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 This study comprehensively analyzes U-Net models for semantic 

segmentation in phytoplankton image recognition, leveraging encoders such 

as EfficientNet-B5, MobileNetV2, ResNet50, and ResNeXt50 and 

employing the Adam optimizer. The research highlights the U-Net 

MobileNetV2 model with optical distortion, which achieves notable test 

scores with 93.69% Dice, 88.14% intersection over union (IoU), 99.89% 

Precision, and 100% Recall, underscoring the efficacy of the applied 

augmentation strategies, including geometric and distortion transforms, and 

color and blur techniques. The U-Net ResNet50 model with mix transform 

consistently demonstrates high accuracy in critical metrics, outperforming 

others, while EfficientNet-B5 with blur suggests increased model sensitivity 

with improved recall. These results underscore the crucial role of encoder-

augmentation synergy in model performance. Training and testing times 

across models have remained under 250 seconds, reflecting methodological 

efficiency. Overall, these results demonstrate the model's excellent 

performance for the semantic segmentation task.  
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1. INTRODUCTION 

Indonesia is one the megadiversity countries and contains part of ‘the heart of coral triangle’, which 

is well known for its high diversity level of coral reef and reef fish species, which consists of many endemic 

species [1]. Similar to coral reefs and reef fishes, it is assumed that phytoplankton communities within 

Indonesian marine ecosystems exhibit considerably high diversity, with some species potentially endemic. 

Although no accurate official records exist, various studies have documented between 150 to 400 species of 

marine phytoplankton in Indonesia, with some species suspected to be endemic, new records, or new species 

[2]–[6]. As a fundamental component of highly productive tropical marine ecosystems, phytoplankton 

communities perform vital ecological functions as the primary producers, essential links in energy transfer, 

and stabilizers of the biodiversity and environmental balance in the ecosystem [7]–[9]. Furthermore, 

phytoplankton communities also drive the aquatic biogeochemical cycles, which influence the entire marine 

https://creativecommons.org/licenses/by-sa/4.0/
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food web while also producing oxygen and regulating the regional and global ocean temperature. Due to the 

quick response of phytoplankton communities towards changes in water environmental conditions, they are 

regarded as excellent bioindicators and often used as proxies for ecological monitoring to detect anomalies or 

disturbances, such as eutrophication or pollution, within the coastal ecosystem [7], [9]–[11].  

In recent decades, aquatic ecological problems, such as harmful algal blooms (HABs), have 

increased in many tropical countries, including Indonesia [12], driven by increased human activity combined 

with the effect of climate change. The combined impact of climate change and anthropogenic activities have 

changed the environmental conditions, provided more competitive advantages, promoted toxin producers, 

and increased some HAB species' biomass production [13], [14]. From 2005 to 2021, at least 58 different 

studies have reported cases of HABs in other coastal areas in Indonesia, such as Lampung Bay, Jakarta Bay, 

and Ambon Bay [14]. Negative impacts, including mass fish mortality and fatal paralytic shellfish poisoning 

(PSP) disease in humans, have been reported from many HAB-affected areas, particularly in Cirebon [14]. 

Given that, at least 200 out of the 5,000 known phytoplankton species produce toxins harmful to humans [14] 

and at least 10 out of 17 most common HABs causative species in Indonesia were toxin producers [14], rapid 

and accurate genus or species level identification have become essential to identify and mitigate the effects of 

their blooms on marine ecosystems and coastal communities. 

So far, light microscopy continues to be the preferred method for phytoplankton identification in 

Indonesia despite its labor-intensive nature, susceptibility to errors, and limitations imposed by human 

physiological and psychological factors [14]. Misidentification is a common issue, often due to the 

morphological similarities between different plankton species [14]. However, machine learning (ML) 

methods using convolutional neural networks (CNN) have been used and shown excellent performance in 

identifying various phytoplankton species in recent years [15]. In phytoplankton research, the substantial 

variability in image sizes and quality poses a significant challenge for conventional CNN-based classifiers, 

which typically require uniform-sized input images [16]. This necessity for resizing, a process that either 

disregards [17], [18] or preserves the image's aspect ratio [8], [19], [20], comes with its set of advantages and 

disadvantages. While ignoring the aspect ratio can distort images and potentially affect feature extraction and 

learning outcomes, preserving it, especially when aligning with the image's background color, has produced 

optimal results on imaging FlowCytobot (IFCB) data [21]. However, resizing inevitably leads to some loss of 

detail and information, especially concerning phytoplankton size. This issue is somewhat mitigated by 

including image size information as metadata [22]. Moreover, the variability in image quality within these 

datasets necessitates employing various pre-processing techniques to enhance classification accuracy [16]. 

Strategies such as discarding low-quality images [23], segmentation [24], and denoising [25], along with 

advancements like CNN-based super-resolution techniques, have been proposed to refine image quality, 

though the effectiveness of these approaches in improving recognition accuracy warrants further 

investigation [26]. 

The U-Net architecture, which emphasizes encoder-decoder methods, represents notable progress in 

addressing semantic segmentation difficulties [27]. The objective of this design is to reduce noise at different 

scales in order to enhance performance by employing a comprehensive refining methodology [28]. A novel 

methodology has been developed that combines conventional neural differential equations with the structural 

framework of U-Net to delineate cell regions accurately [29]. The use of U-Net in microscopic segmentation 

is very effective, so it has been put together in different ways to get better results [30]. The purpose of the 

environmental microorganism data set fifth version (EMDS-5) dataset is to evaluate and compare the U-Net 

method for dividing numerous objects in images [31]. As an alternative, the low-cost U-Net (LCU) was 

created, which builds on the basic U-Net model to make it easier to separate images of microorganisms that 

live in the environment while also trying to use as little memory as possible [32]. According to previous 

research, the U-Net++ variation works better than regular patch-level segmentation methods that use visual 

transformers to get accurate data on microorganisms in the environment at the pixel level [33]. 

Previous research focused on modifying the U-Net architecture for semantic segmentation but did 

not explicitly discuss the influence of the encoder on the U-Net architecture and image augmentation 

techniques. This paper proposes an improvement of the U-Net architecture, several encoder and decoder 

networks have been integrated with the U-Net. Various image augmentation approaches are implemented, 

such as geometric, distortion, color, and blur transformation types, to elevate the algorithm's reliability. The 

main contribution of this study is to assess the integration of the encoder within the U-Net architecture for 

semantic segmentation of transparent phytoplankton images. Additionally, the research explores different 

strategies for enhancing the images. The purpose of this study is to showcase the remarkable capability of U-

Net in detecting and utilizing features from images that exhibit substantial variations in terms of size, shape, 

and clarity. Moreover, it does a comparative analysis of the collaboration between the encoder and decoder 

using various augmentation techniques, thereby facilitating the implementation of ensemble learning 
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methodologies. The comparison above not only underscores the versatility of U-Net in terms of various 

preprocessing methods but also its ability to enhance the robustness and precision of segmentation outcomes. 

 

 

2. METHOD 

The present study involved the development of a segmentation model for transparent images of 

phytoplankton. The U-Net architecture was employed inside a research workflow, as depicted in Figure 1. 

This study has three primary phases: preparation, processing, and model implementation. During the pre-

processing stage, the image was annotated with species names, and subsequently, the image was resized to 

dimensions of 224×224 pixels. Subsequently, several augmentation techniques are employed to generate 

supplementary photos. The treated images are partitioned into several datasets for training, validation, and 

testing purposes. This stage is commonly referred to as processing. The utilization of data separation 

facilitates the process of training, validating, and testing four distinct U-Net architectures. These networks 

include several encoders and are trained using images obtained from various augmentation techniques. The 

final stage is assessing and contrasting the efficacy of all the models generated.  

 

 

 
 

Figure 1. Research workflow of phytoplankton semantic segmentation 

 

 

2.1.  Experiment environment 

The model was built and utilized with PyTorch, a widely used machine learning framework and 

programming language Python 3+. Our experimental setup was carried out on Google Colab Pro+, which 

offered varying GPU specifications, such as K80, T4, P100, and 52 GB of RAM. This research utilizes high-

resolution microscopy HABs data from the phytoplankton image database (cPID), housed at the 

Oceanographic Research Center, National Research and Innovation Agency (RCO-BRIN) [2]. The data used 

in this study were collected during a research expedition spanning from 2011 to 2019, encompassing  

18 locations in Indonesian waters. 

 

2.2.  Data preprocessing and augmentation 

 For this work, we utilized the LabelMe application [34] to annotate images from the database. This 

study partitions the data in a 70:20:10% ratio and employs various data augmentation techniques to address 

data scarcity. The Albumentations library in Pytorch, known for its efficiency in image transformation, 

supports this process [35]. Table 1 lists the augmentation types used to enrich the image dataset [36]. 
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Augmentation techniques are typically categorized into four groups: geometric transformation, distortion 

transformation, color transformation, and blur and smoothing. Geometric transformations, such as shift scale 

rotation, are utilized to change images through actions such as movement, zooming, and spinning. On the 

other hand, random rotation is employed to rotate images at intervals of 90°. The images are flipped using 

probabilities in the vertical flip and horizontal flip functions. Different distortion transformations, such as 

optical distortion, grid distortion, and elastic transform, are employed to introduce a range of optical and 

wave-like distortions. Random brightness and color jitter are utilized to randomly modify the brightness and 

various other attributes of colors. The application of a blurring effect to images facilitates the process of 

augmentation.  

 

 

Table 1. Augmentation techniques 
Geometric transforms Distortion transforms Color transforms Blur and smoothing 

Shift scale rotate Optical distortion Random brightness Blur 

Random rotate Grid distortion Color jitter  

Vertical flip Elastic transform Hue saturation  

Horizontal flip    

 

 

2.3.  Model architectures 

To improve segmentation performance, this study employs transfer learning with encoders that have 

been pre-trained, a method proven to enhance model performance [37]. This experiment uses encoders from 

the ResNet50, ResNeXt, MobileNetV2, and EfficientNet V2 B5 architectures. This study utilizes advanced 

deep-learning models for image analysis. ResNet, a significant advancement over AlexNet and VGGNet, 

uses a residual layer and global average pooling to process 224×224-pixel images efficiently. ResNeXt, 

extending ResNet, introduces "cardinality" with multiple transformation paths, balancing learning ability and 

computational efficiency [38]. MobileNetV2, an architecture designed specifically for mobile and embedded 

applications, incorporates depthwise separable convolutions across its 54 layers [39]. EfficientNet scales 

model dimensions using a compound variable and mobile inverted bottleneck convolution (MBConv) blocks, 

achieving optimal performance on the ImageNet dataset with its compact and fast-converging architecture 

[40]. 

 

2.4.  Training and evaluation 

Our research used a 70:20:10% data split ratio to develop and extensively analyze the optimal CNN 

model. Throughout the training phase, images were grouped into 'mini batches' of 16 due to memory 

constraints. We employed an Adam optimizer for optimization, adjusting CNN parameters with a 0.9 

momentum [41] and a learning rate of 0.0001 [42]. L2 regularization with a factor of 0.0001 was applied to 

mitigate overfitting [43]. This study employed the Adam optimizer, chosen for its demonstrated effectiveness 

in practical scenarios as documented in prior research [44]. Following each training epoch, the model's 

advancement was evaluated using the validation set. The training process would terminate if no 

improvements were observed over the last five epochs or upon reaching 50 total epochs. The training set 

underwent shuffling at the beginning of each epoch to inject diversity. To evaluate the performance of 

different models, we use a range of metrics to examine the segmentation results in our study. Our assessment 

incorporates the Dice coefficient [45], Jaccard index (also known as intersection over union or IoU), pixel 

accuracy, precision, and recall [46], represented by (1)-(5).  

 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2×𝑇𝑃

(2×𝑇𝑃)+𝐹𝑃+𝐹𝑁
 (1) 

 

𝐴𝑃 =  ∑
𝐴𝑣𝑒𝑃(𝑞)

𝑞

𝑄
𝑞=1  (2) 

 

𝑃𝑖𝑥𝑒𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
 (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 
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3. RESULTS AND DISCUSSION 

This study presents an analysis of the performance of various models in recognizing phytoplankton 

images, with a focus on semantic segmenting phytoplankton. The research incorporates the U-Net model 

combined with four distinct encoders: EfficientNet-B5, MobileNetV2, ResNet50, and ResNeXt50. The 

evaluation employs several metrics, such as Dice, Jaccard, precision average (PA), precision (P), and recall 

(R), to gauge the models' effectiveness on both training and test datasets. 

We found that the U-Net MobileNetV2 model, applying optical distortion transformation, achieved 

the highest scores on the test set for each evaluation metric: a Dice score of 93.69%, a Jaccard (IoU) score of 

88.14%, precision at 99.89%, and recall at 100%. This performance marks a significant advancement 

compared to the training set scores. Other models, including U-Net+ResNet50 and U-Net + ResNeXt50, also 

demonstrated commendable performances (Table 2). However, the U-Net MobileNetV2 model notably 

excelled in all assessed metrics (Table 2). The complete top five models' performance metrics for test Dice, 

IoU, precision, and recall are displayed in Table 2. 

Our findings show that U-Net MobileNetV2 with optical distortion excels in phytoplankton 

segmentation. Figure 2 shows the performance metrics of precision, recall, Dice value, IoU, pixel accuracy, 

and time. As shown by the effectiveness of precision and recall (Figure 2(a) and (b)). In contrast, the U-Net 

ResNet50 model with mix transform consistently demonstrated high Dice scores, outperforming 

MobileNetV2 models, which showed more significant score variability, indicating overfitting risks (Figure 

2(b)). Figure 2(c) highlights the U-Net ResNet50 model's consistently high IoU performance, contrasting 

with the variability seen in models using elastic transform and grid distortion. Figure 2(d) reveals ResNet50's 

consistent pixel accuracy compared to MobileNetV2's fluctuating results. Figures 2(e) and (f) show the U-

Net MobileNetV2 model maintaining training and testing times under 250 seconds, unaffected by different 

augmentations. 

This study investigates a comprehensive set of U-Net models using multiple encoders and 

augmentations. However, additional research may be required to confirm the reliability of these models. In-

depth studies are particularly needed regarding their performance on different types of phytoplankton images 

and in various environmental conditions. 

Our research shows that the U-Net MobileNetV2 with optical distortion is more resilient and 

effective in segmenting phytoplankton than other models. Future research may look into more diverse 

augmentation strategies and practical methods for further enhancing segmentation accuracy. Exploring the 

use of attention mechanisms and vision transformers (ViT) with generative adversarial networks (GAN) to 

augment limited datasets could provide additional insights. Moreover, experimenting with the YOLOv8 

backbone to create a new U-Net architecture is an exciting avenue for future investigation. 

A tripartite arrangement linked to the semantic segmentation of the phytoplankton recognition 

procedure is depicted in Figures 3-5. Figure 3 showcases a collection of original phytoplankton input images 

of different sizes and shapes. The images' binary representations of the relevant phytoplankton regions are 

displayed in Figure 4 as input masks. Figure 5 shows the projected masks of the deep learning network, 

illustrating its attempt to isolate and highlight the phytoplankton patches. The model's ability to accurately 

recognize and separate phytoplankton from the image background is showcased by comparing the input and 

predicted masks.  

 

 

Table 2. Top 5 models of test Dice, IoU, precision, and recall 
No Model Name Performance Metrics 

Dice (%) IoU (%) Precision (%) Recall (%) 

1 U-Net MobileNetV2 (Optical Distortion) 93.69 88.14 99.89 100.00 

2 U-Net ResNet50 (Vertical Flip) 92.68 86.38 99.76 99.99 
3 U-Net MobileNetV2 (Vertical Flip) 92.03 85.27 99.68 99.99 

4 U-Net MobileNetV2 (Blur) 91.75 84.78 99.19 99.99 

5 U-Net ResNet50 (Hue Saturation) 90.69 82.99 99.10 99.96 

 

 

The results show that our architecture, which uses many encoders and augmentation methods in the 

U-Net model, can improve phytoplankton species segmentation. The U-Net MobileNetV2 (optical distortion) 

model has higher Dice (93.69%), IoU (88.14%), precision (99.89%), and recall (100%) values than previous 

models. Many microorganisms’ species' segmentation performance improves with sophisticated methods. 

For example, the LCU-Net architectural model achieved a Dice score performance of 87.13%, a Jaccard 

index performance of 79.74%, a precision performance of 90.14%, and a recall performance of 87.12% with 

low processing resources [32]. The new dataset EMDS-5 uses U-Net for multi-object photo segmentation, 

showing Dice, Jaccard, and recall metrics of 85.24%, 77.41%, and 82.28% respectively [31]. These findings 

suggest we should examine U-Net design changes to increase segmentation performance. More research into 



                ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 13, No. 4, December 2024: 1009-1018 

1014 

pre-processing and augmentation strategies is needed. Using attention mechanisms [47] and ViT with GANs 

to augment limited datasets [32] and experimenting with the YOLOv8 backbone [48] to create a new U-Net 

architecture are promising directions for future research. 
 

 

 
(a) 

 
(b) 

  
(c) 

 

(d) 
 

  
(e) 

 

(f) 
 

Figure 2. Metrics performance of (a) precision, (b) recall, (c) Dice score, (d) IoU, (e) pixel accuracy, and  

(f) time-consuming 
 

 

 
 

Figure 3. Result of phytoplankton semantic segmentation of the input image 
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Figure 4. Result of phytoplankton semantic segmentation of the input mask 

 

 

 
 

Figure 5. Result of phytoplankton semantic segmentation of the predicted mask 

 

 

4. CONCLUSION  

This study proposes enhancing the performance of semantic segmentation models by integrating 

multiple encoders and Adam optimizers into the U-Net architecture. Recent observations indicate that the 

pixel accuracy of the U-Net ResNet50 model with integrated transformations is consistently high. Our 

findings offer definitive proof that integrating MobileNetV2 with optical distortion attains a high level of 

precision, rather than being caused by increased quantities of training data. The outcomes of evaluating 

diverse U-Net models with several encoders and augmentations demonstrate exceptional accuracy in 

semantic segmentation performance. Properly selecting an encoder and augmentation strategy significantly 

impacts the performance of a model. Using EfficientNet-B5 with Blur augmentation demonstrates enhanced 

recall, thus augmenting the model's sensitivity. The experiments conclusively illustrate the model's 

exceptional efficiency and performance. 
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