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 The idea of an addition chain can be applied to scalar multiplication 

involving huge number operations in elliptic curve cryptosystems. In this 

article, initially, we study the taxonomy of the addition chain problem to 

build up an understanding of the problem. We then examine the mathematics 

behind an optimal addition chain that includes the theoretical boundary for 

the upper limit and lower limit which laid the foundation for 

experimentation hereafter. In the following, we examine different addition 

chain solutions that were used to increase efficiency in scalar multiplication. 

To avoid any possible confusion, we intentionally separated the discussion 

into two modules called integer recoding method and chain generator based 

on the heuristics method. These methods were developed by considering 

various aspects such as the space within which the operation is executed, the 

curve that is selected, the formulation to express the original equation, and 

the choices of operation and arithmetic, all together to improve operational 

efficiency. 
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1. INTRODUCTION 

This article takes an evolutionary approach to the studies on the problematic addition chain [1]. The 

entire research was spearheaded by a question raised more than 100 years ago, for finding an optimal chain 

for any integer n by only allowing the addition of 2 earlier integers. When we mention optimal chain for n, 

we mean the shortest possible chain from 1 to n such that there exists no other path shorter than that. 

Furthermore, an optimal method means a method that can generate an optimal chain given an integer n. 

For a long time, the addition chain problem has been an interest of not so vast several researchers. But that 

was only until cryptosystems such as Rivest-Shamir-Adleman (RSA) and later elliptic curve cryptography 

(ECC) [2], [3] came around to capsize this perspective. Ever since, researchers have been pulling together 

efforts to integrate the two isolated fields into each other. The idea of an addition chain has been realized in 

RSA modular exponentiation and ECC scalar multiplication operations. Indeed, these works marked the real-

world applicability of the addition chain for the first time ever. 

Cryptography relies on one one-way function and a huge number of operations as the basis of a 

secrecy system. This function is properly selected such that the security is preserved and treated as the utmost 

importance consideration. Apart from that, efficiency comes next especially whenever the system is to be 
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used widely and exhaustively. In ECC this operation is largely contributed by scalar multiplication operation 

over 𝐸(𝔽2), formulated as 𝑄 = 𝑛𝑃 where n is a scalar, P and Q are points on the curve. An excellent choice 

of the design and implementation of this operation contributes to an efficient cryptosystem. In reality, direct 

computation of scalar multiplication is a very resource-exhaustive operation. An alternative computation is 

sought to reduce the time and resources needed. 

The formulation of scalar multiplication point arithmetic involves 4 different layers as shown in 

Figure 1. The upper layer is responsible for choosing the space and a specific curve that can contribute to the 

minimality. In this layer, a choice of working in affine space, projective space, Jacobian space, or Jacobian-

Chudnosky space needs to be decided. The curve equation varies from one space to another to satisfy the 

type of group structure that we need to establish. The second upper layer decides how the original expression 

𝑛𝑃 can be reduced to an equivalent but for more efficient execution. The third layer deals with elliptic curve 

point arithmetic such as addition, doubling, negation, inversion, and division. These operations are different 

from ordinary point arithmetic on Cartesian coordinates. A specific formula must be known a priori, and it 

varies from one curve to another. The lowest layer operates on finite field arithmetic where the formula takes 

on the values of x and y from a point P to produce point Q. 

 

 

 
 

Figure 1. Addition chain-layered approach 

 

 

In the beginning, the addition chain is seen as a solution to the scalar multiplication formulation 

layer problem. To some extent, yes indeed. An expression 𝑛𝑃 can be transformed into a more complicated 

form but with much simpler execution using iterations, such that 𝑄 = 𝑛𝑃 = (2. . . (2(2(𝑃) + 𝑏𝑟−1𝑃) +
𝑏𝑟−2𝑃)+. . . ) + 𝑏0𝑃). This formula computes 𝑛𝑃 into a series of operations each generating an integer 

altogether in ascending order until n. The goal is to find the least number of terms known as an optimal chain. 

The method that produces such a series is known as an optimal method. However, along the way, researchers 

realized that the scalar multiplication problem through the addition chain has only partly been solved, and 

better yet addition chain in itself is problematic and extra efforts are needed to address this new efficiency 

issue, that is in finding an optimal method. The optimal addition chain problem is not proved to be a 

nondeterministic polynomial time (NP) complete problem. Therefore, the complexity of the addition chain 

problem has remained an open problem until now. In contrast, there is no known algorithm that can generate 

an optimal chain for all n. In case one discovers an optimal addition chain method, an efficiency issue from 

the perspective of the addition chain can be closed. 

From Figure 2, we can summarize the study of the addition chain problem into two main categories, 

one that involves theoretical mathematics regarding finding optimal chain, and upper and lower boundary 

values for a given integer n. The other involves computer experiments (simulation) to evaluate the 

performance of the methods that have been materialized. Further on, these methods can be subdivided into 

two namely heuristics and meta-heuristics. Note that, exact methods have been left aside due to the study by 

[4] which proved that finding an addition chain sequence is an NP problem, and consequently addition chain 

problem is so assumed.  

Heuristics-based methods have been extensively studied and numerous literatures are available on 

these topics. Artificial intelligence, being an engine for meta-heuristics methods [5]-[8], has been widely 

accepted for solving NP-complete problems. Genetic algorithm in particular has been used for finding an 

optimal chain [9], [10]. Recently, the ant colony approach was implemented for finding the shortest addition 

chain and it was shown that this approach generates a chain that is always shorter than that of the genetic 

algorithm [11], [12]. Moreover, similar to classical methods, artificial intelligence approaches could also be 

combined to produce a hybrid method that could reach up to the nearest optimality. In this survey, we 

examine the list of heuristics methods available to date in great detail. The aim is to provide a comprehensive 

review of addition chain heuristics methods by having a breadth and depth approach to the subject matter. 
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Figure 2. Subareas of study on addition chain 

 

 

Due to the difficulties in finding the optimal addition chain method, the search for a solution for 

scalar multiplication through the addition chain approach remains open. However, it was shown that the 

scalar multiplication problem can be reduced to finding an efficient addition chain method that generates an 

addition chain, if not with optimal length but with the closest possible to optimal length. Methods that 

generate near-optimal addition chains are called heuristics methods. One important characteristic of these 

methods is that no one method is better than the other except for some cases of n. Therefore, a chain 

generated using a particular method is still possible to have redundant terms, of which other methods may 

find shorter. 

In addition, solutions chain problems designated for ECC are targeting two classes of curves; a 

curve defined over any field and a curve defined over a specific field. In this paper, we discuss how different 

methods exploit the formula 𝑄 = 𝑛𝑃 such that the operation of scalar multiplication is at utmost efficiency 

using an addition chain formula. The number of operations is represented by the number of primitive 

operations of addition and doubling which is likely proportional to the number of terms. Therefore, the timing 

parameter from scalar multiplication now depends on the number of terms in the generated addition chain. 

We denote the number of terms other than the first one as the length of an addition chain. Minimizing this 

parameter is the main focus of this paper. 

As shown in Figure 3, heuristics methods for addition chains have two responsibilities, to recode 

integer n into some format and to generate the chain based on the recoded format. The right representation 

allows the generation of a minimal addition chain. Sign and radix are two main contributions to consider 

when designing a new representation. 

 

 

 
 

Figure 3. Subdivision of addition chain methods 

 

 

The fact that the optimal addition chain method is non-existence, the challenges when dealing with 

the addition chain problem are as follows. Firstly, there is a pressing need to develop applications that 

effectively utilize addition chain solutions, requiring innovative approaches to tackle the problem. Secondly, 

the development of heuristic methods becomes essential, particularly those capable of working in conjunction 

with specific recording techniques to generate minimal chains efficiently. Additionally, there is a 

considerable endeavor to solve various mathematical open problems related to addition chains, underscoring 

the complexity and depth of the challenge at hand. In this survey article, we try to expose the following 

contributions which to the best of our knowledge are not documented anywhere: i) Take an evolutionary 

approach to understanding the concept of addition chain problem and solution about scalar multiplication that 
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of ECC and ii) Examine the fundamental issues regarding theoretical and experimental approaches to the 

addition chain problem. 

The discussion is divided into the following. Section 2 examines into optimal addition chain from an 

analytical perspective. Section 3 examines various near-optimal methods for generating an efficient addition 

chain. Each method is separable into two different modules to choose a proper representation for n and 

another module to compute an addition chain for n. Section 4 discusses the challenges and issues of the 

addition chain. 

 

 

2. THEORETICAL OPTIMAL OF ADDITION CHAIN 

Simple operations such as addition and doubling require fewer resources in computer systems. 

Instead of operating a point P with a huge scalar n, there is a possible way of breaking this exhaustive 

computation into a sequence of addition and doubling operations in a journey to reach n.  

Definition 2.1. Suppose n is an integer in the form of binary representation such that 𝑛 = 𝑏𝑐2𝑐 +
𝑏𝑐−12𝑐−1 + ⋯ + 𝑏0. Then, 

 

𝜆(𝑛) = ⌊𝑙𝑜𝑔2𝑛⌋ (1) 
 

𝑣(𝑛) = ∑ 𝑏𝑖
𝑐
𝑖=0  (2) 

 

where bi ∈ {0,1}. Given an integer n, possibly starting from 1 (followed by 2), with allowable operations of 

addition and doubling of two previous terms to get a new one, the objective is to find the fastest way to reach 

n. From the computational complexity point of view, Downey et al. [4] proved that the problem of finding 

the smallest number of terms in the sequence is an NP-complete problem which says that there is no known 

NP algorithm to find an optimal solution. Huge interest was shown in producing a near-optimal solution 

resulting from various techniques. Researchers [13]-[15] discussed the resulting asymptotic values of 

addition chains. This idea gives way to the generalized definition of an addition chain which was initially 

studied by Dellac [16]. 

Definition 2.2. An addition chain for n is a sequence of positive integers of the form: 
 

𝑎0 = 1, 𝑎1, … , 𝑎𝑟 = 𝑛 (3) 
 

where 𝑎𝛾 = 𝑎𝛽 + 𝑎𝛼  such that 𝛼 ≤ 𝛽 < 𝛾 for all 𝛾 = 1, 2, . . . , 𝑟. The length of the addition chain is equal to 

the number of elements in the sequence other than the initial term 𝑎0, in this case, r. For any positive integer 

n, the shortest possible length of an addition chain for n is denoted by 𝑙(𝑛). The 𝑙(𝑛) is also famously called 

an optimal chain. Since there is no one algorithm in NP available to realize 𝑙(𝑛) for all n, a few different 

algorithms were developed to generate a near-optimal chain. One algorithm is better in some conditions than 

the others and vice versa. There is a special type of addition chain namely ascending addition chain, so 

named because the term 𝑎𝑖 > 𝑎𝑖−1. 

Definition 2.3. An ascending addition chain for n is a sequence of positive integers of the form: 
 

𝑎0 = 1 < 𝑎1 < ⋯ < 𝑎𝑟 = 𝑛 (4) 
 

where 𝑎𝛾 = 𝑎𝛽 + 𝑎𝛼  such that 𝛼 ≤ 𝛽 < 𝛾 for all 𝛾 = 1, 2, . . . , 𝑟. A variation with 𝛽 = 𝛾 − 1 for all 𝑎𝑖  is 

known as star chain, and its chain is denoted by 𝑙∗(𝑛) for which 𝑙(𝑛) ≤ 𝑙∗(𝑛) [17]. This chain resembles the 

sequence generated by add and double method to be discussed in section 3. Many studies were conducted to 

analyze the behavior of 𝑙(𝑛) for this specific type of chain. The studies centered around conjectures that were 

stated in the early 20th century. Researchers tend to prove or disprove those conjectures as well as improve 

some boundaries for upper bound and lower bound. The most notable one was due to [18], [19]. But before 

that, let’s look at the following lemma that will be of some use later, which simply says that for n of mth 

power of 2, an optimal chain is given by m. 

Lemma 2.4. [20]. Let n be an integer such that 𝑛 = 2𝑚. Then 𝑙(𝑛) = 𝑚. Lemma 2.4 could also be 

proved through mathematical induction on m. Much earlier than this, Scholz published his first question on 

the boundary of 𝑙(𝑛) in the following theorem. 

Theorem 2.5. [18]. Let an integer n such that 2𝑚 + 1 ≤ 𝑛 ≤ 2𝑚+1, then 𝑚 + 1 ≤ 𝑙(𝑛) ≤ 2𝑚 for 

𝑚 ≥  1.The proof is provided by Brauer and is split into two parts, the lower bound and the upper bound. A 

simple approach was used which is to look at n in its binary form. 

Theorem 2.6. [18]. Let n be an integer such that 𝑛 = 𝑎𝑏. Then 𝑙(𝑎𝑏) ≤ 𝑙(𝑎) + 𝑙(𝑏). This second 

problem from Scholz was also proved by Brauer. The chain for an integer ab is at most of the same length as 

the sum of the chains for each factor. 
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Studies on boundaries have received considerable attention [14], [15], [18], [21]-[24]. Erdos [24] 

stated that for almost all n, the following boundary is the best possible: 
 

𝑙𝑜𝑔 𝑛 + 𝑙𝑜𝑔 𝑣(𝑛) − 2.13 ≤ 𝑙(𝑛) ≤ 𝑙𝑜𝑔 𝑛 + (𝑙𝑜𝑔 𝑛/𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) + 𝑂(𝑙𝑜𝑔 𝑛/𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) (5) 
 

For which the lower bound was due to Schonhage [21], while the upper bound was credited to Brauer [18]. 

Theorem 2.7. [19]. Let n be an integer such that 𝑛 = 2𝑚+1 − 1. 𝑙(2𝑚+1 − 1) ≤ 𝑚 + 𝑙(𝑚 + 1). This 

conjecture is known as Scholz’s conjecture. From the integer range defined in Theorem 2.5, n was chosen to 

hold a value having the greatest number of 1’s in its equivalent binary representation. It aims at studying the 

worst case for l(n). Even after almost a decade, this conjecture has remained an open question until today. 

Although partial proof was suggested for star type addition chain. Brauer proved this conjecture holds for star 

chains such that 𝑙∗(2𝑚+1 − 1) ≤ 𝑚 + 𝑙∗(𝑚 +  1). Only recently, Agama [25] showed that using the pothole 

method, a slightly weaker inequality holds for this number family. Earlier studies were based on the 

hamming weight. Utz [20] studied this problem for the case v(n) = 1 and 𝑣(𝑛) = 2 and he proved that 𝑙(𝑛) =
𝜆(𝑛) and 𝑙(𝑛) = 𝜆(𝑛) + 1 respectively, and the trueness of Scholz’s conjecture holds accordingly. Much 

later Gioia et al. [26] came out with a proof for 𝑣(𝑛) = 3, which was shown to satisfy 𝑙(𝑛) = 𝜆(𝑛) + 2. The 

proof was simplified by Vegh [27]. Studies on 𝑣(𝑛) = 4 was quite involved and initially, it was partially 

solved by Gioia et al. [21]. However, Knuth [15] completed the proof for which he showed that for some 

special n, 𝑙(𝑛) = 𝜆(𝑛) + 2, otherwise 𝑙(𝑛) = 𝜆(𝑛) + 3. Moreover, Gioia et al. [26] also showed that for all n 

such that 𝑣(𝑛) ≥ 4, 𝑙(𝑛) ≥ 𝜆 + 3. The following studies for 𝑣(𝑛)  =  5 are credited to Tsai and Chin [28], 

[29] which was proved to satisfy 𝑙(𝑛) ≤ 𝜆(𝑛) + 4. Additionally, Knuth [15] showed that 𝑙(𝑛) ≥ 𝜆(𝑛) +
3 for 𝑣(𝑛) ≥ 5. Further studies on 𝑣(𝑛) = 6,7,8 were due to Bahig and Nakamula [30] for which they 

showed that 𝑙(𝑛) =  𝜆(𝑛) + 3 and concluded that Scholz’s conjecture is true for this class of integers. 

There was an earlier study by Thurber [31] where he showed that 𝑙(𝑛) ≥ 𝜆(𝑛) + 4 for 𝑣(𝑛) ≥ 8. In 

the same paper, he extended the proof for 𝑣(𝑛) ≥ 9 for which 𝑙(𝑛) ≥ 𝜆(𝑛) + 4, which was subsequently also 

obtained in a slightly different way by Tsai and Chin [29]. Moreover, Thurber [31] extended the proof for 1’s 

density of the form 𝑣(𝑛) ≥ 24𝑚−1 + 1 for which he proved that 𝑙(𝑛) ≥ 𝜆(𝑛) + 𝑚 + 3. There were also other 

conjectures, one after Goulard [32] for which he stated that 𝑙(2𝑛) = 𝑙(𝑛) + 1 for all n. This conjecture was 

disproved with a counterexample by Knuth [15] for which he found that 𝑙(191) = 𝑙(382). Theoretically, 

[22], [33], [34] proved that there exist infinite sequences of n with 𝑙(2𝑛) = 𝑙(𝑛). Another one was 𝑙(2𝑛) ≥
𝑙(𝑛) due to Knuth [15], which can be generalized to 𝑙(𝑚𝑛) ≥ 𝑙(𝑛). This conjecture was earlier disproved by 

Knuth [15] for which he found that 𝑙(3𝑛) < 𝑙(𝑛) for 𝑛 = 2731. Thurber and Clift [35] found that 𝑙(2𝑛) <
𝑙(𝑛) for 𝑛 = 30958077 using his very own algorithm having the capacity to calculate an optimal chain for a 

range of numbers, especially of large set. This algorithm is faster than any existing algorithm in this working 

condition. Moreover, many recent works on addition chains were to find minimal chains for specific 

sequences [36], [37] and others by employing parallel computation for faster results [38]. 

Point negation on the elliptic curve imposes no extra cost. Due to this, a subtraction operation can be 

introduced to the sequence freely. This gives an additional means to shorten the generated chain. The 

following definition introduces a subtraction operation into the chain. 

Definition 2.8. An addition subtraction chain for n is a sequence of positive integers of the form: 
 

𝑎0  =  ±1, 𝑎1, . . . , 𝑎𝑟  =  𝑛 (6) 
 

where 𝑎𝛾  =  𝑎𝛽 ±  𝑎𝛼 for which 𝛼 ≤ 𝛽 < 𝛾 for all 𝛾 = 1, 2, . . . , 𝑟. Consider n to be a positive integer. The 

smallest r such that there exists a sequence of an addition subtraction chain for n is denoted as 𝑙′(𝑛). 

Schonhage [21] and Erdös [24] stated clearly that 𝑙′(𝑛) ≤  l(n) and the boundary for 𝑙(𝑛) holds for 𝑙′(𝑛) too. 

A study dedicated to addition subtraction chain is rarely found except from Volger [39] for which he found, 

with some exceptions, the following inequalities for the boundary of 𝑙′(𝑛): 
 

log 𝑛 + 𝑙𝑜𝑔𝑣′(𝑛) − 2.13 ≤ 𝑙′(𝑛) ≤ ⌈𝑙𝑜𝑔
4

3
𝑛⌉ + 𝑣′(𝑛) − 2 (7) 

 

where 𝑣′(𝑛) ≤  3 is the non-zero density of the signed representation for n. We observed that the study on 

theoretical addition chain concentrates on the length, i.e., the number of terms. This is very much related to 

the length of its representation (e.g., binary and m-ary) and its hamming weight. These two factors can be 

varied based on the radix and non-zero density. Recently, we come across many new representations for 

integers such as that found in [40]-[49] which could be further scrutinized for a shorter addition chain. 
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3. ADDITION CHAIN METHOD 

By definition, the heuristic method was designed to solve a complex problem much quicker by 

allowing marginal error in the result when exact methods are too slow to find the optimal solution. The idea 

is to tolerate optimality, completeness, accuracy, or precision with speed. In ECC, the addition chain method 

reads a recoded representation for n to compute the multiplication by a scalar, 𝑄 = 𝑛𝑃. Many methods exist, 

but each method bears slight differences from others because each one has to be tailored to work with 

different representations of n. The efficiency of an addition chain method is measured by the number of 

addition and doubling operations executed during scalar multiplication, which here are denoted by ADD and 

DBL respectively. Noteworthy, for representation with radix other than 2, precomputation of coefficients is 

also needed and is denoted here by PRECOMP. 

Consider a binary representation for an integer n of length r. The original binary method is designed 

to operate on an unsigned binary representation. Using this representation, we can have the method scan the 

input bit both from right to left [15] and left to right to left [50]. The expected running time for both is 

identical and can be approximated to 
𝑟

2
𝐴𝐷𝐷 + 𝑟𝐷𝐵𝐿. The latter allows on-the-fly computation but with a 

wasted extra doubling at the end. While the former is suitable for any readily stored unsigned representation. 

In terms of memory consumption, left-to-right execution requires lesser memory storage than right-to-left. 

For a limited storage device, a left-to-right algorithm is preferable and the ability to execute scalar 

multiplication on the fly would be beneficial. These two methods are only suitable for unsigned binary 

representation. In case when a subtraction operation can be introduced into the chain, the binary method in 

general needs a little modification which results in a so-called addition subtraction method [51], [52]. This 

method can take an input having signed bits such as signed representation, non-adjacent form (NAF), and 

mutual opposite form (MOF), other than the original unsigned. By considering NAF input, the expected 

running time is near to 
𝑟

3
𝐴𝐷𝐷 + 𝑟𝐷𝐵𝐿. 

Nevertheless, things are a bit different with width-w window recording where all elements of the 

coefficient set other than 1 need to be precomputed [53]. Due to the need for precomputation, the total 

running time is divided into time to precompute the coefficients and the time taken to execute scalar 

multiplication. The maximum time required for precomputation is equal to (2𝑤−2)𝑃𝑅𝐸𝐶𝑂𝑀𝑃. Meanwhile, 

the time needed for computing the chain is given by 
𝑟

1+𝑤
𝐴𝐷𝐷 + 𝑟𝐷𝐵𝐿. It can take inputs from w-NAF [53], 

w-LtoR [54] as well and an efficient on-the-fly version of scalar multiplication for w-MOF is available from 

Okeya et al. [55]. Further improving the window method, [56] introduced the cross-window method and its 

variants. The cross-window method with the addition sequence algorithm obtained a 9.5% reduction in the 

addition chain length, as compared to the window method. 

The binary method allows only addition (subtraction) by P and multiplication by 2 to the current 

term. A shorter chain could be achieved by allowing addition and multiplication by a bigger integer. By 

allowing a wider range of coefficients ci and the radix 𝑚 = 2𝑘  for 𝑘 > 1, the chain could be shortened 

significantly. The length of this new representation is given by 𝑡 = 𝑟/𝑘. Therefore, a smaller number of 

arithmetic operations are required. Namely, the m-ary method is meant to process m-ary representation. 

Among a few studies on this method are due to Bahig and Kotb [57], Gordon [58], Koç [59], and Knuth [15]. 

From the perspective of running time for the left-to-right m-ary method [60], the maximum number of 

executions required by this method is (𝑚 − 2)𝑃𝑅𝐸𝐶𝑂𝑀𝑃,
𝑚+1

𝑚
𝑡𝐴𝐷𝐷 and 𝑡(𝑙𝑜𝑔2𝑚)𝐷𝐵𝐿. Again, by 

introducing a subtraction operation into the chain, an addition subtraction m-ary method executing from left 

to right [61] is produced. This method takes the input of unsigned m-ary as well as signed m-ary [59] 

including general non-adjacent form (GNAF) [62]-[64] and generalized star form (GSF) [65] Let the input be 

GNAF, the total running time required is devoted to (𝑚 − 2)𝑃𝑅𝐸𝐶𝑂𝑀𝑃,
𝑚−1

𝑚+1
𝑡𝐴𝐷𝐷 and 𝑡(𝑙𝑜𝑔2𝑚)𝐷𝐵𝐿. The 

more advanced concept of the ψ-ary addition subtraction method [50] is an efficient procedure that takes in 

reduced ψNAF representation to compute scalar multiplication on the main subgroup of 𝐸𝑢(𝔽2𝑚). By this 

method, the expected total running time is near to 
𝑚

3
𝐴𝐷𝐷 with doubling operation is considerably countless 

as it is at a negligible amount of time. 

 

 

4. DISCUSSION 

We observed that many ideas, theorems, and experimentations have been brought forward for 

studying and solving the addition chain problem. The biggest difference between theoretical and 

experimental is the way they look into the problem by defining different objectives. The theoretical study 

looks into ways to reduce the number of terms in the addition chain sequence. By assuming that each term is 

equally weighted, we can freely choose any terms to eliminate by setting up different paths to n, at the same 

time still satisfying the basic condition of adding previous terms for generating the current term. In real life 



                ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 13, No. 3, September 2024: 546-555 

552 

this may not be the valid case, one term may have a bigger weightage than the other and thus choosing a 

particular term is more beneficial than the other. In experimentation, the defining parameter is not only the 

number of terms but also the time taken to execute the codes. In fact, time connects to the real world much 

better than the number of terms. We observed that methods such as NAF and MOF focus on minimizing the 

number of terms by introducing subtraction operation, while complementary recoding and others [66] 

dismissed the connection to the number of terms and is directly associated with time for execution. These 

methods mainly manipulate the representation of integers from the perspective of basis, operations allowed as 

well as its orientation. Different representations result in different addition chains as well as their lengths and 

thus result in different execution speeds. Future research may look into improving the theoretical boundary 

for specific families of numbers while on the practical side, some new algorithms can probably be designed 

to improve the speed of execution. 

 

 

5. CONCLUSION 

That addition chain problem is an NP problem and many heuristics methods have emerged 

throughout the years. Some methods are considerably better than others but in general, no one method makes 

the best output at all times for any n. After examining the topic, it is evident that existing methods are 

creative in their conceptual. We observed how researchers have exploited various corners of knowledge and 

theories to come out with their novel methods. This survey shows that their collective works have been 

shown to enjoy very fruitful ends. It should be able to assist researchers diving into this topic with speed and 

confidence helping them to grasp the fundamentals smoothly. 
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