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 The study aims to investigate and predict the effect of reinforcements such 

as silicon nitride (Si3N4) and graphene (C) in aluminum 7150 matrix. 

Al7150/Si3N4/C hybrid composite is fabricated by a stir casting technique 

and subsequently T6 heat treated for applications such as body stringers, 

spar chords, seat tracks, and stringers of wing surfaces of aircraft. A 

feedforward propagation multilayer neural network was developed for 

modeling and prediction of hardness, tensile strength, and tensile elongation. 

The results show that the addition of fillers and T6 heat treatment enhances 

the mechanical properties of the Al7150/Si3N4/C composite. The artificial 

neural network (ANN) model suggested for Al7150 composites 

demonstrates beneficial results when compared to experimental 

measurements. The prediction model, which has a mean absolute percentage 

error of 0.64%, 0.3%, and 2.49% for hardness, tensile strength, and tensile 

elongation can accurately predict the effect of reinforcement contents and T6 

heat treatment on mechanical properties of Al7150/Si3N4/C composites. 
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1. INTRODUCTION 

Al7150 alloy is widely used in the aerospace industry in manufacturing upper wing stringers, 

fuselage reinforcement, fixed leading edge, and upper wing structures due to its resistance to fatigue, good 

ductility, excellent toughness, wear resistance, and resistance to exfoliation corrosion [1]-[5]. Silicon nitride 

has numerous applications in the aerospace industry such as engine components, radomes, radio frequency 

(RF) windows, ball bearings, and missile fins due to its extremely high strength of up to 1,200 °C, thermal 

shock resistance at high temperatures, lightweight and excellent wear resistance [6]-[9]. Graphene is widely 

used as a cooling system for satellites, cables for space lifts, solar sails, and de-icing systems integrated into 

wings due to properties such as lightweight, electrical conductivity, excellent thermal properties, and high 

tensile strength [10]-[15]. Akhtar et al. [16] investigated the optimum heat treatment of aluminum alloy 

AC8H to improve its performance. Hardness, impact, and tensile tests were performed on untreated and heat-

treated specimens. Solutionizing was carried out at 530 °C and aged at different temperatures to find the 

optimal properties. Results indicated that hardness, ultimate tensile strength, yield strength, and impact 

toughness enhanced to 28 HRA, 177 MPa, 80 MPa, and 5.25 J when specimens were aged at 175 °C. Majeed 

et al. [17] investigated the effect of T4 and T6 heat treatment on AlSi10Mg alloy and the result showed that 

minimum porosity and best densification is possible at 144.89 J/mm3 and it was confirmed by scanning 
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electron microscopy (SEM) images of high dense parts have less porosity. Finally, it is concluded that T4 

heat treatment at 530 °C enhanced density to 99.94% and T6 heat treatment to 99.87% due to strong bonding 

among powder particulates. Azadi and Shirazabad [18] investigated the effect of heat treatment on A356 

alloy concerning low cycle fatigue used in diesel engine cylinder heads. Heat treatment applied to A356 

aluminum alloy is solutionised at 535 °C for 8 h, and then water quenched and later aged for 3 h at 180 °C. It 

is concluded that the mechanical properties of A356 alloy are improved by T6 heat treatment except for 

thermal fatigue loading. Artificial neural networks (ANN) are used to deal with complicated problems such 

as unknown data prediction and analyzing nonlinear systems and it is extensively used in various aspects of 

materials science including prediction of tribologic [19]-[26] and mechanical properties [27]-[41], This study 

looked into effects of adding silicon nitride (Si3N4) and graphene to Al7150 alloy for manufacturing 

Al7150/Si3N4/C hybrid composite and subsequently providing T6 heat-treatment. while previous studies 

investigated the effect of adding different reinforcements to Al7150 alloy. However, they did not explicitly 

address the ideal combination of Si3N4 and graphene and also processing parameters using ANN for reliable 

and high-quality Al7150 composite material. 

 

 

2. EXPERIMENTAL DETAILS 

2.1.  Materials and methods 

Al7150 is obtained in the form of billet and silicon nitride is obtained in powder form of 20 microns. 

Graphene is in the form of a black powder having a bulk density of 0.45 g/cm3, surface area of 130 m2/g, 

average lateral dimension of 10 µm, and number of layers 5-10. Composite is fabricated by melting Al7150 

ingots at a temperature of 800 °C in an electrical resistance furnace. Reinforcements such as Si3N4 and 

graphene were uniformly mixed using a ball mill for 2 h and later preheated using a micro-oven. Magnesium 

was added in a small amount (2 wt%) to establish wettability and reduce oxidation during melting. Preheated 

reinforcements were added during the stirring of molten alloy and composite slurry was stirred at 350 rpm for 

5 mins and later poured in a cast iron mold 25 mm outer and 180 mm height. The Al7150/Si3N4/C composite 

was T6 heat-treated i.e., solutionizing at 530 °C for 60 mins, quenched in ice and subsequently aged for 6 h 

at 175 °C and later cooled in air as shown in Figure 1. The macro-hardness and tensile test of unheated-

treated and T6 heat-treated Al7150 composites was determined as per ASTM E10 and ASTM E8 standards 

for finding ultimate tensile strength and tensile elongation [42].  

 

 

 
 

Figure 1. Complete heat treatment cycle 

 

 

2.2.  Artificial neural network 

For the present investigation, ANN construction is shown in Figure 2. Table 1 gives an overview of 

input and output parameters employed for predicting the mechanical properties of untreated and T6 heat-

treated Al7150 composites. In the present study, the experimental data were grouped into training (70%) and 

test data (30%) for examining the effect of reinforcement content and heat treatment on the hardness, tensile 

strength, and tensile elongation of Al7150 composites. The forecast model was developed with the help of 

the training data, as shown in Table 2.  
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Figure 2. Schematic construction of ANN for correlating material composition and heat treatment with 

mechanical properties 

 

 

Table 1. Input and output parameters of ANN 
Sl.no Input parameters Output parameters 

1 Silicon Nitride % 

(2-4-6-8-10) 

 

Hardness (BHN) 

 

2 Graphene % 

(0.5-1-1.5-2) 

 

Tensile strength (MPa) 

 

3 Untreated 

T6 heat- treated  

Tensile elongation (%) 

 

 

Table 2. Experimental data and predicted output from the ANN network for training 

Sample 

ID 

Heat 

treatment 

Silicon 
nitride 

(Vol %) 

Graphene 

(Vol %) 

Hardness (BHN) Tensile strength (MPa) Tensile elongation (%) 

m* p* e* m* p* e* m* p* e* 

1 Untreated 2 0.5 87.64 87.21 0.49 158.45 158.21 0.15 9.83 9.98 -1.53 
2 Untreated 4 0.5 89.02 89.18 -0.18 174.67 174.75 -0.05 9.42 9.47 -0.53 

3 Untreated 6 0.5 91.82 91.34 0.52 185.78 185.37 0.22 8.88 8.94 -0.68 

4 Untreated 8 0.5 92.54 92.72 -0.19 198.34 198.41 -0.04 7.12 7.29 -2.39 
5 Untreated 10 0.5 94.09 94.28 -0.20 216.25 216.52 -0.12 7.68 7.55 1.69 

6 Untreated 2 1 89.56 89.14 0.47 162.78 162.96 -0.11 9.16 9.27 -1.20 

7 Untreated 4 1 91.11 91.08 0.03 180.34 180.67 -0.18 9.24 9.11 1.41 
8 Untreated 6 1 93.27 93.16 0.12 207.72 207.58 0.07 8.46 8.67 -2.48 

9 Untreated 8 1 94.75 94.38 0.39 218.98 218.75 0.11 7.05 7.14 -1.28 

10 Untreated 10 1 97.82 98.16 -0.35 248.32 248.73 -0.17 7.12 7.29 -2.39 
11 Untreated 2 1.5 92.43 92.78 -0.38 170.67 170.39 0.16 8.78 8.61 1.94 

12 Untreated 4 1.5 96.27 96.19 0.08 194.67 195.29 -0.32 8.84 8.92 -0.90 

13 Untreated 10 1.5 104.43 104.14 0.28 273.64 273.75 -0.04 6.41 6.23 2.81 
14 Untreated 10 2 110.76 110.94 -0.16 287.98 287.12 0.30 6.34 6.16 2.84 

15 T6 2 0.5 102.72 102.65 0.07 287.26 287.54 -0.10 12.1 12.48 -3.14 

16 T6 4 0.5 108.89 108.72 0.16 305.76 306.14 -0.12 11.24 11.56 -2.85 
17 T6 6 0.5 112.67 112.32 0.31 347.23 347.95 -0.21 9.23 9.37 -1.52 

18 T6 8 0.5 116.65 116.27 0.33 367.56 367.92 -0.10 9.12 9.08 0.44 

19 T6 10 0.5 118.72 118.24 0.40 432.74 432.01 0.17 8.42 8.67 -2.97 
20 T6 2 1 105.34 105.13 0.20 292.68 292.84 -0.05 11.87 11.83 0.34 

21 T6 4 1 113.65 113.58 0.06 334.89 334.27 0.19 10.8 10.88 -0.74 

22 T6 6 1 115.64 115.5 0.12 356.43 356.86 -0.12 10.23 10.29 -0.59 
23 T6 8 1 120.41 120.48 -0.06 418.67 418.02 0.16 8.68 8.55 1.50 

24 T6 10 1 125.25 125.04 0.17 467.34 467.97 -0.13 8.45 8.4 0.59 

25 T6 2 1.5 110.76 111.14 -0.34 312.89 312.18 0.23 11.5 11.17 2.87 
26 T6 4 1.5 116.65 116.69 -0.03 340.87 340.12 0.22 9.23 9.07 1.73 

27 T6 10 1.5 132.33 132.15 0.14 472.45 472.14 0.06 9.27 9.35 -0.86 
28 T6 10 2 138.69 138.47 0.16 488.34 488.87 -0.10 9.68 9.77 -0.93 

 

MAPE 

 

0.23 

 

0.14 

 

1.61 

 RMSE 0.26 0.47 0.16 

m* measured, p* predicted, e* error (%) 

 

 

In this investigation, the Levenberg Marquardt algorithm was used as the training algorithm, and the 

sigmoid and rectified linear activation (ReLu) activation transfer functions were employed. Multiple ANN 
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models are constructed by utilizing a training dataset, employing various combinations of hyperparameters 

such as learning rate, batch size, epoch, and number of hidden layers. The number of hidden layers with 

neurons was optimized by hyperparameter tuning using random search. The batch size is selected as 64, 128, 

and 256. A mean absolute percentage error of 0.64%, 0.3%, and 2.49% for hardness, tensile strength, and 

tensile elongation was achieved by the ReLU activation function in comparison to other activation functions 

such as sigmoid. Hence, ReLu with 9, 6, and 4 hidden neurons for layers 1, 2, and 3 respectively, with a 

learning rate of 0.01, batch size 64, and epoch 500, is selected as the final optimized model. The ANN 

configuration implemented here is of the form 5-[9-6-4]3-3. Figures 3 and 4 compare the predicted and 

experimental responses of the training and testing database. The correlation factor connected with the 

training and test dataset is greater than 0.9. 

 

 

 
 

Figure 3. Comparison between the predicted and experimental responses for the training dataset 

 

 

 
 

Figure 4. Comparison between the predicted and experimental responses for the test dataset 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Modeling results 

The predicted values and % error for hardness, tensile strength, and tensile elongation for the 

training and testing dataset are shown in Tables 2 and 3. The validity of the prediction model was proven 

using mean absolute percentage error (MAPE) and correlation coefficient from the test dataset as shown in 

Table 3. The mean absolute percentage error was 0.64% for hardness, 0.3% for tensile strength, and 2.49% 

for tensile elongation. The results of the ANN model indicate that it is a more accurate and robust predictor 

of dependent variables than other models [43]. 

 



                ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 13, No. 3, September 2024: 556-565 

560 

Table 3. Experimental data and predicted output from the ANN network for testing 

Sample 

ID 

Heat 

treatment 

Silicon 

nitride 
(Vol %) 

Graphene 

(Vol %) 

Hardness (BHN) Tensile strength (MPa) Tensile elongation (%) 

m* p* e* m* p* e* m* p* e* 

1 Untreated 6 1.5 98.68 98.14 0.55 210.89 209.25 0.78 8.41 8.28 1.55 

2 Untreated 8 1.5 103.57 104.26 -0.67 240.67 241.14 -0.20 6.84 7.02 -2.63 
3 Untreated 2 2 97.82 96.54 1.31 176.28 175.78 0.28 8.34 8.58 -2.88 

4 Untreated 4 2 101.05 101.89 -0.83 198.76 198.37 0.20 8.12 7.89 2.83 

5 Untreated 6 2 104.43 104.72 -0.28 214.45 215.37 -0.43 7.87 8.09 -2.80 
6 Untreated 8 2 108.89 107.56 1.22 243.46 243.82 -0.15 6.78 6.83 -0.74 

7 T6 6 1.5 118.72 118.22 0.42 374.34 373.65 0.18 9.62 9.39 2.39 

8 T6 8 1.5 126.39 125.12 1.00 436.34 435.09 0.27 8.86 9.02 -1.81 
9 T6 2 2 116.65 117.14 -0.42 334.67 335.79 -0.33 10.12 9.74 3.75 

10 T6 4 2 121.92 121.53 0.32 354.26 353.41 0.24 9.8 10.06 -2.65 

11 T6 6 2 125.25 124.89 0.29 415.346 416.54 -0.29 8.54 8.67 -1.52 
12 T6 8 2 131.11 131.78 -0.51 458.64 457.06 0.33 7.3 6.98 4.38 

 

MAPE 
 

0.64 
 

0.3 
 

2.49 
 

RMSE 0.74 1.01 0.22 

m* measured, p* predicted, e* error (%) 

 

 

3.2.  The mechanical properties and heat treatment 

Figure 5 shows that the tensile strength enhanced with the addition of reinforcements for 

Al7150/Si3N4/C composite and it is due to Orowan strengthening, mismatch of coefficient of thermal 

expansion between Al7150 matrix (24 x 10-6/°K), Si3N4 particles (3.3 x 10-6/°K) and graphene (-8x10-6/°K) 

which results in strain hardening of matrix [44]-[48]. Figure 6 shows the hardness of Al7150-based 

composite and Al7150/10%Si3N4/2%C composite showed the highest hardness because of the incorporation 

of hard Si3N4 particles, graphene's hardness resistance, cohesive adhesion between Si3N4 particles, graphene, 

and as well as matrix material [49]-[52]. Tensile elongation shown in Figure 7 decreased with the addition of 

Si3N4 particles and graphene in the untreated Al7150 matrix. However, our findings indicate that higher 

reinforcement content is not associated with the increase in ductility content of the Al7150 composite. This 

contrasts with the findings of Liu et al. [53] who reported that the inclusion of TiB2 particles enhanced the 

ductility of Al-Zn-Mg-Cu matrix composites. We found that the addition of Si3N4 and graphene and heat 

treatment correlate with the increase in mechanical properties. The proposed method in this study, results in 

inordinately higher tensile and hardness properties of Al7150/Si3N4/C composite with heat treatment as 

compared to properties without heat treatment. This study investigated a comprehensive effect of input 

parameters such as reinforcement content and heat- treatment on mechanical properties of Al7150/Si3N4/C 

composite. However additional and in-depth research is required to confirm the enhancement of mechanical 

properties particularly regarding stirring speed, size of reinforcement, melting temperature, stirring time, and 

pouring temperature. 

 

 

 
 

Figure 5. The variation of tensile strength of Al7150/Si3N4/C composites with unheated-treated and heat-

treated condition 
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. 

 

Figure 6. The variation of the hardness of Al7150/Si3N4/C composites with unheated treated and heat-treated 

condition 

 

 

 
 

Figure 7. The variation of tensile elongation of Al7150/Si3N4/C composites with unheated-treated and heat-

treated condition 

 

 

SEM images of untreated Al7150 composites reinforced with different percentages of 

reinforcements are shown in Figure 8. It is seen from Figures 8(a) and 8(b) that cracks, voids, and stepwise 

dendrites occur which is due to the decohesion of silicon nitride particles, and graphene from the matrix 

which results in brittle fracture. Thus, SEM images of untreated Al7150 composites shown in Figures 8(a) 

and 8(b) demonstrate brittle fracture due to low wettability and non-uniform distribution of silicon nitride 

particles. SEM images of T6 heat-treated Al7150 composites shown in Figure 9 (in Figures 9(a) and 9(b) 

especially) are dominated by a dimple formation which represents ductile fracture due to the improved 

bonding which is achieved at the interface between the A7150 matrix, Si3N4 particles and graphene [54]. 
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(a) (b) 

  

Figure 8. SEM images of the tensile fracture surface of unheated-treated in (a) Al7150/4%Si3N4/2%C  

and (b) Al7150/8%Si3N4/2%C 
 
 

  
(a) (b) 

  

Figure 9. SEM images of the tensile fracture surface of heat-treated (a) Al7150/4%Si3N4/2%C  

and (b) Al7150/8%Si3N4/2%C 

 

 

4. CONCLUSION 

This study indicates that the enhancement of hardness and tensile strength is due to the heat 

treatment and addition of Si3N4 and graphene to Al7150 alloy. Our results offer definite proof that good 

bonding and cohesive adhesion between Si3N4 particles, graphene, and as well as matrix material results in 

the enhancement of mechanical properties. With T6 heat treatment on Al7150 composites, the mechanical 

properties of Al7150/Si3N4/C composites possess enhanced hardness (138.69 BHN), tensile strength  

(488.34 MPa), and elongation (12.10%) which makes it a better candidate than the as-cast Al7150 

composites. Finally, our research shows that the T6 heat-treatment technique applied to Al7150/Si3N4/C 

composite is more resilient than untreated. Future research may look into additive manufacturing, strain 

hardening, and extrusion that contribute to the enhancement of the mechanical properties of Al7150 

composite. The influence of reinforcement contents and T6 heat treatment on mechanical characteristics of 

Al7150/Si3N4/C composites can be accurately predicted using the prediction model, with a mean absolute 

percentage error of approximately 2.5% for the predicted values. SEM image of T6 heat-treated Al7150 

composites is dominated by a dimple formation which represents ductile fracture and good bonding between 

the A7150 matrix, Si3N4 particles, and graphene. 
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