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 Coronary heart disease (CHD) is the leading cause of death in the world. The 

risk of coronary heart disease can be reduced or even prevented by early 

detection. Early detection of CHD has been widely developed using machine 

learning, but the machine learning algorithms used sometimes have low 

interpretability. Low interpretability makes it difficult for users to 

understand the cause of the decision. Referring to this, this research aims to 

propose an early detection model using machine learning interpretability, 

which is implemented using the C5.0 algorithm and interpreted using 

Shapley additive explanations (SHAP). This research method is divided into 

3 stages, namely preprocessing, interpretable machine learning, and 

performance evaluation. This study used 215 patient data from Dr. 

Moewardi Surakarta Hospital. Testing the resulting model using the k-folds 

cross-validation method. The test results show that the risk factors that make 

a high contribution to the output of the coronary heart disease detection 

model are systolic blood pressure, diastolic blood pressure, and employment 

level, with the resulting accuracy performance of 84.64%. The proposed 

model can be an alternative for early prediction of coronary heart disease 

which can explain the influence of each selected risk factor on the model 

output. 
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1. INTRODUCTION 

Coronary heart disease (CHD) is a leading global cause of death, with more than 9 million deaths 

attributed to CHD in 2020 [1]. The COVID-19 pandemic has worsened this already dire situation. Although 

the mortality rate due to COVID-19 varies worldwide, ranging from 1-2%, most patients can recover. 

Nonetheless, a considerable amount of evidence indicates that COVID-19 can cause various long-term health 

issues, including one that heightens the possibility of heart problems. A comprehensive study of health 

records in the United States revealed that individuals who contracted COVID-19 have a 55% greater chance 

of experiencing extended cardiovascular complications. Complications of coronary heart disease consist of 

heart rhythm disturbances, heart inflammation, blood clots, stroke, heart attack, heart failure, and possibly 

death. The sample registration system (SRS) survey from 2014 determined that coronary heart disease has the 

second highest mortality rate in Indonesia, following stroke, with a total mortality rate of 12.9% of all 

recorded deaths. Coronary artery disease is the primary and most prevalent cause of mortality in Indonesia, 

accounting for 26.4% of all deaths. The number of deaths attributed to heart disease outweighs the number of 
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heart and blood vessel specialists by a significant margin in Indonesia, with only 600 currently practicing in 

the country.  

Coronary artery disease (CAD) is caused by the buildup of plaque in the coronary arteries, leading 

to decreased blood flow to the heart and increasing the risk of heart attacks and even mortality. Early 

awareness of a person's likelihood of experiencing CAD can decrease risk. Regular monitoring of CAD risk 

factors, such as cholesterol levels, blood sugar, blood pressure, and weight, is helpful for early detection. 

Population-based CAD prediction models have been developed based on risk factors. Many population-based 

models have been developed for the early prediction of CHD, including the Framingham risk score (FRS), 

prospective cardiovascular Münster (PROCAM), and systematic coronary risk evaluation (SCORE). These 

models provide valuable insight into CHD risk and can assist healthcare providers in determining appropriate 

preventive measures. However, it is important to recognize the limitations of such models and the need for 

ongoing research in this field. However, certain population-based models are unsuitable for detecting 

diseases in populations different from the one that the model represents. For instance, FRS is not appropriate 

for detecting heart disease in Japanese and Koreans, while Koreans cannot use PROCAM and SCORE 

models. Additionally, models based on urban populations prove ineffective when applied to rural populations 

[2], [3]. The assigned risk score and QRISK3 score models are comparable to PROCAM, which has only 

been validated for the German population. Therefore, it may not be suitable for other populations. The 

CUORE risk score model is also only appropriate for the population in Italy [4]. 

The rapid development of artificial intelligence, particularly in the domain of machine learning, has 

resulted in the creation of numerous prediction models that rely on machine learning datasets pertaining to 

risk factors of coronary heart disease. CHD prediction research utilizing a duo output artificial neural 

network ensemble (DOANNE) has achieved an accuracy level of 86% [5]. This accuracy rate is based on the 

use of 12 risk factors. Similar research has employed a combination of principal component analysis (PCA) 

and support vector machine (SVM) [6] to predict early CHD. The study identified 9 out of the 12 tested risk 

factors as influential. The model achieved a sensitivity performance of 84.2%. Subsequent developments, 

referencing FRS, were modeled using a Mamdani fuzzy inference system. The model employed a G medical 

center dataset from Korea, providing an accuracy performance of 69% [3]. A study similar to the 

aforementioned research was conducted utilizing the FRS. A predictive model was established using the 

classification and regression tree (CART) algorithm to create rules, which were subsequently modeled using 

fuzzy rule-based methods. The resulting model was tested through The Korea National Health and Nutrition 

Examination Survey-VI (KNHANES-VI) dataset, also known as the Korean National Health and Nutrition 

Examination Survey VI. Korean National Health and Nutrition Examination Survey VI achieved an accuracy 

performance of 69.51% and a sensitivity of 93.1%. Unfortunately, C5.0 currently outperforms the CART 

algorithm [7]. 

A model for the early detection of coronary heart disease has been developed using 9 risk factors 

and South African heart disease data-knowledge extraction based on evolutionary learning (KEEL) [8]. The 

model evaluated three machine learning algorithms: J48, Naïve Bayesian, and SVM. The Naïve Bayesian 

model showed higher sensitivity with a 63% value compared to J48 and SVM which recorded less than 50% 

respectively. There was no significant difference in specificity value among the three algorithms. A model 

has been developed utilizing the CART algorithm and fuzzy logic to detect coronary heart disease in the 

Korean population. The model employs nine risk factors and was tested with results indicating an accuracy 

value of 69.51%, a sensitivity of 93.1%, a specificity of 25.64%, a positive prediction value (PPV) of 

69.95%, a negative prediction value (NPV) of 66.67%, and an area under the curve (AUC) of 0.594 [9]. 

Sivaprasad et al. [10] conducted a study on the development of deep learning, specifically transfer learning, 

and compared the results with SVM, neural networks, and random forest algorithms. In addition,  

Sarma et al. [11] and Ghasemieh et al. [12] developed a CHD detection model using ensemble stacking and 

deep learning techniques. 

The development of machine learning models for detecting coronary heart disease has not been able 

to explain the decision-making process that it produces, commonly referred to as black-box. This is 

supported by a study conducted by Franklin and Muthukumar [13], which showed that many of the 

developed detection models still rely heavily on black-box methods, including the use of deep learning and 

neural networks. Mondal et al. [14] and Kim et al. [15] proposed a model for detecting coronary heart 

disease using ensemble learning and a statistical deep belief network for cardiovascular risk prediction. The 

proposed models do not use interpretable machine learning. This makes the model unable to explain the 

relationship between model input and model output. The result of this condition will make the resulting 

model not get full trust by the user [16], [17]. Trust is the main way to increase user confidence in using 

machine learning [18], as well as their comfort when using and managing it [19]. Trust is related to the ethics 

and intensity of regulatory activities. 

To be able to provide a high level of confidence in the model, an interpretable machine learning 

(IML) model was developed. The implementation of IML is by using a number of machine learning 
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algorithms combined with interpretable methods, such as Shapley additive explanations (SHAP), local 

interpretable model-agnostic explanations (LIME), and class activation mapping (CAM) [20], [21]. SHAP, 

LIME, and CAM are able to explain the machine learning model so that the relationship between the input 

and output of the model can be understood. The three methods have their respective advantages, the CAM 

method is widely applied to explain image problems, LIME for some classification problems, while SHAP 

can be used for various problems, not only limited to classification [22]. In addition, SHAP has a strong 

theoretical explanation ability, and a fair distribution in its predictions [23]–[25]. The use of SHAP is also 

widely applied in various fields, one of which is health [26]. 

Referring to a number of studies that have been carried out, this study developed a model for early 

detection of coronary heart disease using interpretable machine learning. The interpretable machine learning 

model is implemented using a combination of C5.0 and interpreted using SHAP. The early detection model 

was developed using risk factor medical record data. The risk factors used were taken at Dr. Moewardi 

Hospital Surakarta, Indonesia. 

 

 

2. RESEARCH METHOD 

2.1.  Dataset 

This study utilizes medical records of patients from the Heart and Vascular Disease Polyclinic at Dr. 

Moewardi Hospital in Surakarta, Indonesia. The dataset consisted of 215 patients, with 133 diagnosed with 

coronary heart disease and 82 without. Non-modifiable and modifiable risk factors were investigated, 

resulting in 12 risk factors which are categorized in Table 1. The data for these risk factors were separated 

into two types, categorical and numerical. 

 

 

Table 1. Representation of clinical data for risk factors 
No. Risk Factors Category Number (%) Mean ± SD NA (%) 

1. Age   59.11 ± 14.07  

2. Gender 
Male 

Female 

121 (56.28) 

94 (43.72) 
  

3. Employment level 

Light 

Medium 

Heavy 

96 (44.65) 

85(39.53) 

30 (13.95) 

 4 (1.86) 

4. Total cholesterol   169.17 ± 45.47  
5. Low-density lipoprotein (LDL)   110.18 ± 35.88  

6. High-density lipoprotein (HDL)   35.87 ± 12.55  

7. Triglyceride   128.62 ± 87.18  
8. Systolic blood pressure   138.61 ± 24.67  

9. Diastolic blood pressure   86.96 ± 14.65  

10. Obesity   20.70 ± 7.65  

11. Smoking 
Yes 

No 

72 (24.18) 

143 (34.06) 
  

12. Diabetes history 
Yes 
No 

30 (32.97) 
54 (59.34) 

  

 

 

2.2.  Method 

The study was carried out in three phases: pre-processing, interpretable machine learning, and 

performance evaluation. Figure 1 displays a complete overview of these phases. The pre-processing phase 

contained a missing value imputation process and data normalization. The missing value imputation process 

applied the single center imputation from the multiple chained equations (SICE) algorithm [27]. The SICE 

algorithm is an extension of the multiple imputation by chained equations (MICE) algorithm [27], [28]. 

Algorithm 1 shows the MICE algorithm, and Algorithm 2 presents the SICE algorithm. 

In the SICE algorithm presented in Algorithm 2, the imputation process is performed by considering 

the data type of the risk factor. If the risk factor is categorical, the mode is used for calculation, while the 

average is used for numerical data. Following the imputation process, the data normalization procedure is 

carried out to rescale the data between 0-1 [5]. The normalization process follows the criteria presented in 

Table 2. If the data meets the criteria column, the normalization outcomes are then displayed in the value 

column. 
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Figure 1. Interpretable model of machine learning 

 

 

Algorithm 1. MICE 

1. Simple mean imputation is performed for every missing value which is referred to as placeholders. 

2. The placeholder mean value for one variable is set back to missing 

3. Appropriate regression is done between observed values of the missing variable against other 

variables. 

4. The missing value is then predicted using a regression model 

5. IF other missing value, THEN to step 2 ELSE to step 6 

6. IF iteration end THEN to step 7 ELSE to step 2 

7. Results 

 

Algorithm 2. SICE 

INPUT: 

x: instances with missing values categorical and numeric in medical records 

y: instances with no missing value data in the same medical record. 

m: number of imputations defined by the user. 

OUTPUT:  

x': update x with imputed missing data 

1. FOR each missing value in x DO 

2. use Algoritma 1 to find the missing value; 

3. END 

4. Repeat for m times; 

5. miceResult[i]=imputed data for ith missing value; 

6. FOR each row in miceResult DO 

7. IF type data of miceResult[i] is numeric THEN 

8. siceResult=mean(miceResult[i,1:m]) 

9. ELSE 

10. siceResult=modus(miceResult[i,1:m]) 

11. END 

12. x'=x update with siceResult 

13. END 

 

After normalization, the next step involves dividing the data into training and testing sets. The data 

division process applies k-fold cross-validation, where k is set to 10. Subsequently, the divided data is used to 

construct a model that incorporates interpretable machine learning (IML). By using IML, it becomes simpler 

for users to comprehend the decision-making process. The algorithm used in the IML model is a combination 

of C5.0 with SHAP. The C5.0 algorithm creates a tree diagram model that clarifies the input-output 

connection and simplifies decision-making [21]. C5.0 modifies the iterative dichotomiser 3 (ID3) and C4.5 

algorithms. When building the decision tree, the root for the next node is selected based on the maximum 
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information gain [29], [30]. This method begins by considering all data as the root of the decision tree, with 

the chosen attribute serving as the dividing factor for the sample [30]. 

The final stage involves evaluating the performance of the resultant IML model by referencing the 

confusion matrix [30], which is displayed in Table 3. Using Table 3, one can calculate the performance 

parameters including sensitivity, specificity, accuracy, positive prediction value (PPV), and negative 

prediction value (NPV). These parameters are computed by referencing the confusion matrix generated 

during the testing phase and applying (1)-(5) for parameter calculation. 

 

Accuracy = ACC =
(TP+TN)

(TP+TN+FP+FN)
 X 100% (1) 

 

Specificity = SEN =  
TN

(TN+FP)
× 100% (2) 

 

Sensitivity = SPE =  
TP

(TP+FN)
× 100% (3) 

 

PPV =
TP

(TP+FP)
x100% (4) 

 

NPV =  
𝑇𝑁

(TN+FN)
× 100% (5) 

 

 

Table 2. Data normalization requirements 
No Risk Factors Criteria Value No Risk Factors Criteria Value 

1 Age <41 

41–50 

51–60 
61–70 

71–80 
≥81 

0 

0.2 

0.4 
0.6 

0.8 
1 

7 Triglyceride <100 

100–149 

150–199 
200–499 

≥500 

0 

0.25 

0.5 
0.75 

1 

2 Gender Male 

Female 

1 

0.5 

8 Systolic blood pressure <120 

120–129 
130–139 

140–159 

160–179 
≥180 

0 

0.2 
0.4 

0.6 

0.8 
1 

3 Employment level Light 

Medium 
Heavy 

0 

0.5 
1 

9 Diastolic blood pressure <80 

80–84 
85–89 

90–99 

100–109 
≥110 

0 

0.2 
0.4 

0.6 

0.8 
1 

4 Total cholesterol <200 

200–239 
≥240 

0 

0.5 
1 

10 Obesity <18.5 

18.5–22.9 
23–24.9 

25–29.9 

≥30 

0 

0.25 
0.5 

0.75 

1 
5 LDL <100 

100–129 

130–159 
160–189 

≥190 

0 

0.25 

0.5 
0.75 

1 

11 Smoking Yes 

No 

1 

0 

6 HDL <40 
40–59 

≥60 

0 
0.5 

1 

12 Diabetes history Yes 
No 

1 
0 

 

 

Table 3. Confusion matrix 

Actual Class 
Prediction Class 

Positive Negative 

Positive True positive (TP) False negative FN 

Negative False positive (FP) True negative TN 
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3. RESULTS AND DISCUSSION 

3.1.  Results 

Early detection model for coronary heart disease utilizing IML, run on hardware with CPU 

specifications of 2.00 GHz, 1.99 GHz, and 4 GB RAM. The IML model was implemented using the library 

in version 4.2.2 of the R programming language with R Studio version 2022.07.2 Build 576 and Microsoft 

Excel version 2210 Build 15726.20202. This research first performed imputation using the SICE algorithm, 

which is an evolution of MICE. The MICE procedure was executed utilizing the mice library in R.  

Algorithm 1 displays the outline of the MICE algorithm. In our study, MICE was run with m=35 and iterated 

four times to give 35 approximated values for each missing value. This equates to 35 MICE processes carried 

out on the dataset and each process was repeated four times. The frequency distribution of the missing values 

for each risk factor can be found in Figure 2. The imputation process is categorized into two types of risk 

factors: categorical and numerical. 

 

 

 
 

Figure 2. Number of missing data values 

 

 

For categorical data, such as employment level, smoking, and history of diabetes, missing values are 

imputed using the mode of the data. Afterward, one of the values is again selected to be missing. Then, all 

data from patients with missing values undergo regression analysis using the polytomous logistic regression 

method [27] for employment level data, and the logistic regression method for smoking and diabetes history 

data. This results in an estimated value for the missing data point. The procedure was systematically executed 

until all absent values were populated with the computed values from the regression. Subsequently, in the 

ensuing round, all undone values were populated with the mode from the preceding round’s outcomes. This 

complete process was iterated until the termination of the execution.  

Missing values in numerical data, including total cholesterol, LDL, HDL, and triglycerides, are 

replaced with their respective mean. Subsequently, one of the missing values is chosen to be emptied again 

and all data from the patient with the missing value is regressed on other data using the predictive mean 

matching method. This process is repeated until all missing values are replaced with predicted values 

obtained through predictive mean matching [27]. Then, in each subsequent iteration, missing values are 

replaced with the mean of the previous iteration results. This process is repeated until the end of the iteration. 

The entire process is performed 35 times simultaneously, denoted by the value of m, resulting in 35 complete 

datasets without any missing values.  

The study utilized the k-fold cross-validation method with k=10 to conduct testing. Table 4 displays 

the results of these tests, including the performance of each fold out of 10 total. The 9th fold had the best 

performance, but overall, the IML model incorporating the C5.0 algorithm yielded an 84.64% sensitivity rate, 

indicating its ability to accurately detect positive cases of coronary heart disease [31], [32]. As the sensitivity 

of the IML model increases, more positive CHD test results are obtained from patients already suffering from 

CHD, or fewer negative CHD cases are missed in this group. The 9th fold reveals the model's notable 

performance in accurately detecting CHD patients, achieving a rate of 93.33%. Although this rate is higher 

when examining the 2nd folds, other performance parameters remain low. 

Testing with 10 folds also generates a decision tree model for each fold. The decision tree created 

with the C5.0 algorithm serves as an embedded feature selection method, allowing the algorithm to perform 

the feature selection process and use the result as a risk factor in compiling the decision tree. The resulting 

decision tree in each fold contains the same number of attributes, but the selected risk factors vary. The 
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frequency of risk factor selection in each fold is displayed in Figure 3. Employment level, systolic blood 

pressure, and diastolic blood pressure are attributes present in all folds. If a sample is taken from the 9th fold, 

it yields five significant attributes out of the available twelve. The five attributes that pose a risk factor are 

smoking, age, employment level, diastolic blood pressure, and systolic blood pressure. Referring to the 

results of the information gain calculation in the C5.0 algorithm, the usefulness level of the diastolic blood 

pressure attribute is 100%, the usefulness level of the systolic blood pressure attribute is 48.97%, the 

usefulness level of the work level attribute is 37.11%, the usefulness level of the smoking attribute is 10.31%, 

and the usefulness level of the age attribute is 9.97%.  

 

 

Table 4. Performance of the CHD early detection model 
No. Fold SEN  ACC SPE PPV NPV 

1 94.44% 81.82% 25.00% 85.00% 50.00% 

2 100.00% 71.43% 0.00% 71.43% 0.00% 
3 76.92% 81.82% 88.89% 90.91% 72.73% 

4 80.00% 71.43% 63.64% 66.67% 77.78% 

5 84.62% 59.09% 22.22% 61.11% 50.00% 
6 75.00% 61.90% 44.44% 64.29% 57.14% 

7 92.86% 80.95% 57.14% 81.25% 80.00% 

8 69.23% 68.18% 66.67% 75.00% 60.00% 
9 93.33% 85.71% 66.67% 87.5% 80.00% 

10 80.00% 63.64% 50.00% 57.14% 75.00% 

Mean 84.64% 72.60% 48.47% 74.03% 60.27% 

 

 

 
 

Figure 3. Risk factors influencing CHD detection 

 

 

The decision tree depicted in Figure 4 indicates that the diastolic blood pressure risk factor attribute 

serves as the root with attribute values of 0.2, 0.4, 0.8, and 1, or in standard measurement units. This leads to 

positive CHD prediction for blood pressure measurements of 80-89 or ≥100, resulting in the classification of 

CHD=1. These findings are supported by 76 positive cases out of a total of 99 cases, with a confidence level 

of 76.77%. Patients with diastolic blood pressure risk factors of 0 and 0.6, or with values <80 or 90-99 as 

specified in Table 2, should have their systolic blood pressure checked. Thus, diastolic blood pressure values 

of 0 or 0.6, or results measuring <80 or 90-99, would predict that patients with systolic blood pressure risk 

factor values of 0.4 or 1, or results measuring 130-139 or ≥180, would have a negative prediction of coronary 

heart disease or be placed in the CHD=0 class. This result indicates a confidence level of 86.96%, based on 

20 cases of CHD negativity among 23 patients with identical blood pressure levels. It is necessary to assess 

the occupational risk factor for patients with systolic blood pressure values of 0, 0.2, 0.6, and 0.8, or with 

measurements of ≤129 or 140-179. When a patient's systolic blood pressure is found to be ≤129 or 140-179 

while having a heavy or work level attribute worth 1, they will likely test positive for CHD or be classified 

under CHD=1. The prediction results show an 81.82% confidence level, based on 9 positive cases of 

coronary heart disease out of 11 total cases. For patients with light or moderate workloads, or systolic blood 

pressure values of 0 or 0.5, predictions will be made in the next step based on the risk factors for systolic 

blood pressure. 
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If a patient's work level is light or moderate, or if their attribute is worth 0 or 0.5 and they have a 

systolic blood pressure attribute worth 0.2, or if their measurement results are between 120-129, then they 

will be classified as CHD=0 or predicted negative. This prediction has a 62.5% confidence level, supported 

by 10 negative cases out of a total of 16 patient cases with similar attribute values. If the patient's work level 

is light or moderate, or if the attribute is 0 or 0.5 with a systolic blood pressure attribute of 0.8, or if the 

measurement result falls between 160-179, then the patient is predicted to be positive for CHD=1 or to have 

coronary heart disease. This prediction carries a confidence level of 83.33% which is backed by 5 positive 

cases out of a total of 6 patient cases with the same attribute value. Patients with a systolic blood pressure 

attribute value of 0 or measurement results <120 will be predicted based on their smoking attribute value. 

This is due to the smoking risk factor attribute having the largest information gain ratio value in this subset of 

patient data. Patients with a systolic blood pressure attribute value of 0.6 or a measurement result between 

140-159 will be predicted based on their age attribute value. This is due to the age attribute having the 

highest information gain ratio in this subset of patient data.  
 

 

 
 

Figure 4. IML model for coronary heart disease detection 

 

 

When the patient's systolic blood pressure attribute is less than 120 and the patient does not smoke 

or has a smoking attribute value of 0, they are categorized into the CHD=0 prediction class, indicating a 

negative prediction for coronary heart disease. This prediction has a confidence level of 69.23%, supported 

by 9 negative cases out of a total of 13 cases with the same attribute value. Meanwhile, if the patient is a 

smoker or has a smoking attribute value of 1, they will be predicted positively to suffer from coronary heart 

disease or enter the CHD prediction class=1. Patients with a systolic blood pressure attribute value of 0.6 

(140-149) and an age attribute value of 0 or 0.8 (patients aged <41 years or 71-81 years) will be included in 

the CHD prediction class=0 or predicted to be "negative" for coronary heart disease. This prediction is based 

on 6 cases with similar attribute values, all of whom tested negative for coronary heart disease. However, 

patients aged 41-70 or ≥81 years old (age attribute value 0.2, 0.4, 0.6, or 1) are likely to test positive for 

coronary heart disease or have an attribute value of 1 for the CHD prediction class. This prediction has a 

confidence level of 76.92% which is supported by 10 positive cases out of a total of 13 patient cases with 

similar attribute values. 

The IML model built using SHAP can be analyzed for the impact of each feature on the output of 

the system model. The impact of each feature can be shown in Figure 5. Referring to Figure 6, it can show 

the contribution of features from each data to the system model, besides that, the average shapley values that 

show the contribution of features can also be taken, as shown in Figure 6. Figure 6 shows that blood pressure, 

both diastolic blood pressure (DBP) and systolic blood pressure (SBP) have a high impact on the system 

model. In addition to these two features, the employment rate feature also has a higher impact than age and 

smoking. 
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Figure 5. Impact on model output 

 

 

 
 

Figure 6. SHAP value (average impact on model output) 

 

 

3.2.  Discussion 

There is an anomaly in the prediction pattern of coronary heart disease in the developed IML model. 

Specifically, diastolic blood pressure exhibits a higher number of positive predictions for CHD than 

expected, despite being below the usual threshold. This pattern is observed in over 50 cases. The use of blood 

pressure control medications in coronary heart disease patients may result in a low diastolic blood pressure 

reading during blood pressure measurement. Anomalies also occurred in systolic blood pressure risk factors, 

with 20-49 cases total. High systolic blood pressure was associated with negative predictions, particularly in 

young patients. High systolic blood pressure in patients without coronary heart disease may result from errors 

during blood pressure measurement when the patient is not adequately rested. Proper diagnosis and lifestyle 

modifications are crucial for managing high blood pressure. In younger patients who test positive for 

coronary heart disease, heredity and an unhealthy lifestyle may be causative factors. In patients with high 

blood pressure, those who are younger have a higher probability of developing coronary heart disease [33]. 

From the calculated results, the coronary heart disease early detection model demonstrated a 

sensitivity of 84.64%, accuracy of 72.597%, specificity of 48.467%, positive predictive value of 74.03%, and 

negative predictive value of 60.265%. The model's low specificity and negative predictive values stem from 

an imbalance between CHD-positive and negative patient data used in the experiment, with a ratio of 5:3. As 

a result, the model classifies many negative patients as positive, leading to a decrease in true negative value 

and an increase in false positive value.  

Table 4 shows that the sensitivity model developed in this study outperforms previous studies that 

used data from the same location and only considered 5 risk factors. However, the accuracy of our model is 

lower than that of previous studies due to the uneven distribution of patient data between positive CHD and 

negative CHD cases. This phenomenon has been observed in various studies, including research conducted 

by Chawla et al. [34], Thabtah et al. [35], and Luque et al. [36]. The studies emphasize that machine learning 

algorithms often prioritize labeling the majority class in predicted data, leading to neglect of the minority 

class. As a result, these algorithms mostly generate accurate predictions for the majority class.  
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Table 4. Comparison of model performance with previous research in Indonesia 
References Method Number of Data #Risk factor SEN ACC 

[6] PCA+SVM 120 9 84.20% 78.61% 
[5] DOANNE 120 12 - 86.87% 

Proposed IML (C5.0+SHAP) 215 5 84.64% 72.597% 

 

 

Previous research using the PCA+SVM method resulted in 9 risk factors, whereas C5.0 produced 5 

risk factors. From both techniques, the C5.0 algorithm eliminated 4 risk factors, which include total 

cholesterol, LDL, triglyceride levels, and gender. The risk factors for total cholesterol, LDL, and triglyceride 

levels are interconnected, as demonstrated in the Friedewald formula [37] presented in (6) and the Martin-

Hopkins formula [38] depicted in (7). When utilizing the PCA+SVM method to eliminate HDL risk factors, 

reference to both (6) and (7) reveals that all three risk factors are interconnected and can be eliminated using 

the C5.0 algorithm. Despite the removal of all cholesterol-related risk factors, the C5.0 algorithm 

demonstrates higher sensitivity than the use of cholesterol risk factors alone. These results highlight the IML 

model's ability to detect CHD patients, with a detection rate of 84.64% for C5.0 compared to 84.2% for 

PCA+SVM. 

 

𝐿𝐷𝐿 = 0.659 × 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑡𝑜𝑡𝑎𝑙 + 0.182 × 𝐻𝐷𝐿 − 0.117 × 

𝑡𝑟𝑦𝑔𝑙𝑖𝑠𝑒𝑟𝑖𝑑𝑎 𝑙𝑒𝑣𝑒𝑙𝑠 + 18.03 (6) 

 

𝐿𝐷𝐿 = 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑡𝑜𝑡𝑎𝑙 − 𝐻𝐷𝐿 − 𝑡𝑟𝑦𝑔𝑙𝑖𝑠𝑒𝑟𝑖𝑑𝑎 𝑙𝑒𝑣𝑒𝑙𝑠 (7) 

 

Early detection using IML, which is implemented using the C5.0 algorithm and interpreted using 

SHAP, is able to provide an explanation that is easy for users to understand the decision-making process. 

This ability is better than models that use SVM and DOANNE algorithms in previous studies. The ability of 

the model to explain the decision-making process will make IML with C5.0, trustworthiness, causality, 

transferability, informativeness, confidence, and fairness. IML model capability can be analyzed for each 

input data, for example as shown in Figure 7. In Figure 7, each line plotted on the decision plot shows how 

strongly each feature contributes to a single model prediction, thus explaining what feature values drive the 

prediction. For the red line showing data with positive CHD, the red line shows that DBP has a high 

influence in determining the model output, as well as SBP. The blue line shows when the data is negative 

CHD, it is also highly determined by the DBP and SBP features. 

 

 

 
 

 

Figure 7. Testing the effect of features from one patient's data on model prediction 

 

 

The influence of features on prediction results can also be represented in a face plot graph, as shown 

in Figures 8 and 9. Figure 8 shows how much influence the SBP, DBP, and employment rate features have on 

prediction results, as shown in red. For age and smoking features, the influence is low, as shown in blue. 

Figure 9 shows the data tested for CHD negative data, where the results show that DBP and SBP have a low 
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influence on prediction, which is shown in blue. The low influence is because SBP <120 and DBP <80, while 

the employment rate has a high influence, but is at the bottom, which is close to the boundary value of 

positive and negative CHD, which is at -0.04. Referring to Figures 8 and 9, it can be concluded that the SBP, 

DBP, and employment rate features are features that have a high influence on determining the prediction 

results of the model. 

 

 

 
 

Figure 8. Effect of features on model output, for positive CHD patient data 

 

 

 
 

Figure 9. Effect of features on model output, for negative CHD patient data 

 

 

4. CONCLUSION 

In this study, it can be concluded that the early detection model of coronary heart disease using IML 

can explain the decision-making process. The performance of the IML model with the C5.0 algorithm can 

provide good performance, namely sensitivity of 84.64% and accuracy of 72.597%, with testing using the 10-

fold cross-validation method. High-performance parameters for sensitivity, indicating that the IML model 

with C5.0 can be used for early detection because the model has a high ability for patients who are positive 

for CHD, by the model also detected positive CHD. In addition, the results of interpretation using SHAP 

explain that the risk factors of diastolic blood pressure, systolic blood pressure, and employment level are the 

most influential attributes in detecting coronary heart disease from the 12 risk factor attributes used.  
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