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 Inventory is crucial in maintaining a smooth production process and meeting 

consumer demand for manufacturing companies. This research focuses on 

production problems involving defects, rework, and scrap items in stochastic 

demand. This research aims to develop a production-availability model by 

minimizing the expectation of total cost (ETC). The model includes four 

main decision variables, namely production quantity (Q), safety factor (k), 

production rate (P), and rework rate (P1). This research uses the Aquila 

optimizer algorithm to optimize the objective function. It compares with the 

heuristic procedure and Harris Hawk optimization algorithm. The results 

showed that the Aquila optimizer algorithm successfully optimized the 

production-availability problem. A comparison between algorithms indicates 

that the Aquila optimizer algorithm performs equivalently to the Harris 

Hawk optimization algorithm and outperforms the heuristic procedure. 

Sensitivity analysis shows that increasing demand uncertainty increases ETC 

and k. At the same time, it can decrease Q. 
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1. INTRODUCTION 

In the era of globalization and increasingly fierce business competition, supply chain management 

has become a crucial element in company success [1]. The supply chain includes raw material procurement, 

production planning, and inventory management [2], [3]. While changing market dynamics, companies must 

develop effective strategies to manage their supply chains. One concept that becomes the main focus is the 

close relationship between the supply chain and the production-inventory model. The supply chain supports 

the company's smooth operation, from procuring raw materials to distributing final products to customers 

[4]–[6]. With uncertainty in market demand, good supply chain management can help companies respond to 

changes more quickly and efficiently. On the other hand, the production-inventory model is the foundation 

for planning and managing production and inventory [7]. A harmonious relationship between the supply 

chain and the production-inventory model is the key for companies to minimize costs, increase efficiency, 

and optimally meet customer demand. Accurate and comprehensive models must be developed to manage 

inventory and production in production and supply chain management. In today's production systems, one of 

the biggest obstacles is managing stochastic demand uncertainty, which causes demand to fluctuate at 

random [8].  

The production-inventory model becomes essential in optimizing the production process and stock 

management. However, in practice, many factors can affect the efficiency and effectiveness of the model. 

One of the main challenges faced by companies is the presence of imperfections in production goods, rework 
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processes, and the occurrence of scrap goods. Imperfections can occur for various reasons, such as 

production defects or errors in the manufacturing process [9], [10]. The rework process is needed to repair 

goods that do not meet quality standards so that they can be reused or sold [11]–[13]. However, this process 

also requires additional costs and time that cannot be ignored. In addition, scrap is also a problem that needs 

to be handled properly, as it can result in financial losses for the company [11], [14]. In addition, stochastic 

or uncertain demand is also one of the challenges in inventory management [10]. Fluctuating and 

unpredictable demand give companies an active and responsive strategy to maintain adequate availability of 

goods without causing unwanted inventory surpluses. Therefore, there is a need to develop a production-

inventory model that considers imperfections, rework, and scrap, along with stochastic demand. Considering 

all these factors, the model is expected to assist companies in optimizing inventory management decisions to 

achieve efficiency by minimizing total costs. 

Past research on production-availability models involving defective products, rework, and waste has 

attracted the attention of several researchers who contribute to expanding the understanding of the 

complexity of this problem. One of the main contributors is Hejazi et al. [15], who proposed a model that 

requires rework on defective products to avoid waste. The study found that by integrating the rework process 

into the model, companies can reduce the amount of waste and improve their operational efficiency. In 

addition, research by Sarkar [16], Lin and Su [17], Paul et al. [18], Manna et al. [19], Chang and Ho [20], 

and Manna et al. [21] also contributed by incorporating defective products into their production-availability 

model. Their results show that an inventory management strategy that considers defective products can help 

companies optimize the use of their resources. On the other hand, research by Sanjai and Periyasamy [22], 

Öztürk [23], and Khara et al. [24] involving defective products and rework processes highlights the 

importance of efficiency in inventory management to avoid losses. Meanwhile, studies by Su et al. [10] and 

Krishnamoorthi and Panayappan [13] have enriched the understanding of models that consider defective 

products and waste in their production-availability models. They found that by integrating waste processing 

into the model, companies can reduce production costs and improve environmental sustainability. However, 

only studies by Su et al. [10] and Sarkar et al. [25] have successfully incorporated stochastic elements in 

demand modelling, showing its importance in dealing with uncertainty in demand.  

Although various models have been proposed, a comprehensive production-availability model 

considers defective products, rework, and scrap and faces stochastic challenges in demand. Previous research 

has provided valuable insights into integrating these elements into the model. However, there still needs to be 

gaps in our understanding of how these factors interact and impact overall inventory management decisions. 

The lack of models that can accommodate all these factors simultaneously implies that decision-makers do 

not yet have the optimal tools to cope with the complexities in a constantly changing production and demand 

environment. Therefore, there is a need for a model that can integrate all aspects, such as defective products, 

rework, and scrap, and deal with stochastic challenges so that decision-makers make more informed and 

effective decisions in managing their inventory, improve operational efficiency and respond better to changes 

in the market. This research aims to develop a comprehensive production-inventory model that considers 

defective products, rework, and scrap and faces stochastic challenges in demand. In addition, this research 

aims to offer the metaheuristic procedure of the Aquila algorithm as a method to find the optimal decision 

variables [26]. The Aquila optimizer, which is inspired by the hunting behavior of the Aquila Hawk that can 

hunt prey, has proven to be effective in solving various problems, including industrial engineering 

optimization problems [27], image classification [28], and population forecast [29]. We seek to apply this 

procedure to solve complex problems in production-availability models based on its effectiveness in various 

contexts. Thus, this research not only aims to fill the gap in understanding comprehensive production-

availability models but also to test and validate the potential of the Aquila algorithm as an effective 

optimization tool. 

This research contributes significantly by providing new insights into a comprehensive production-

availability model, which considers defective products, rework, and scrap and faces stochastic challenges in 

demand. Such contributions include not only the development of a new model that is expected to help 

companies improve production efficiency and optimize inventory levels but also provide a solid foundation 

for adaptive decision-making amid unpredictable market dynamics in this era of uncertainty. In addition, this 

research proposes a new procedure for the Aquila algorithm to optimize the production-inventory model 

problem. With this new procedure, this research enriches the optimization procedures used in production-

availability model optimization, making valuable contributions to developing analytical methods in the 

context of complex inventory management. Thus, this research is expected to provide practical guidance for 

companies in managing their inventories more effectively and enrich the academic literature with new 

contributions in this field. 
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2. DESCRIPTION PROBLEM AND PROPOSED MODEL 

2.1.  System characteristics 

Inventory systems in manufacturing companies have complex characteristics and involve various 

types of significant costs in the production process. Some of the essential costs involved in this system 

include setup cost (K), regular production cost (c), scrap product disposal cost (cs), rework cost (cr), and 

finished product holding cost (h). Each cost element is essential in optimizing production efficiency and 

inventory management. However, a significant challenge in inventory management is the fluctuation or 

stochasticity of consumer demand (D). Erratic demand every month creates the need to implement a safety 

strategy. Therefore, companies must identify and determine the number of safety products (S) to maintain 

product availability when demand suddenly increases or significant fluctuations occur. 

In addition, companies should also consider production aspects such as production quantity (Q), 

production rate (P), and rework rate (P1) in their inventory system. The P should be set to meet or even 

exceed D, ensuring adequate product availability. Companies must also consider the P1 to address defective 

or non-standard products. Managing this rework rate is critical in minimizing losses and ensuring the 

products' quality meets the set standards. 

 

2.2.  Assumptions and notations 

This section presents the assumptions and notations of the proposed model. Some of the key 

assumptions used as a foundation in designing the model are i) ordering costs are constant, meaning that the 

costs involved in the ordering process do not depend on the amount of ordering; ii) there is no shortage of 

raw materials, so inventory is always available to meet demand; iii) stating that storage capacity is unlimited, 

thus removing the physical limitations associated with the amount of goods that can be stored; iv) demand 

levels are stochastic and normally distributed, thus allowing the model to account for demand variations 

statistically; and v) stating that regular storage costs and rework costs are assumed to be equal, thus 

simplifying the overall cost analysis. These five assumptions form the theoretical basis for developing 

inventory models in the context of production availability problems. The notations used in this research are: 

𝑃 : production rate per unit of time 

𝑃1 : rework rate per unit of time 

𝑄 : production lot size per cycle 

𝐷 : number of demands per unit of time 

𝑑 : production rate of defective items per unit of time 

𝑑1 : production rate of leftover products during rework per unit time 

𝑑2 : production rate of imperfect quality items during rework per unit time 

𝑑0 : total production rate of leftover products and imperfect quality items per unit of time 

𝑡1 : production uptime in the presence of inventory 

𝑡2 : time spent reworking 

𝑡3 : time used when inventory runs out 

𝑇 : cycle length, 𝑇 =  𝑡1 + 𝑡2 + 𝑡3 

𝑞 : the proportion of defective items produced 

𝜃 : the proportion of scrap in defective items 

𝛾 : the proportion of imperfect quality items in defective items 

𝛽 : the proportion of reprocessing in defective items 

𝜃1 : the proportion of scrap generated during rework 

𝛾1 : the proportion of imperfect quality items produced during rework 

𝐸(. ) : estimated value 

𝐾 : setup cost for each production (IDR) 

𝐻 : the maximum level of on-hand inventory of perfect items in units when the rework process ends 

𝑐 : production cost per unit (IDR) 

𝐻1 : the maximum level of on-hand inventory of perfect items in units when the regular production 

process stops 

𝑐𝑆 : disposal cost per unit of leftover product (IDR) 

ℎ : inventory cost per unit (IDR) 

𝑐𝑅 : rework cost per rework product (IDR) 

𝜎 : standard deviation of demand per unit of time 

𝑘 : safety factor 

𝜋 : lost sale cost (IDR) 

𝑓𝑠(𝑘) : probability density function of the normal distribution 

𝐹𝑠(𝑘) : cumulative distribution function of the normal distribution 
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2.3.  Proposed production-inventory model 

This study proposes an inventory production model involving imperfect, reworked, and scrap items 

under stochastic demand. The proposed mathematical model aims to minimize the total inventory cost. 

Figure 1 shows the proposed model's available inventory and allowable order levels. The time duration of a 

cycle is the sum of the regular production time (𝑡1), rework time (𝑡2), and production downtime (𝑡3). The 𝑡1, 

𝑡2, and 𝑡3 are presented in (1)-(3), respectively. Meanwhile, based on Figure 1, the maximum level of on-

hand inventory of perfect items in units when the regular production process stops (𝐻1) and the maximum 

level of on-hand inventory of perfect items in units when the rework process ends (𝐻) can be formulated in 

(4) and (5). In the proposed model, products are also defective during production, so the inventory level 

needs to be estimated. An illustration of the on-hand inventory level of defective items is shown in Figure 2. 

Defective items produced during 𝑡1 are calculated as in (6). 

 

𝑡1 =
𝑄

𝑃′ =
𝐻1

𝑃−𝑑−𝐷
 (1) 

 

𝑡2 =
𝐻−𝐻1

𝑃1−𝑑0−𝐷
 (2) 

 

𝑡3 =
𝐻

𝐷
 (3) 

 

𝐻1 = (𝑃 − 𝑑 − 𝐷)𝑡1 (4) 

 

𝐻 =  𝐻1 + (𝑃1 − 𝑑0 − 𝐷)𝑡2 (5) 

 

𝐺 = 𝑑. 𝑡1 = 𝑞𝑄 (6) 

 

 

 
 

Figure 1. Illustration of perfect inventory on 

hand  

 
 

Figure 2. Illustration of inventory levels of a defective item  

 

 

In this proposed model, the main focus is to elaborate the model based on the illustrated on-hand 

inventory of reworkable items, imperfect quality items, and scrap items, as shown in Figures 3-5. Figure 3 

shows the illustrated inventory levels of reworkable items, while Figures 4 and 5 display the inventory levels 

of imperfect quality items and scrap items. In this context, it is assumed that the proportion β of defective 

items can be regarded as reworkable items, the proportion θ as scrap items, and the proportion γ as imperfect 

quality items. The proposed model for the number of reworkable items, items of imperfect quality, and scrap 

items produced during a regular production process can be formulated using (7)-(9).  

 

𝐺1 = 𝑑𝛽. 𝑡1 = 𝑃1𝑡2 = 𝛽𝑞𝑄 (7) 

 

𝐺2 = 𝑑𝛾. 𝑡1 = 𝛾𝑞𝑄 (8) 

 

𝐺4 = 𝑑𝜃. 𝑡1 = 𝜃𝑞𝑄 (9) 



      ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 13, No. 4, December 2024: 896-906 

900 

 
 

Figure 3. On-hand inventory level of reworkable 

items 

 
 

Figure 4. On-hand inventory level of imperfect quality 

items 

 

 

 
 

Figure 5. On-hand inventory level of scrap items 

 

 

During the rework process, the scrap and imperfect quality production rates are crucial parameters 

to consider. These two parameters are represented by (10) and (11). To measure the total imperfect quality 

goods and scrap goods produced during this process, equations (12) and (13) are used. Furthermore, in this 

context, it is assumed that 𝑑0 is the sum of the production rates of scrap and imperfect quality goods 

produced during the rework process. This measurement is expressed in (14). Furthermore, the inventory 

levels in the hands of 𝐻1 and H can be estimated based on (15) and (16). Where, 𝑃 − 𝑑 − 𝐷 = 𝑃 (1 − 𝑞 −
𝐷

𝑃
) = 𝑃𝐴1 and 𝑃1 − 𝑑0 − 𝐷 = 𝑃1 (1 − 𝜃1 − 𝛾1 −

𝐷

𝑃1
) = 𝑃1𝐴2. Hence, the value of T is calculated based  

on (17). 
 

𝑑1 = 𝑃1𝜃1 (10) 
 

𝑑2 = 𝑃1𝛾1 (11) 
 

𝐺3 = 𝐺2 + 𝑑2𝑡2 = (𝛾 + 𝛾1𝛽)𝑞𝑄 (12) 
 

𝐺5 = 𝐺4 + 𝑑1𝑡2 = (𝜃 + 𝜃1𝛽)𝑞𝑄 (13) 
 

𝑑0 =  𝑑1 + 𝑑2 = 𝑃1(𝜃1 + 𝛾1) (14) 
 

𝐻1 = (𝑃 − 𝑑 − 𝐷)𝑡1 = 𝐴1𝑄 (15) 
 

𝐻 = 𝐻1 + (𝑃1 − 𝑑0 − 𝐷)
𝛽𝑞𝑄

𝑃1
= 𝐴1𝑄 − 𝛽 + 𝐴2𝛽𝑞𝑄 = (𝐴1 + 𝐴2𝛽𝑞)𝑄 (16) 

 

𝑇 = 𝑡1 + 𝑡2 + 𝑡3 =
[1−𝑞(1−𝛽(1−𝜃1−𝛾1))𝑄]

𝐷
 (17) 
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Since product demand is stochastic with a normal distribution, decision-makers must increase 

inventory levels by involving safety stock (S). The S of the product is modeled in (18), which is adapted from 

the model proposed by Utama et al. [30]. In addition, the expected demand shortage of the period 𝑄 ⁄ 𝐷 = 𝑇 

is modeled in (19), where 𝛹(𝑘) = {𝑓𝑠(𝑘) − 𝑘[1 − 𝐹𝑠(𝑘)]}. 

 

𝑆 = 𝑘𝜎√
𝑄

𝐷
 (18) 

 

𝜎√
𝑄

𝐷
𝛹(𝑘) (19) 

 

The expectation of total inventory cost in each cycle is modeled in (20). Meanwhile, the proportion 

of defective products is a random variable, so the production cycle length T is also a random variable. Then, 

the expected cycle length 𝐸(𝑇) can be formulated in (21). 

 

𝑇𝐶(𝑄, 𝑆) = 𝐾 + 𝑐𝑄 + 𝑐𝑠𝜃𝑞𝑄 + 𝑐𝑠𝜃1𝛽𝑐𝑄 + 𝑐𝑅𝛽𝑞𝑄 + ℎ (
𝐻1(𝑡1)

2
+

(𝐻1+𝐻)(𝑡2)

2
+

𝐻(𝑡3)

2
+

𝐺(𝑡1)

2
+

𝐺1(𝑡2)

2
+ 𝑘𝜎√

𝑄

𝐷
) + 𝜋 (𝜎√

𝑄

𝐷
𝛹(𝑘)) = 𝐾 + 𝑐𝑄 + 𝑐𝑠(𝜃 + 𝜃1𝛽)𝑞𝑄 + 𝑐𝑅𝜃𝑐𝑄 + 𝑄2 (ℎ (

𝐴1

2𝑃
+

(𝐴1+𝐴2𝛽𝑞)𝛽𝑞

2𝑃1
+

(𝐴1+𝐴2𝛽𝑞)2

2𝐷
) +

𝑞

2𝑃
+

𝛽2𝑞2

2𝑃1
+ 𝑘𝜎√

𝑄

𝐷
) + 𝜋 (𝜎√

𝑄

𝐷
𝛹(𝑘)) (20) 

 

𝐸(𝑇) =
[1−𝐸(𝑞)(1−𝛽(1−𝜃1−𝛾1))]𝑄

𝐷
=

(1−𝐸1)𝑄

𝐷
 (21) 

 

Where, 𝐸1 = 𝐸(𝑞)(1 − 𝛽(1 − 𝜃1 − 𝛾1)), 𝐸2 = 1 − 𝐸(𝑞) −
𝐷

𝑃
 , 𝐸3 = 𝐸

(
𝑞

1−𝑞−
𝐷
𝑃

)
. 

Based on the (1)-(19), the total expected inventory cost in a one-time horizon can be modeled  

in (22). Minimize the total cost of the inventory system, can be achieved by simultaneously determining the 

optimal decision variables, namely the production lot size per cycle (Q), safety factor (k), production rate (P), 

and rework production rate (𝑃1). The product k in a normal distribution must be greater than 0 and cannot 

exceed 2.99. Meanwhile, the P and 𝑃1 must be higher than the D. 

 

𝐸(𝑇𝐶𝑈(𝑄, 𝑘, 𝑃, 𝑃1)) =
𝐸(𝑇𝐶(𝑄, 𝑆))

𝐸(𝑇)
 

=
𝐾𝐷

(1 − 𝐸1)𝑄
+

(𝑐 + 𝐸(𝑞)[𝑐𝑠(𝜃 + 𝜃1𝛽) + 𝑐𝑅𝛽])𝐷

(1 − 𝐸1)
+

ℎ𝑄𝐷

2𝑃1(1 − 𝐸1)
 

(((1 +
𝑃1𝐴2

𝐷
) 𝐴2 +

1

ℎ
) 𝛽2𝐸(𝑞2) + 2 (1 +

𝑃1𝐴2

2
) 𝛽𝐸(𝑞)𝐸2 + (1 +

𝑃𝐸2

𝐷
+

𝐸3)
𝑃1𝐸2

𝑃
+ 𝑘𝜎√

(1−𝐸1)𝑄

𝐷
) +

𝐷

(1−𝐸1)𝑄
 𝜎𝜋√

(1−𝐸1)𝑄

𝐷
𝛹(𝑘) (22) 

 

 

3. METHODS 

3.1.  Proposed method Aquila optimizer algorithm 

To optimize the production-inventory model problem with imperfect, reworked, and scrap items 

under stochastic demand, this study proposes the advanced procedure of Aquila optimizer. The Aquila 

optimizer is an algorithm inspired by the hunting behavior of Aquila Hawks that can hunt prey [28]. The 

Aquila optimizer algorithm pseudocode is presented in Algorithm 1.  

The first phase of Aquila in hunting prey is to expand the search. Where the Aquila is at a height to 

determine the location of its prey, this behavior is described by (23). 

 

𝑋1(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × (1 −
𝑡

𝑇
) + (𝑋𝑀(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡) ∗ 𝑟𝑎𝑛𝑑) (23) 
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Where, 𝑋1(𝑡 + 1) is the result for t in the next iteration. 𝑋𝑏𝑒𝑠𝑡(𝑡), the best result obtained by iteration t (prey 

position). The number of iterations (1 − 𝑡/𝑇) is used to expand the search. 𝑋𝑀(𝑡) indicates the average value 

of iteration t calculated based on 𝑋𝑀(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)𝑁

𝑡=1 . Rand is a random value between 0 and 1. 

The second phase is when the prey has been found at a height, and the Aquila starts to attack (𝑋2). 

In this phase, the Aquila circles above its prey and prepares the terrain before attacking after finding the prey 

area from a height. This method's behavior is contour flying with a short gliding attack. This behavior is 

called narrow exploration, modeled in (24). D is the dimensional space, and 𝐿𝑒𝑣𝑦(𝐷) denotes the distribution 

function of the step size. Meanwhile, 𝑋𝑅(𝑡) is a random solution from the range [1 𝑁] at iteration i. 

 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑡) − (𝑦 − 𝑥) ∗ 𝑟𝑎𝑛𝑑 (24) 

 

In the third phase (𝑋3), the Aquila captures prey by flying low and vertically with a slow attack. 

This phase is referred to as expanded exploitation. This behavior is modeled in (25). Where, 𝑋3 (𝑡 + 1) is the 

result for t in the next iteration. 𝑋𝑏𝑒𝑠𝑡(𝑡) indicates the best result by iteration t (prey position). 𝑋𝑀(𝑡) 

indicates the average value of iteration t. Rand is a random value between 0 and 1. α and δ are parameters for 

exploitation adjustment (0.1). 

 

𝑋3(𝑡 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝑋𝑀(𝑡)) × 𝛼 − 𝑟𝑎𝑛𝑑 + ((𝑈𝐵 − 𝐿𝐵) × 𝑟𝑎𝑛𝑑 + 𝐿𝐵) × 𝛿 (25) 

 

The fourth phase describes walking and catching prey in the final position. This phase is referred to 

as narrowed exploitation. This behavior is modeled in (26). 𝑋4(𝑡 + 1) is the result of t in the next iteration 

(𝑋3). QF is the quality function for the balance search strategy. 𝑋𝑏𝑒𝑠𝑡(𝑡), the best result by iteration t (prey 

position). 𝐺1 indicates the variation of Aquila movement to track the prey. 𝑄𝐹(𝑡) is the quality function for 

iteration t. The rand value comes from a random value of 0 to 1. t and T are the maximum number of 

iterations, respectively. 

 

𝑋4(𝑡 + 1) = 𝑄𝐹 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − (𝐺1 × 𝑋(𝑡) × 𝑟𝑎𝑛𝑑) − 𝐺2 × 𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 × 𝐺1 (26) 

 

Algorithm 1 Pseudocode Aquila optimizer 
Initialization phase: 

Initialize the population X and parameters. 

While (The end condition is not met) do 

Calculate the fitness function values. 

𝑋𝑏𝑒𝑠𝑡(𝑡) = Determine the best-obtained solution according to the fitness values.  
for (i=1,2.,N) do 

Update the mean value of the current solution 𝑋𝑀(𝑡). 
Update the 𝑥, 𝑦, 𝐺1, 𝐺2 , 𝐿𝑒𝑣𝑦(𝐷). 

if 𝑡 ≤ (
2

3
) ∗ 𝑇 then 

if 𝑟𝑎𝑛𝑑 ≤ 0.5 then 
⊳ Step 1: Expanded exploration (𝑋1) 

Update the current solution using the Equation (23)  

if Fitness (𝑋1(𝑡 + 1)) < Fitness (𝑋(𝑡)) then 𝑋(𝑡) = (𝑋1(𝑡 + 1)) 

if Fitness (𝑋1(𝑡 + 1)) < Fitness (𝑋𝑏𝑒𝑠𝑡(𝑡)) then 𝑋𝑏𝑒𝑠𝑡(𝑡) = 𝑋1(𝑡 + 1) 
end if 

end if  

else 

⊳ Step 2: Narrowed exploration (𝑋2) 
Update the current solution using the Equation (24) 

if Fitness (𝑋2(𝑡 + 1)) < Fitness (𝑋(𝑡)) then 𝑋(𝑡) = (𝑋2(𝑡 + 1)) 

if Fitness (𝑋2(𝑡 + 1)) < Fitness (𝑋𝑏𝑒𝑠𝑡(𝑡)) then 𝑋𝑏𝑒𝑠𝑡(𝑡) = 𝑋2(𝑡 + 1) 
end if 

end if  

else 

if 𝑟𝑎𝑛𝑑 ≤ 0.5 then 

⊳ Step 3: Narrowed exploration (𝑋3) 
Update the current solution using the Equation (25) 

if Fitness (𝑋3(𝑡 + 1)) < Fitness (𝑋(𝑡)) then 𝑋(𝑡) = (𝑋3(𝑡 + 1)) 

if Fitness (𝑋3(𝑡 + 1)) < Fitness (𝑋𝑏𝑒𝑠𝑡(𝑡)) then 𝑋𝑏𝑒𝑠𝑡(𝑡) = 𝑋3(𝑡 + 1) 
end if 

end if  

else 

⊳ Step 4: Narrowed exploration (𝑋4) 
Update the current solution using the Equation (26) 
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if Fitness (𝑋4(𝑡 + 1)) < Fitness (𝑋(𝑡)) then 𝑋(𝑡) = (𝑋4(𝑡 + 1)) 

if Fitness (𝑋4(𝑡 + 1)) < Fitness (𝑋𝑏𝑒𝑠𝑡(𝑡)) then 𝑋𝑏𝑒𝑠𝑡(𝑡) = 𝑋4(𝑡 + 1) 
end if 

end if  

end if 

end if 

end for 

end while  

Return the best solution (𝑋𝑏𝑒𝑠𝑡) 

 

3.2.  Data and experimental procedures 

The data for this research comes from a case study of a manufacturing industry that produces plastic 

packaging in Indonesia. Various parameters relevant to the inventory problem, such as 𝐷=1,6079 kg, 

𝑃=1,7000 kg, 𝑃1=5,000 kg, 𝑞=0.05%, 𝛽=1%, 𝜃1=0%, 𝛾1=0%, 𝜃=0%, 𝜎=4,541 kg, 𝑐=27,557.34 Rp/kg, 

𝑐𝑅=30,644.57 Rp/kg, 𝑐𝑠=11,000 Rp/kg, ℎ=IDR 25, 𝐾=IDR 1,162,858.77, 𝜋=IDR 45,000. This research 

utilizes Aquila optimizer as an optimization tool with the primary objective of minimizing total cost-

efficiently. The decision variables that are the focus of exploration in this study involve Q, k, P, and P1. 

Table 1 presents the Aquila algorithm parameters used to optimize the inventory problem. 

Testing the effectiveness of the Aquila optimizer is done by comparing it with the heuristic 

algorithm and Harris Hawk optimization algorithm. In addition, this study also evaluates the effect of 

demand fluctuations (D) by conducting a sensitivity analysis of changes in the standard deviation (σ) of 

demand on the objective function and decision variables. All inventory optimization experiments were 

conducted using MATLAB R2018a platform on an MSI Modern 14 C5M-005 Ryzen 5 5625U computer with 

8 GB RAM and 512 GB storage, operating under Windows 11 system. 

 

 

Table 1. Parameter data of the Aquila algorithms for the inventory optimization problem 
Parameter  Value 

Populations number  1000 

Maximum iteration 1000 

Number of decision variable 4 

Upper bound [16079, 2.99, 18000, 7000] 

Lower bound [1, 0, 17000, 5000] 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Optimization with Aquila optimizer 

This study successfully optimized the production-availability model by considering imperfections, 

reworked goods, and scrap goods under stochastic stock demand conditions. The optimization process is 

performed using the Aquila optimizer algorithm method. The result of this optimization shows that the total 

cost generated is IDR 536,308,681.20. The optimal decision variables identified involved the Q of 554, k of 

2.24, P of 18000, and P1 of 7000. These findings reflect the efficiency and effectiveness of the proposed 

model in dealing with inventory challenges with uncertainty, rework, and scrap. In addition, these results can 

serve as guidelines for practitioners and decision-makers in managing inventory more efficiently and 

optimizing costs significantly. 

 

4.2.  Algorithm comparison 

A comparison of algorithms for optimization of production-inventory problems can be seen in 

Figure 6. The optimization results using the Aquila optimizer algorithm and Harris Hawk optimization 

resulted in an estimated total cost (ETC) of IDR 536,308,681.20. In comparison, the heuristic procedure 

resulted in an ETC of IDR 555,256,012.11. The algorithm comparison analysis shows that the Aquila 

optimizer algorithm produces a solution equivalent to the Harris Hawk optimization algorithm and superior 

to the heuristic procedure. The proposed method, the Aquila optimizer algorithm, reduced the expected cost 

by 3.22%. This result indicates that the procedure has effective exploration capabilities [28]. Furthermore, it 

was found that Aquila's behaviors, such as expanded and narrowed exploration, proved effective in exploring 

the solution space of production-availability problems. Thus, this study confirms that the Aquila optimizer 

algorithm can be an excellent choice to tackle complex problems in inventory management, especially with 

its ability to reduce costs significantly. 

The findings of this study have some significant consequences. The results of the algorithm 

comparison analysis show that the Aquila optimizer algorithm is equivalent to the Harris Hawk optimization 

algorithm and superior to heuristic procedures. It confirms that the Aquila optimizer algorithm has excellent 

potential as an effective tool in solving complex problems in inventory management. This algorithm allows 
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companies to obtain optimal solutions in their inventory management. In addition, this study also provides 

insight into the possibility of improving efficiency in inventory management in the future. With the 

confirmation that the Aquila optimizer algorithm can produce good solutions, this research provides the 

impetus for the further development and application of the algorithm in a broader context. This means that in 

the future, the Aquila optimizer algorithm will be an invaluable tool for companies to reduce their costs and 

improve their operational efficiency significantly. 

 

 

 
 

Figure 6 Comparison of algorithms for optimization of production-inventory problems 

 

 

4.3.  Sensitivity analysis of changes in standard deviation (σ) 

In the sensitivity analysis to changes in σ, Figure 7 illustrates the impact of changes in σ. Figure 7(a) 

influences the effect of changes in σ on the expectation of ETC and Q. Moreover, Figure 7(b) influences the 

impact of changes in σ on k. The results show that the higher the σ value, the more volatile the product 

demand. The main finding is that an increase in the σ value leads to a decrease in the Q with an increase in 

the k value. It indicates that the higher the demand uncertainty, the smaller the planned production to avoid 

the risk of losing sales [30]. Although the P and P1 are not affected by changes in the σ, this result shows that 

they maintain a fixed value, probably due to other factors unaffected by demand fluctuations. 

The increase in the k results from efforts to avoid the risk of losing sales. However, at the same 

time, it also increases the shelf cost, increasing the expectation of ETC [30]. Therefore, inventory 

management must consider the trade-off between the risk of losing sales and storing costs to optimize the 

total inventory cost. A deeper understanding of the impact of the sensitivity of σ changes on some inventory 

management provides valuable insights for practitioners and researchers in developing more effective 

strategies for managing demand uncertainty and improving supply chain performance. 

This finding suggests that the more uncertain the demand, the smaller the planned production to 

avoid the risk of losing sales. Consequently, companies tend to reduce the risk of lost sales by reducing the 

planned production quantity. However, increasing the k to avoid the risk of lost sales does not come without 

consequences. Such efforts increase shelf costs due to more extensive inventories, increasing the ETC. 

Therefore, management should carefully consider balancing managing the risk of lost sales and minimizing 

inventory costs to achieve optimal results. From these findings, there are opportunities for further research 

that focus on developing inventory management strategies that are more adaptive and responsive to 

variability in demand. 

 

 

 
(a) 

 
(b) 

 

Figure 7. Sensitivity analysis of σ changes to (a) Q, ETC, and (b) k 
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5. CONCLUSION 

Based on this research, the production-inventory model that considers defective items, reprocessing, 

and leftover items on stochastic stock demand significantly impacts total costs. The results show that the 

Aquila optimizer algorithm optimizes the production-inventory problem with the same effectiveness as the 

Harris Hawk optimization algorithm. Furthermore, a comparison between the algorithms shows that the 

Aquila optimizer algorithm not only produces solutions similar to the Harris Hawk optimization algorithm 

but can also provide better solutions than heuristic procedures. Sensitivity analysis found increased 

uncertainty in demand increased total cost and safety factors. However, interestingly, the Q decreased as the 

uncertainty in demand increased. It provides valuable insights in managing inventory by considering the 

uncertainty in the demand factor. Thus, this research develops a complex production-inventory model and 

contributes to understanding how uncertainty can affect inventory management decisions. 

Although this research successfully developed a production-inventory model considering defective 

items, remanufacturing, and waste in the context of stochastic demand, some limitations still need to be 

noted. First, the model only considers four main decision variables, namely Q, k, P, and P1. The possibility 

of additional variables affecting inventory decisions could be an exciting research area to explore further. In 

addition, although the Aquila optimizer algorithm successfully minimizes total cost and provides 

comparative results with the Harris Hawk optimization algorithm, further tests are still needed regarding the 

effectiveness of this algorithm in more complex production-availability scenarios. In addition, further 

research is needed to evaluate the model's performance in practical and dynamic situations that can occur in 

everyday production environments. Therefore, as a future research direction, it is necessary to explore further 

the development of a more comprehensive model and further testing and validation of the optimization 

methods used to improve the applicability and generalizability of the findings of this research. 
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