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ABSTRACT

A sound’s pitch can be largely understood and perceived by using its fundamen-
tal frequency. Multiple algorithms have been developed for extracting funda-
mental frequency, and the choice of which one to employ depends on the noise
and features of the signal. Therefore, for an accurate fundamental frequency
estimate, the noise resistance of the algorithm becomes even more crucial. Still,
many of the most advanced algorithms fail to produce acceptable results when
faced with loud speech recordings that have low signal-to-noise ratios (SNRs).
In this research paper, we focus on the harmonic selection step in BaNa method,
which is one of the vital parts for enhancing the extraction accuracy of funda-
mental frequency (F0) in noisy situations. BaNa algorithm always emphasizes
5 harmonics on average for both male and female speakers. However, our ob-
servation reveals that relying on 5 harmonics is inadequate for male speakers in
noisy conditions. Thus, we propose a new idea based on BaNa that separately
utilizes the 3 harmonics for male speakers and 5 harmonics for female speak-
ers to achieve accurate pitch extraction within noisy environments. The results
demonstrate that our proposed approach attains the lowest rate of gross pitch
error (GPE) across various noise types and SNR levels.
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1. INTRODUCTION
Speech is the primary means of communication, which is the verbal representation of ideas. During

speech, sounds are produced by the vocal tract, which consists of the mouth, lips, pharynx, vocal cords, and
lungs. Depending on the vibration of vocal chords, generated signal can be expressed as silence, voiced, or
unvoiced [1]. Speech’s fundamental frequency is one of its most important prosodic features. A speech signal’s
fundamental frequency, commonly symbolized as (F0), represents the estimated frequency of the quasi-periodic
pattern found in voiced speech sounds. Different factors, including age, gender, and linguistic context, might
impact an individual’s unique frequency range. In addition, intonation, stress, emotion, and illness can all
have an impact. Depending on the structure of their vocal cords, each individual possesses a unique set of F0.
Women generally display a F0 range of 120 Hz to 500 Hz, while the male frequency range is usually 50 Hz to
250 Hz [2].
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Pitch in speech is perceived at a F0 that is discerned by the rate of vibration of the vocal cords during
voiced speech sounds. Therefore, F0 found in speech signal is commonly referred to as pitch. Speech pro-
cessing applications such as speech synthesis [3], [4], speech enhancement [5], speech recognition [6]-[9], and
emotion identification [10] need accurate pitch detection of a voice signal. By applying pitch enhancement
techniques in the frequency domain, [11] improves voice clarity over noise. To improve voice quality, [5]
makes use of the pitch period to build a durable paradigm for speech and background noise. In one study, a
baseline automated speech recognition (ASR) system’s performance is improved by including prosodic events,
particularly pitch accents [6]. A different piece of research reduces the sensitivity of a voice recognition sys-
tem to pitch fluctuations to create a child-friendly system [7]. To increase the viability of the aforementioned
applications, accurate pitch data extraction from the voice is crucial. Nevertheless, there are still several ob-
stacles in extracting pitch from speech. It becomes challenging to identify the exact F0 when speech signals
are tainted by noise [12]. Furthermore, since a clean speech waveform [13] goes through substantial structural
alterations during vocal tract transit, extraction of pitch has been a formidable task, particularly in a noise-free
environment.

Pitch determination methods up to now have relied on the unique characteristics of speech signals,
such as the periodic pattern in the temporal domain [14] or the harmonic structure in the spectrum domain [15].
Within the time domain to extract pitch information from speech signals, a wide range of algorithms are applied.
These includes techniques like the autocorrelation function (ACF) [16], average magnitude difference function
(AMDF) [17], average squared mean difference function [18], weighted autocorrelation function (WAF) [19],
Praat [20] and YIN [21]. Among the variety of pitch-detecting techniques, the ACF [16] determines the time
interval that produces the closest separation by evaluating the similarity between two segments of a voice signal.
A simplified version of ACF, the AMDF [17], calculates a signal by averaging the magnitudes of the differences
between it and its delayed version. The determinations of WAF [19] involve multiplying the autocorrelation
function of the signal by a predetermined range of weights. This method uses the reciprocal of AMDF to assign
importance to the autocorrelation function. During signal filtering, the WAF [19] may be used to remove noise
and other undesired signals from a speech. Using the Viterbi method to find the least costly path across all
of the segments, Praat [20] determines the optimal F0 candidate for every brief sound segment by analyzing
the maxima of the segment’s autocorrelation. By applying a cumulative averaging method to the difference
function, YIN [21] concentrates on the interaction between the standard ACF and the differentiated function.
Pitch extraction errors are to be reduced by using this technology.

Techniques for deriving pitches based on ACF are strong against white noise and insensitive to wave-
form phase irregularities. On the contrary, when noise-induced effects are introduced into clean speech, the
effectiveness of pitch extraction guided by ACF tends to decrease and performance is worse. Additionally,
changes in the characteristics of the vocal tract might affect the autocorrelation function’s behavior. Within
the frequency domain, to mitigate the influence of vocal tract features, numerous pitch extraction methods are
developed. Finding F0 in this case involves finding harmonic peaks in the power spectrum. One commonly
utilized method is the cepstrum method (CEP) [22]. By reversing the Fourier transform of the Fourier spec-
trum’s logarithmic magnitude, the cepstrum is obtained. This captures the time interval in voice harmonics and
results in a noticeable peak that coincides with the frequency interval. The CEP’s logarithmic function helps
to segregate periodic features from vocal tract properties in the speech signal. When faced with the complexity
of noisy situations, the CEP performs accurately in quiet environments but its efficacy is significantly reduced.
Kobayashi and Shimamura [23], presented the modified CEP (MCEP) incorporates liftering and clipping onto
the logarithmic spectrum as additional steps. This procedure has dual purposes: it removes characteristics of
the voice tract and unwanted spectral notches associated with noise in the logarithmic spectrum. In addition,
high-frequency components are removed by the MCEP, which enhances pitch extraction precision. The indow-
less autocorrelation function based CEP (WLACF-CEP) [24] reduces the influence of noise on speech signal
contaminated with noise, allowing its integration with the CEP approach, and resulting in enhanced accuracy in
extracting pitch information. The WLACF-CEP demonstrates a remarkable resilience against a wide range of
noise kinds. Pitch detection in the frequency domain is accomplished utilizing the pitch estimation filter with
amplitude compression (PEFAC) method [25]. Sub-harmonic summations [26] are used in the logarithmic fre-
quency spectrum. Moreover, PEFAC incorporates a special amplitude compression to bolster its resistance to
noise disruption.

Not all harmonics in the frequency domain follow exact integer multiples of the F0. In addition, the
higher-order harmonics exhibit a greater degree of drift than their lower-order harmonic counterparts. In conse-
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quence, to account for these variations, a tolerance range must be set when calculating the harmonic frequency
ratios. Using both logarithmic and power functions, [27] reduces the effect of formants and utilizes the Radon
transform to provide a novel method for estimating pitch in noisy speech conditions. It also incorporates the
Viterbi algorithm for pitch pattern refinement. [28] based on establishing a pragmatic relationship between
the instantaneous frequency (Fi) and the F0. It determines whether speech areas are voiced or unvoiced and
extracts the F0 contour by approximating it as a smoothed envelope of remaining Fi values. To estimate pitch
by comparing the temporal accumulations of clean and noisy speech samples, the temporally accumulated peak
spectrum (TAPS) algorithm, as described in [29], trains a set of peak spectrum exemplars. To understand how
noise affects the locations and amplitudes within the spectrum of clear speech, Chu and Alwan developed the
statistical algorithm for F0 estimation (SAFE) [30] model. Pitch estimation is enhanced using self-supervised
pitch estimation (SPICE), as stated in [31], by refining the acquired data and training a constant Q transform
of signals. To accommodate pitches with varying noise levels, DeepF0 [32] expands the network’s receptive
range. It has been demonstrated that HarmoF0 [33] outperforms DeepF0 in pitch estimation by employing a
range of dilated convolutions.

Almost all researchers are considered into the female and male speakers for pitch extraction. From
the above observations, in the case of female speakers, we have investigated that the fewest harmonics are
present in the first formant range (up to 1 kHz). Therefore, female speech signal is less affected when it is
contaminated by noise. On the contrary, In the case of male speakers, we have investigated that a significant
amount of harmonics are present in the first formant range (up to 1 kHz). Therefore, male speech signal is
highly affected when it is contaminated by noise. So, the male speech signal could not maintain the periodicity
for extracting the pitch and showed a higher error rate than that of the female speech signal. Depending on
the above properties, BaNa [34] opts for the initial five amplitude spectral peaks from the speech signal’s
spectrum on average for both male and female speakers. Nonetheless, our observation reveals that relying on
five harmonics is inadequate for male speakers under noisy conditions. Our objective is to develop a method
for extracting pitches capable of maintaining its accuracy despite the presence of noise, effectively countering
both white noise and various colored noises. In this research, we investigated 3, 5, and 7 harmonics for the male
and female speakers separately, and we found more expedient harmonics for each speaker individually which is
represented as modified BaNa (proposed). This study looked into the effects of harmonic characteristics While
previous studies investigated the impact of vocal tract and noise features separately, they did not explicitly
address its influence on the harmonic characteristics of male and female speech signals. In this study, we
emphasize the use of individual harmonics in male and female voice signals to enhance the precision of pitch
extraction, particularly in noisy environments, especially at low signal-to-noise ratios (SNRs).

2. METHOD
In the case of extracting fundamental frequency from speech signals, researchers are employing var-

ious harmonic combinations in their pursuit of acquiring precise pitch. However, it’s worth noting that they
did not specify exact harmonic suitable for precisely extracting the pitch peak in both male and female speech
signals. Noise addition can alter the speech peeks’ form, and this change depends on the noise type and its
intensity. The real-world noise makes pitch recognition quite challenging due to its ability to obfuscate the
periodic pattern of the speech waveform. The performance of pitch detection significantly decreases at low
SNRs for all previously mentioned approaches.

In this article, we have investigated the existing state-of-the-art approach BaNa [34] for the extraction
of pitch to identify the strengths and weakness, where BaNa is one of the most power full pitch extraction
method up to now [12], [27]. Pitch detection with BaNa is a hybrid technique that uses the cepstrum method
to extract pitch from noisy signals and harmonic frequency ratios. BaNa consists of the following steps: i)
preprocessing, ii) search for harmonic peaks, iii) calculate pitch candidates, and iv) selection of the pitch from
the candidates F0. For the proposed idea, we have also utilized the four steps which is similar to BaNa [34]. In
step 2: BaNa considers the 5 harmonics for male and female speech signals, simultaneously. On the other hand,
our proposed idea is to find out the most appropriate harmonics for male and female speech signals, separately
which is represented as in Figures 1-6.

From the aforementioned finding, presented in Figures 1(a) and (b), we have discovered that when 5
harmonics are considered, the peaks are shifted due to the addition of noise, leading to inaccurate pitch peak
detection in the case of male speakers, as depicted in Figure 1(a). Conversely, for female speakers, as illustrated
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in Figure 1(b), most of the harmonics are more accurate according to the pitch peak, even with the presence of
noise. In this research work, in contrast to BaNa methods, instead of calculating all the pitch harmonics, we
employ three distinct harmonics for both speakers separately required to increase the detected pitch precision.
Based on the preceding observation, we explored 3, 5, and 7 harmonics for extracting pitch in both speakers
individually within noisy environments, and we found more appropriate harmonics for the male and female
speakers separately. We propose, 3 harmonics for male speakers and 5 harmonics for female speakers are more
appropriate when extracting speech from noisy speech.

(a)

(b)

Figure 1. Speech signals’ harmonic characteristics in clean, noisy environments for (a) male speakers and (b)
female speakers, in case of 5 harmonics

Based on the insights gained from the above observations and investigations, we have illustrated Fig-
ures 2(a) and (b), which depict the harmonic characteristics of male speakers in case of 3 harmonics and female
speakers in case of 5 harmonics, respectively, in noisy environments. In the instance of 3 harmonics, consider-
ing male speakers, from Figure 2(a), we observe that additional noise has less impact on clean speech. We see
that the clean speech spectrum and the noisy speech spectrum are nearly similar, and the number of harmonics
is more precise than that of the 5 harmonics as well as the 7 harmonics. As a consequence, we acquire more
appropriate pitch information. In the case of 5 and 7 harmonics, almost all harmonics are missing to detect the
pitch peak. On the other hand, from Figure 2(b), we have observed that in the case of female speakers, while
considering 5 harmonics, clean speech is not much impacted by additional noise since female speakers have
peaks with large amplitudes. As a consequence, the pitch information we receive is more relevant. The state-
of-the-art method BaNa also considers the 5 harmonics, and we have also investigated that the 5 harmonics are
more accurate than the 3 harmonics and 7 harmonics in the case of female speakers.
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(a)

(b)

Figure 2. Speech signals’ harmonic characteristics in clean, noisy environments for (a) male speakers in case
of 3 harmonics and (b) female speakers in case of 5 harmonics

3. EXPERIMENTAL RESULTS AND DISCUSSION
Experiments using speech signals were carried out to evaluate the effectiveness of the suggested ap-

proach for extracting the accurate pitch in noisy speech. The proposed method is highlighted to extract the
more accurate harmonics in male and female speech signals, separately. These experiments were conducted by
utilizing the two databases of speech signals.

3.1. Experimental conditions
We employed speech signals derived from the KEELE database [35] and the NTT database [36].

The KEELE database provided speech recordings delivered by a group of five male and five female speakers.
The combined duration of the speech signals from these ten speakers within the KEELE database amounts
to approximately 6 m. These speech recordings underwent sampling at a frequency of 16 kHz. In the NTT
database, there are a total of eight Japanese speakers, split equally between males and females. The speech
materials attributed to them possess a duration of 11 s. These vocal signals underwent sampling at a frequency
of 10 kHz. It is possible to create noisy speech samples by combining clean speech samples with noise recorded
in noisy places. We combined several kinds of noise with the voice signals to produce noisy speech signals. A
total of seven distinct categories of noise were infused into the original signals, each with varying SNR levels,
to assess how resilient the algorithms are to noise. These noise types encompass white noise, pink noise, babble
noise, HF channel noise, car-interior noise, military vehicle noise, and train noise, sourced from the NOISEX-
92 database [37] and recorded at a sampling frequency of 20 kHz. For evaluation purposes, these noises were
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resampled to 16 kHz for assessing signals from the KEELE database and 10 kHz for assessing signals from the
NTT database. The additional experimental setups for extracting fundamental frequency are as in Table 1.

Table 1. Optimal values of tune parameters for which BaNa algorithm is tested
Parameters Optimal value

Frame length 60 ms
Number of chosen spectral peaks 3, 5, and 7
SNR level -10 to 20 dB
Frame shift 10 ms
Windowing function Hanning window
Fast fourier transform (FFT) size (points) 216

Lower limit and upper limit of human speech F0 F0min = 50 Hz, F0max = 600 Hz
Error measurement metric GPE rate

The evaluation of fundamental frequency extraction precision was carried out using the ensuing fun-
damental frequency extraction error, denoted as e(l), based on Rabiner’s rule [14]:

e(l) = Fest(l)− Ftrue(l) (1)

Herein, l signifies the frame number;
Fest(l) represents the fundamental frequency extracted from the l − th frame and
Ftrue(l) corresponds to the true fundamental frequency of the l − th frame.
If e(l) > 10% of the Ftrue(l), then the error is classified as gross pitch error (GPE). If not, it’s referred to as
fine pitch error (FPE).

3.2. Preliminary experiments

It is impossible to overlook the fact that a speaker’s features have a significant impact on the extraction
performance when it comes to pitch extraction, particularly when it comes to low or high pitches [1], [2],
which correspond to female and male speech characteristics, respectively. Additionally, distinct additive noise
characteristics, flat-spectral pattern or not, and whether or not they are time-invariant produce distinct outcomes
for pitch extraction. This is because a complicated combination of formant properties, speech harmonics, and
noise structure produced in framed voiced speech all cause nonuniform behaviors. As a result, it’s critical to
examine the accuracy of pitch extraction performance independently for both male and female speech as well
as independently for each type of noise based on the number of harmonics.

For the proposed method, it is important to set the appropriate number of harmonics in BaNa of
the female and male speaker per amount of noise and clean speech. Therefore, we conduct the preliminary
experiments to investigate the best harmonics level in KEELE and NTT databases, respectively. Here, we select
the value of harmonics 3, 5, and 7 which is more accurate with the amount of noise. Figures 3-6 represent
the relationship between the average GPE of BaNa for male speakers and female speakers with respect to
the harmonics level, respectively with white noise and color noises (pink, babble, train, high frequency (HF)
channel, car interior, and military vehicle noises) in KEELE and NTT databases, respectively.

In the case of KEELE database, From the evaluation in Figure 3, we have observed that the har-
monics level 3 shows a lower GPE rate than the other’s harmonic level at all SNRs level of all noises (from
Figures 3(a)-(g)) in the male speaker. On the other hand as in Figure 4, the harmonics level 5 shows a lower
GPE rate than the other’s harmonic level at all SNRs level of all noises (from Figures 4(a)-(g)) in the female
speaker. In the case of the NTT database, From the experimental Figures 5 and 6, we have observed that har-
monic levels 3 and 5 provide the lower GPE rate at all SNRs of all noise cases (from Figures 5(a)-(g) and from
Figures 6(a)-(g)) in male and female speakers, respectively, which shows similar behavior in KEELE database.
According to the experimental result, for estimating the average GPE, we used the harmonic level as 3, and 5
at the male and female speakers, respectively in the proposed idea. Both threshold values are highly effective
at low SNR values as well as high SNRs of speech signals in both databases.

Int J Adv Appl Sci, Vol. 13, No. 3, September 2024: 515–529



Int J Adv Appl Sci ISSN: 2252-8814 ❒ 521

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. For male speakers in KEELE database, the average GPE rate at various harmonic levels on (a) white
noise, (b) pink noise, (c) babble noise, (d) train noise, (e) HF channel noise, (f) car interior noise,

and (g) military vehicle noise
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. For female speakers in KEELE database, the average GPE rate at various harmonic levels on (a)
white noise, (b) pink noise, (c) babble noise, (d) train noise, (e) HF channel noise, (f) car interior noise,

and (g) military vehicle noise
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. For male speakers in NTT database, the average GPE rate at various harmonic levels on (a) white
noise, (b) pink noise, (c) babble noise, (d) train noise, (e) HF channel noise, (f) car interior noise,

and (g) military vehicle noise
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6. For female speakers in NTT database, the average GPE rate at various harmonic levels on (a) white
noise, (b) pink noise, (c) babble noise, (d) train noise, (e) HF channel noise, (f) car interior noise,

and (g) military vehicle noise
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3.3. Performance comparisons
Pitch extraction efficacy in environments with high levels of noise was compared between the sug-

gested approach and the traditional approaches (YIN [21], PEFAC [25], and BaNa [34]). BaNa proved to be
the most successful pitch extractor in noisy environments after nine different methods were tried in [12]. We
examine seven forms of noise, namely white, pink, babble, train, HF channel, car interior, and military vehicle
noises. Except for the length of the frame and quantity of inverse density functional theory (IDFT) points for
PEFAC and BaNa, all the factors of the existing techniques were identical to those of the proposed technique.
Yang et al. [34] states that 216 points were utilized for the IDFT points, and that the frame duration for BaNa
was set to 60 ms. This environment is ideal for BaNa. BaNa was implemented utilizing the source code pro-
vided in [38]. According to the advice in [25], hamming window function and 90 ms were utilized as the
window function and frame length respectively. The source code uses 213 as the value for the IDFT points. The
PEFAC implementation’s source code was compiled from [39]. To authenticate our proposed idea, we have
also utilized the source code of BaNa [38]. Figures 7 and 8 display the average GPE rate of the three algorithms
and proposed idea for identifying the pitch on the NTT and KEELE databases, respectively with various forms
of noise.

According to Figure 7, our findings indicate that it provides a lower GPE rate at low SNRs (-10
to 5 dB) than that of other conventional methods (YIN, PEFAC, and BaNa) at almost all noise cases (from
Figures 7(a)-(f)) except military vehicle noise (Figure 7(g)). When it comes to military vehicle noise, the
PEFAC method provides a lower GPE rate at low SNRs and the proposed idea shows a lower GPE rate than
that of BaNa. On the other hand, the proposed method may benefit from the high SNRs (10 to 20 dB) in all
noises (from Figures 7(a)-(g)) without negatively affecting other conventional methods.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 7. Average GPE rate in NTT database on (a) white noise, (b) pink noise, (c) babble noise,
(d) train noise, (e) HF channel noise, (f) car interior noise, and (g) military vehicle noise
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To validate the performance of the Proposed idea more reliably, we also consider the KEELE database.
Figure 8 shows the average GPE rates for an average of male and female speakers, respectively. Pitch values
originally obtained from laryngograph signals re available in the KEELE database. Upon closer inspection,
we discovered that there are some gaps. Consequently, the original pitch values aren’t particularly precise.
This is evident in the resulting GPE percentages. The GPE percentages of high SNR (20 dB) in Figure 8 is
substantially greater than high SNR (20 dB) in Figure 7. This is due to the KEELE database’s original pitch
values being less accurate. Figure 8 (from Figures 8(a)-(g)) demonstrates a pattern akin to that in Figure 7 for
all methods. From a performance comparison aspect, the YIN and PEFAC methods have comparatively low
performance at low SNRs of -10 dB and -5 dB in the babble noise as in Figure 8(c) and military vehicle noise
as in Figure 8(g) cases, respectively.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 8. Average GPE rate in KEELE database on (a) white noise, (b) pink noise, (c) babble noise,
(d) train noise, (e) HF channel noise, (f) car interior noise, and (g) military vehicle noise

4. CONCLUSION
The intrinsic distinctions between the features of male and female voice signals cause fundamental

frequency extraction techniques to differ in accuracy for various speaker types. Different speakers will therefore
experience the effects of different harmonics differently. This research presents an experimental and analytical
analysis of various harmonics applied to both speakers. According to the aforementioned data, our suggested
method outperforms existing algorithms, when speech is impacted by noise. We carried out experimental
assessments to compare the performance of the proposed idea against BaNa, PEFAC, and YIN on two speech
databases, including KEELE and NTT. Our results provide conclusive evidence that it achieves the lowest GPE
rate for all noise and SNR levels examined while accounting for 3 harmonics for male speakers and 5 harmonics
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for female speakers. Therefore, our research shows that it is more resilient than other conventional methods
without any complicated post-processing according to their noise type and SNRs. Future research may look
into developing a new method for extracting pitch that will be exceptionally resilient to extremely low SNR
cases across various real-world noise case which will be more effective in speech processing applications.
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[21] A. de Cheveigné and H. Kawahara, “YIN, a fundamental frequency estimator for speech and music,” The Journal of the Acoustical
Society of America, vol. 111, no. 4, pp. 1917–1930, Apr. 2002, doi: 10.1121/1.1458024.

[22] A. M. Noll, “Cepstrum pitch determination,” The Journal of the Acoustical Society of America, vol. 41, no. 2, pp. 293–309, Feb.
1967, doi: 10.1121/1.1910339.

[23] H. Kobayashi and T. Shimamura, “A modified cepstrum method for pitch extraction,” in IEEE. APCCAS 1998. 1998 IEEE Asia-
Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242), IEEE, pp.
299–302. doi: 10.1109/APCCAS.1998.743751.

[24] M. A. F. M. R. Hasan, M. S. Rahman, and T. Shimamura, “Windowless-autocorrelation-based cepstrum method for pitch extraction
of noisy speech,” Journal of Signal Processing, vol. 16, no. 3, pp. 231–239, 2012, doi: 10.2299/jsp.16.231.

[25] S. Gonzalez and M. Brookes, “PEFAC - a pitch estimation algorithm robust to high levels of noise,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 22, no. 2, pp. 518–530, Feb. 2014, doi: 10.1109/TASLP.2013.2295918.

[26] D. J. Hermes, “Measurement of pitch by subharmonic summation,” The Journal of the Acoustical Society of America, vol. 83, no.
1, pp. 257–264, Jan. 1988, doi: 10.1121/1.396427.

[27] B. Li and X. Zhang, “A pitch estimation algorithm for speech in complex noise environments based on the radon transform,” IEEE

Fundamental frequency extraction by utilizing modified BaNa in noisy speech (Arpita Saha)



528 ❒ ISSN: 2252-8814

Access, vol. 11, pp. 9876–9889, 2023, doi: 10.1109/ACCESS.2023.3240181.
[28] Z. Mnasri, S. Rovetta, and F. Masulli, “A novel pitch detection algorithm based on instantaneous frequency for clean and noisy

speech,” Circuits, Systems, and Signal Processing, vol. 41, no. 11, pp. 6266–6294, Nov. 2022, doi: 10.1007/s00034-022-02082-8.
[29] F. Huang and T. Lee, “Pitch estimation in noisy speech using accumulated peak spectrum and sparse estimation technique,” IEEE

Transactions on Audio, Speech and Language Processing, vol. 21, no. 1, pp. 99–109, Jan. 2013, doi: 10.1109/TASL.2012.2215589.
[30] W. Chu and A. Alwan, “SAFE: a statistical approach to F0 estimation under clean and noisy conditions,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 20, no. 3, pp. 933–944, Mar. 2012, doi: 10.1109/TASL.2011.2168518.
[31] B. Gfeller, C. Frank, D. Roblek, M. Sharifi, M. Tagliasacchi, and M. Velimirovic, “SPICE: self-supervised pitch es-

timation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 1118–1128, 2020, doi:
10.1109/TASLP.2020.2982285.

[32] S. Singh, R. Wang, and Y. Qiu, “DeepF0: end-to-end fundamental frequency estimation for music and speech signals,” in ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Jun. 2021, pp. 61–65.
doi: 10.1109/ICASSP39728.2021.9414050.

[33] W. Wei, P. Li, Y. Yu, and W. Li, “HarmoF0: logarithmic scale dilated convolution for pitch estimation,” May 2022, [Online].
Available: http://arxiv.org/abs/2205.01019.

[34] N. Yang, H. Ba, W. Cai, I. Demirkol, and W. Heinzelman, “BaNa: A noise resilient fundamental frequency detection algorithm
for speech and music,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 22, no. 12, pp. 1833–1848, Dec.
2014, doi: 10.1109/TASLP.2014.2352453.

[35] F. Plante, G. F. Meyer, and W. A. Ainsworth, “A pitch extraction reference database,” in 4th European Conference on Speech
Communication and Technology (Eurospeech 1995), ISCA: ISCA, Sep. 1995, pp. 837–840. doi: 10.21437/Eurospeech.1995-191.

[36] “Multi-lingual speech database for telephometry.” 1988. Distributed by NTT Advanced Technology Corp., Jpn, .
[37] A. Varga and H. J. M. Steeneken, “Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to

study the effect of additive noise on speech recognition systems,” Speech Communication, vol. 12, no. 3, pp. 247–251, Jul. 1993,
doi: 10.1016/0167-6393(93)90095-3.

[38] Wcng, “Wireless communication networking group.” [Online]. Available, http://www.ece.rochester.edu/projects/wcng/code.html
[39] M. Brookes, “Voicebox toolkit.” [Online]. Available, http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

BIOGRAPHIES OF AUTHORS

Arpita Saha received her B.Sc. (engineering) degrees in Information and Communication
Technology from Comilla University, Cumilla, Bangladesh in 2023. In 2018, she admitted as a stu-
dent in the Department of Information and Communication Technology, Comilla University, Cumilla,
Bangladesh. Her current research interests include speech analysis and digital signal processing. She
can be contacted at email: arpitasaha2041@gmail.com

Nargis Parvin received her B.Sc. (honours) and M.Sc. degrees in Information and
Communication Engineering from University of Rajshahi, Rajshahi, Bangladesh, in 2006 and 2007,
respectively. In 2013, she joined as a lecturer in the Department of Computer Science and Engi-
neering, Bangladesh Army International University of Science and Technology (BAIUST), Cumilla
Cantonment, Cumilla, Bangladesh, where she is currently serving as an Assistant Professor. She
pursued her Ph.D. degree in the field of speech processing at the Graduate School of Science and
Engineering at Saitama University, Japan. Her research interests include speech analysis and digital
signal processing. She can be contacted at email: nargis.cse@baiust.ac.bd.

Md. Saifur Rahman received his B.Sc. (honours) and M.Sc. degrees in Information and
Communication Engineering from University of Rajshahi, Rajshahi, Bangladesh, in 2006 and 2007,
respectively. In 2012, he joined as a lecturer in the Department of Information and Communication
Technology, Comilla University, Cumilla, Bangladesh, where he is currently serving as an associate
professor. He pursued his Ph.D. degree in the field of speech processing at the Graduate School of
Science and Engineering at Saitama University, Japan. His research interests include speech analysis
and digital signal processing. He can be contacted at email: saifurice@cou.ac.bd.

Int J Adv Appl Sci, Vol. 13, No. 3, September 2024: 515–529

https://orcid.org/0009-0007-6995-3538
https://scholar.google.com/citations?user=HBB-dD0AAAAJ&hl=en
https://orcid.org/0009-0002-7469-2057
https://scholar.google.com/citations?user=mH5kBFQAAAAJ&hl=en
https://orcid.org/0009-0008-0629-486X
https://scholar.google.com/citations?user=sQ4Q7WIAAAAJ&hl=en


Int J Adv Appl Sci ISSN: 2252-8814 ❒ 529

Moinur Rahman received his B.Sc. (engineering) and M.Sc. (engineering) degrees in
Information and Communication Technology from Comilla University, Cumilla, Bangladesh, in 2018
and 2019, respectively. In 2022, he joined as a lecturer in the Department of Computer Science and
Engineering, The People’s University of Bangladesh, 3/2 Asad Avenue, Dhaka, Bangladesh. Now
he is currently serving as a lecturer in the Department of Information Technology, University of
Information Technology and Sciences, Baridhara, Dhaka, Bangladesh from March 2023. His current
research interests include speech analysis and digital signal processing. He can be contacted at email:
pranta7907@gmail.com.

Any Chowdhury received her B.Sc (engineering) degrees in Information and Commu-
nication Technology from Comilla University, Cumilla, Bangladesh in 2023. In 2018, she admitted
as a student in the Department of Information and Communication Technology, Comilla University,
Cumilla, Bangladesh. Her current research interests include speech analysis and digital signal pro-
cessing. She can be contacted at email: anychowdhury1998@stud.cou.ac.bd.

Fundamental frequency extraction by utilizing modified BaNa in noisy speech (Arpita Saha)

https://orcid.org/0009-0000-0077-6093
https://orcid.org/0009-0004-7175-2979

	Introduction
	Method
	Experimental Results and Discussion
	Experimental conditions
	Preliminary experiments
	Performance comparisons

	Conclusion

