−1,𝐷

𝑃𝑁,1 … 𝑃𝑁,𝑗 … 𝑃𝑁,𝐷 ]
 
 
 
 
 

 (10) 

 

The escaping energy of prey E is calculated as (11), 

 

𝐸 = 𝐸1 ∗ 𝐸0 (11) 

 

where 𝐸1 depicts the declining energy of the prey: 

 

𝐸1 =⁡𝐶1 ∗ (1 −
𝑡

𝑇
) (12) 

 

where T expresses the maximum iteration, t indicates the current iteration, C1 is a constant with a value of 

1.5, and E0 expresses the actual condition of the energy. 

 

𝐸0 = 2 ∗ 𝑟 − 1 (13) 

 

The (14) and (15) are the mathematical representations of a golden jackal's hunting behavior in the 

exploration phase and exploitation phase. 

 
|E| ≥ 1  

𝑋1(𝑡) = 𝑋𝑚(𝑡) − 𝐸|𝑋𝑚(𝑡) − 𝑟𝑙. 𝑝𝑟𝑒𝑦(𝑡)| (14) 

𝑋2(𝑡) = 𝑋𝑓𝑚(𝑡) − 𝐸|𝑋𝑓𝑚(𝑡) − 𝑟𝑙. 𝑝𝑟𝑒𝑦(𝑡)|  

 

prey(t) is the prey location at iteration t.  

 
|𝐸| < 1)  

𝑋1(𝑡) = 𝑋𝑚(𝑡) − 𝐸|𝑟𝑙. 𝑋𝑚(𝑡) − 𝑝𝑟𝑒𝑦(𝑡)| (15) 

𝑋2(𝑡) = 𝑋𝑓𝑚(𝑡) − 𝐸|𝑟𝑙. 𝑋𝑓𝑚(𝑡) − 𝑝𝑟𝑒𝑦(𝑡)|  

 

r represents a random value in [0,1]. rl expresses a random vector based on the Levy distribution. Xfm(t) 

denotes the location of the female golden jackal, and Xm(t) indicates the location of the male golden jackal. 

 

𝑟𝑙 = 0.05 ∗ 𝐿𝐹(𝑦) (16) 

 

X1(t) and X2(t) are the revised positions of golden jackals. The LF expresses the levy flight fitness function as 

(17): 

 

𝐿𝐹(𝑦) = 0.01 ×
𝜇×𝜎

|𝑣
1

𝛽⁄ |
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𝜎 = (
Γ(1+𝛽)×𝑠𝑖𝑛(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×(2

𝛽−1
2 )

)

1

𝛽

 (17) 

 

where μ and v are given by the random number between (0, 1), β is 1.5. 

 

𝑃(𝑡 + 1) =
𝑋1(𝑡)+𝑋2(𝑡)

2
 (18) 

 

P(t+1) is the updated prey position based on the location of both male and female golden jackals. 

 

3.2.  Opposition-based learning method 

Tizhoosh [20] introduced OBL which is based on the concept that the opposite of a good solution 

has a high probability of being a good solution itself, as it represents the same solution in a different 

direction. OBL is designed to improve the effectiveness of the search space and speed up the convergence of 

the optimization algorithm by considering both the original solution and its opposite during the optimization 

process. The use of OBL leads to the enhancement of the performance in swarm optimization methods, 

improves their exploration and exploitation capabilities, and helps them escape local optima. Furthermore, 

OBL can maintain a good balance between exploration and exploitation by guiding the algorithm towards 

unexplored regions of the search space using the opposites of good solutions, while still utilizing the 

information from the good solutions. To improve the convergence speed OBL method is combined with the 

various algorithms as in [21], [22]. 

 

3.2.1. Opposition-based initialization 

The utilization of contrasting viewpoints can lead to improved initial candidate solutions, known  

as opposite populations (OP). The initialization of an opposition-based population can be explained as 

Algorithm 1. Let N is the population size and D is the number of variables. 

 

Algorithm 1 
for i = 1: N  

        for j = 1: D  

𝑂𝑃𝑖,𝑗 = 𝑎𝑗 + 𝑏𝑗 − 𝑃𝑖,𝑗 

       end 

end 

 

3.2.2. Opposition-based generation 

New population generation in the GJO algorithm is altered using opposition-based population 

generation. The jumping rate (Jr) is used for performing the generation. This process of new population 

generation is explained in the Algorithm 2.  

 

Algorithm 2 
if rand (0,1) < Jr 

    for i = Population no 

      for j = 1: D 

𝑂𝑃𝑖,𝑗 = 𝑎𝑗 + 𝑏𝑗 − 𝑃𝑖,𝑗 

                    end 

    end 

end 

 

3.3.  Improved golden jackal optimization algorithm 

Generally, two main steps are followed in a population-based algorithm namely population 

initialization and generation of new generations using the algorithm's principle. In this work, the OBL 

strategy is incorporated into both of these steps. The combination of the OBL method in the original GJO 

algorithm improves the convergence ability of the IGJO algorithm. The proposed IGJO algorithm is 

presented as a flowchart in Figure 2. This process continues until the desired coverage area has been 

achieved, ensuring that each jackal is working towards a common goal. 

Implementation of IGJO algorithm to CEED: 

Stage 1. An initial population of prey is generated randomly.  

Stage 2. Generate an oppositional-based initial population. 

Stage 3. The objective value for the current population (P) is found and the oppositional population (OP) is 

also calculated. 
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Stage 4. Sort the N number of fittest individuals from both populations. 

Stage 5. Declare the best prey and second-best prey. They are represented by Male jackals and female jackals 

respectively. 

Stage 6. Calculate the escaping energy of the prey E. 

Stage 7. Update the prey position using equation (18) and evaluate the fitness values of the position. 

Stage 8. Find out the oppositional population for the current population based on the jumping rate Jr. 

Stage 9. Calculate the value of an objective function of the opposite population.  

Stage 10. Replace the particular population with the opposition population if the fitness value is superior. 

Stage 11. Check for maximum iteration. If it is not reached go to stage 5 else go to the next stage. 

Stage 12. Output the best prey. 

 

 

 
 

Figure 2. Flowchart for IGJO algorithm 
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4. NUMERICAL EXAMPLES AND SIMULATION RESULT  

The performance and effectiveness of the proposed IGJO method are investigated on 2 different test 

systems having 10, and 40 thermal generators under non-convex cost functions. Various constraints 

considered for the test system are specified in Table 1. The IGJO technique was implemented in MATLAB 

7.1 and executed on a personal computer equipped with an Intel Core i5 processor and 4 GB of RAM. The 

outcomes produced by IGJO were compared to those of various other algorithms, including GJO, NSGA-II, 

GSA, and established algorithms found in the existing literature. 

 

 

Table 1. Different test systems considered in the analysis 
Test case no. Units Constraints Demand 

Test system 1 10 units Transmission loss with valve point effects is considered 2000 MW 

Test system 2 40 units The valve point effect is considered but transmission loss is not considered 10500 MW 

 

 

4.1.  Parameter selection 

The IGJO algorithm has three control parameters: N, T, and Jr. The parameter selection in the 

algorithm is important for the effective operation of the algorithm. The jumping rate controls the diversity of 

the population, and the optimal values for the control parameters depend on the problem being solved. This 

involves adjusting the parameters until the best settings are determined. After running several simulations, 

the parameters were set to the values that produced the best results as presented in Table 2. For the validation 

of the IGJO algorithm on the test system, the following values were used: N=100, T=500, and Jr=0.4. 

 

4.2.  Test system 1 

 For ascertaining the efficacy of the proposed IGJO algorithm, 10-unit systems having a non-linear 

fuel cost coefficient with a load demand of 2000 MW are considered. Constraints such as transmission loss, 

generator power limits, and VPL effects are considered for the test system. The data for the test system was 

compiled from Basu [23]. Simulation results for the test case using the suggested algorithm are tabulated in  

Table 2. The combined cost obtained by the IGJO algorithm is 216031.3 $/hr and it is 467.6 $/hr less than the 

GJO algorithm. The outcome of the simulation is contrasted with the various erstwhile algorithms present in 

the literature and this proves the effectiveness of the IGJO algorithm. It is quite apparent from Table 3 that 

the generator output resulting from the IGJO algorithm satisfies all the constraints considered. Figure 3 

shows the convergence curve for the IGJO and GJO algorithms. It affirms that the proposed algorithm 

performs better than the GJO algorithm. 

 

4.3.  Test system 2 

A larger test system having 40 thermal generating units is used to ascertain the performance of the 

IGJO algorithm. The test system considers the VPL effect in addition to the quadratic fuel cost function. 

Transmission loss for the system is neglected. The expected power demand of 10500 MW was considered. 

The details of fuel cost factors, Emission factors, and generating limits for each unit are given [23]. The 

simulation results obtained for this case are compared with the standard GJO, NSGA-II, MODE, SPEA-2, 

MABC, GSA, and PDE algorithms, and Table 4 shows the results. It exhibits that the proposed IGJO 

algorithm has a combined cost of 180658.3 $/hr and it is lower than the results obtained by the other 

algorithms reported in the literature. A convergence characteristic of the IGJO algorithm is contrasted with 

the GJO algorithm in Figure 4. It is quite apparent that the IGJO algorithm converges better than the GJO 

algorithm and it proves than better performance of the suggested IGJO method. 

 

4.4.  Testing of benchmark functions 

In this study, four benchmark functions including two unimodel and two multimodel functions with 

30 dimensions are used to validate the robustness of the proposed IGJO approach. Considered benchmark 

functions and the details of the statistical analysis for the simulation results for 30 trials are tabulated in  

Table 5. As can be seen from the table the IGJO yields better solutions for all the benchmark functions in 

terms of minimum, mean, and maximum objective value than the GJO. This proves the effectiveness of the 

proposed IGJO algorithm. 

 

4.5.  Analysis of results 

The thermal power outputs and generation cost obtained by the IGJO algorithm for the two test 

systems are tabulated in Tables 2 and 3. From the results, it is found that the overall costs are reduced 

compared to the other algorithms and the GJO algorithm. For test system 1 proposed IGJO algorithm gives a 

combined cost of 467.6 $/hr less than the GJO algorithm, similarly for the second test system obtained cost 
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by the suggested algorithm is 4340.7 $/hr lower than the original GJO algorithm. This result shows that the 

proposed method provides a better optimal generator schedule than the previously suggested optimization 

methods. From Figures 3 and 4, it is quite apparent that the proposed IGJO algorithm converges faster than 

the compared GJO algorithm for test system 1 and test system 2 respectively. It proves the superiority of the 

IGJO algorithms over other algorithms. 

 

 

Table 2. Parameter tuning for IGJO algorithm 

Population size (N) Jumping rate (Jr) 
Mean fuel cost ($/hr) 

Test system 1 Test system 2 

50 0.2 216052.6198 180683.359 

75 0.2 216048.3729 180685.9488 

100 0.2 216053.3433 180682.0031 
50 0.4 216035.3602 180676.6491 

75 0.4 216039.6728 180674.0521 

100 0.4 216034.7245 180663.4758 

50 0.6 216037.8094 180684.13 

75 0.6 216052.4229 180669.3857 

100 0.6 216037.6361 180671.796 

 

 

Table 3. Combined generation cost comparison for test system 1 

Unit MODE [23]  
NSGA-II 

[23]  

PDE 

[23]  

SPEA2 

[23]  

GSA 

[10]  

EMOCA 

[24]  

LFA 

[17]  
GJO IGJO 

P1 54.9487 51.9515 54.9853 52.9761 54.9992 55 54.992 55 55 

P2 74.5821 67.2584 79.3803 72.813 79.9586 80 78.7689 80 80 

P3 79.4294 73.6879 83.9842 78.1128 79.4341 83.5594 87.7168 100.4119 120 
P4 80.6875 91.3554 86.5942 83.6088 85 84.6031 78.1055 104.057 115.85 

P5 136.8551 134.0522 144.4386 137.2432 142.1063 146.5632 140.6272 144.5071 134.4263 

P6 172.6393 174.9504 165.7756 172.9188 166.567 169.2481 157.0936 153.5598 151.8141 
P7 283.8233 289.435 283.2122 287.2023 292.8749 300 299.9954 294.5121 285.8712 

P8 316.3407 314.0556 312.7709 326.4023 313.2387 317.3496 309.2219 302.0438 282.8083 

P9 448.5923 455.6978 440.1135 448.8814 441.1775 412.9183 439.3243 427.6489 438.0124 
P10 436.4287 431.8054 432.6783 423.9025 428.6306 434.3133 438.6947 421.4264 419.2248 

Loss 84.3271 84.2495 83.9331 84.0612 83.9868 83.5571 84.3701 83.1816 83.0016 

Fuel cost ($/hr) 113477.6265 113542.9 113506.5 113552.7 113492 113714 113246.4 113410.1 113351.5 
Emission 

(tons/hr) 
4124.8642 4150.983 4111.381 4126.854 4111.417 4088.058 4139.895 4159.312 4276.223 

Emission cost 
($/hr) 

105274.2397 105950 104305.3 105498.4 104689.4 104454.5 105018 103080.2 102679.8 

Combined cost 

($/hr) 
218751.8663 219492.9 217811.8 219051.1 218181.4 218168.5 218264.4 216498.9 216031.3 

 

 

 
 

Figure 3. Convergence for test system 1 

 
 

Figure 4. Convergence for test system 2 
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Table 4. Combined generation cost comparison for test system 2 

Unit 
MODE 

[23]  
PDE 
[23]  

MABC/D/Cat 
[25]  

MABC/D/Log 
[25] ` 

NSGA-II 
[23]  

GSA 
[10]  

SPEA-2 
[23]  

GJO IGJO 

P1 113.5295 112.1549 110.7998 110.7998 113.8685 113.9989 113.9694 114 110.8137 

P2 114 113.9431 110.7998 110.7998 113.6381 113.9896 114 114 110.7772 

P3 120 120 97.3999 97.3999 120 119.9995 119.8719 97.79358 98.57637 
P4 179.8015 180.2647 174.5504 174.5486 180.7887 179.7857 179.9284 167.6405 173.2594 

P5 96.7716 97 87.7999 97 97 97 97 97 87.79572 

P6 139.276 140 105.3999 105.3999 140 139.0128 139.2721 140 105.8623 
P7 300 299.8829 259.5996 259.5996 300 299.9885 300 300 259.6796 

P8 298.9193 300 284.5996 284.5996 299.0084 300 298.2706 282.3489 284.5905 

P9 290.7737 289.8915 284.5996 284.5996 288.889 296.2025 290.5228 300 284.6086 
P10 130.9025 130.5725 130 130 131.6132 130.385 131.4832 130 130 

P11 244.7349 244.1003 318.1921 318.2129 246.5128 245.4775 244.6704 316.721 318.2802 

P12 317.8218 318.284 243.5996 243.5996 318.8748 318.2101 317.2003 249.792 245.6664 
P13 395.3846 394.7833 394.2793 394.2793 395.7224 394.6257 394.7357 394.4837 394.2569 

P14 394.4692 394.2187 394.2793 394.2793 394.1369 395.2016 394.6223 394.3747 394.2756 

P15 305.8104 305.9616 394.2793 394.2793 305.5781 306.0014 304.7271 394.2175 394.2846 

P16 394.8229 394.1321 394.2793 394.2793 394.6968 395.1005 394.7289 394.2765 394.2399 

P17 487.9872 489.304 399.5195 399.5195 489.4234 489.2569 487.9857 461.9292 399.7671 

P18 489.1751 489.6419 399.5195 399.5195 488.2701 488.7598 488.5321 461.6597 399.6158 
P19 500.5265 499.9835 506.1985 506.1716 500.8 499.232 501.1683 428.2171 505.722 

P20 457.0072 455.416 506.1985 506.2206 455.2006 455.2821 456.4324 499.794 506.2062 
P21 434.6068 435.2845 514.1472 514.1105 434.6639 433.452 434.7887 447.329 514.111 

P22 434.531 433.7311 514.1455 514.1472 434.15 433.8125 434.3937 440.6072 512.9024 

P23 444.6732 446.2496 514.5237 514.5664 445.8385 445.5136 445.0772 442.6545 513.0663 
P24 452.0332 451.8828 514.5386 514.4868 450.7509 452.0547 451.897 449.1895 513.261 

P25 492.7831 493.2259 433.5196 433.5195 491.2745 492.8864 492.3946 443.7763 434.4377 

P26 436.3347 434.7492 433.5195 433.5196 436.3418 433.3695 436.9926 442.8143 434.8918 
P27 10 11.8064 10 10 11.2457 10.0026 10.7784 10 10 

P28 10.3901 10.7536 10 10 10 10.0246 10.2955 12.87356 10 

P29 12.3149 10.3053 10 10 12.0714 10.0125 13.7018 10 10 
P30 96.905 97 97 87.8042 97 96.9125 96.2431 97 97 

P31 189.7727 190 159.733 159.733 189.4826 189.9689 190 190 159.7537 

P32 174.2324 175.3065 159.733 159.7331 174.7971 175 174.2163 190 159.7334 
P33 190 190 159.733 159.733 189.2845 189.0181 190 190 160.38 

P34 199.6506 200 200 200 200 200 200 200 200 

P35 199.8662 200 200 200 199.9138 200 200 200 200 
P36 200 200 200 200 199.5066 199.9978 200 200 200 

P37 110 109.9412 89.1141 89.1141 108.3061 109.9969 110 110 89.19482 

P38 109.9454 109.8823 89.1141 89.1141 110 109.0126 109.6912 110 89.11444 
P39 108.1786 108.9686 89.1141 89.1141 109.7899 109.456 108.556 110 89.11576 

P40 422.0628 421.3778 506.1879 506.1951 421.5609 421.9987 421.8521 465.5088 504.755 

Fuel cost 
($/hr) 

125792.1 125730.9 124447.464 124447.7074 125825.2 125782.4 125807.7 126654.8 124592.5 

Emission 

(tons/hr) 

211189.8 211765.5 256567.2483 256551.3207 210949.1 210932.9 211097.8 197990 254245.7 

Emission 

cost ($/hr) 

61863.73 62070.61 56332.1486 56330.6821 61864.27 62115.72 61790.76 58344.21 56065.76 

Combined 
cost ($/hr) 

187655.8 187801.6 180779.6126 180778.3895 187689.5 187898.1 187598.4 184999 180658.3 

 

 

Table 5. Testing of benchmark functions 

S no. Function Limit 
Function 

value 
Algorithm 

GJO IGJO 

1 𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝐷

𝑖=1
 [-100, 100] 

Minimum 4.2453e-26 2.8444e-31 

Mean 3.2041e-23 3.2384e-24 

Maximum 2.0356e-22 1.6007e-23 

2 𝑓2(𝑥) = ∑ |𝑥𝑖|
𝐷

𝑖=1
+ ∏ |𝑥𝑖|

𝐷

𝑖=1
 [-10, 10] 

Minimum 1.6853e-20 9.3668e-25 

Mean 1.2256e-17 2.5642e-19 

Maximum 6.9257e-16 2.5372e-17 

3 𝑓3(𝑥) = ∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10𝐷]

𝐷

𝑖=1
 [-5.12, 5.12] 

Minimum 5.6874e-12 2.2064e-15 

Mean 1.6973e-10 4.6197e-12 

Maximum 5.4469e-08 3.8106e-11 

4 𝑓4(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ cos(
𝑥𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1
 [-600, 600] 

Minimum 1.1077e-18 3.5506e-21 

Mean 6.3455e-14 1.7911e-17 

Maximum 1.4538e-12 6.1639e-15 
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5. CONCLUSION  

The IGJO algorithm is proposed to handle CEED problems with valve point effects and generator 

active power constraints. The standard GJO algorithm tends to have challenges in complex optimization 

objective functions and premature convergence. To address the complexity, the OBL method is integrated 

into the GJO algorithm, which helps to eliminate premature convergence and improve global search ability. 

The IGJO algorithm is tested on non-convex CEED problems with different constraints and compared to 

other meta-heuristic algorithms. After running experiments on two different CEED test cases, findings show 

that the IGJO algorithm demonstrated superior performance compared to the GJO algorithm and other 

advanced meta-heuristic algorithms in various aspects, such as achieving a higher potential for solutions, 

having greater computational efficiency, a better convergence rate, and being more robust. Subsequent efforts 

will expand the issue's framework to incorporate the assimilation of renewable energy sources and storage 

mechanisms, amplifying the intricacy involved in solving the problem. 
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