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 The most frequent type of cancer among women is breast cancer. Artificial 

intelligence (AI) researchers are developing automated systems to assist in 

the detection and classification of breast cancer. This study explores 

machine learning (ML) and deep learning (DL) as two AI methods for 

identifying benign and malignant breast tumors in ultrasound images. The 

investigation assesses the performance of various computer-aided detection 

and diagnosis (CAD) systems, which utilize either handcrafted features or 

deep features extracted from DL models. Furthermore, three models for 

CAD deep learning-based systems were implemented using convolutional 

neural networks (CNN), convolutional autoencoders (CAE), and deep 

features with CNN models, and compared with three traditional ML models 

based on handcrafted (texture) features. The results indicate that the deep 

features of the CNN model are promising, achieving a mean accuracy of 

95% with a standard deviation of 1.1%. 
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1. INTRODUCTION 

Breast cancer had a worldwide impact in 2022, with over 2 million new cases reported and 670,000 

fatalities [1]. Increased awareness and regular screening are essential for early detection. This is why high-

income countries have succeeded in reducing breast cancer mortality. They experienced a significant 40% 

reduction in the age-standardized breast cancer death rate from the 1980s to 2020. Thus, if an annual 

reduction in worldwide mortality of 2.5% is achieved, this could save 2.5 million lives from breast cancer 

between 2020 and 2040 [1]. Breast cancer screening procedures are beneficial in early tumor detection. 

Breast ultrasound (BUS) is a technique used in conjunction with mammography to detect and characterize 

tumors, especially when breast density is high. Moreover, this imaging method is low-cost and produces no 

ionizing radiation. Additionally, it can distinguish between cancerous and non-cancerous tumors through 

sonographic traits. Despite the benefits, cancer screening still has a risk of inaccurate results (false positives 

and false negatives). 

Machine learning (ML) is crucial in helping medical professionals find cancerous lesions earlier. 

Since the 1990s, computer-aided detection and diagnosis (CAD)systems have been developed and deployed 

within clinical environments to assist radiologists during the screening procedure, enhance screening’s 

predictive accuracy, reduce subjectivity, and avoid mistaken diagnoses caused by weariness, eyestrain, or 

inexperience [2]. The rapid growth of ML has raised interest in employing these techniques to improve 

cancer screening accuracy in the medical imaging field [3]. In the domain of BUS image analysis, various 

ML approaches have been explored such as [4]-[7] primarily focusing on feature engineering techniques. 

https://creativecommons.org/licenses/by-sa/4.0/
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However, in recent years, there has been a significant surge in the utilization of deep learning (DL) 

algorithms for the analysis of medical images, including tasks such as detecting, segmenting, and classifying 

abnormalities. This is due to their ability to automatically learn and compute both global and local texture 

and shape features from medical images through a series of convolution and pooling layers. Consequently, 

the necessity for a separate feature engineering phase is eliminated.  

Despite these advances, accurate breast cancer classification using deep learning algorithms still faces 

challenges. For instance, ultrasound (US) images may have low resolution, poor quality due to artifacts, or vary 

in tissue appearance [8]. Additionally, a large, annotated dataset is typically necessary for training the DL 

model. Hence, many research studies use limited datasets since large datasets are often unavailable which may 

lead to poor generalizability [9]. An alternative method to address this challenge involves implementing the 

concept of transfer learning, which enables the sharing of parameters from a pre-trained model on large datasets 

[10]-[14]. Alternatively, semi-supervised techniques [15]-[17] can be utilized, leveraging autoencoders for 

feature extraction and subsequently connecting them to fully connected (FC) layers for classification. 

The objective of this paper is to explore and implement a range of traditional ML and deep learning 

techniques to address the challenge of extracting features related to breast cancer in ultrasound images to 

improve classification performance. The primary aim is to develop a CAD system capable of efficiently 

extracting these features, with the overarching goal of enabling early detection of breast cancer. Six 

classification systems were developed in this study: three based on ML algorithms which are support vector 

machine (SVM), k-nearest neighbor (KNN), and decision tree (DT) classifiers utilizing a set of texture features. 

Additionally, three deep learning-based classification systems were implemented, including a self-designed 

convolutional neural network (CNN), convolutional autoencoders (CAE), and deep features integrated with 

CNN models. Additionally, the study involves a comparative analysis of the implemented techniques to 

determine their effectiveness in achieving the desired outcome. 

The subsequent sections of this paper are structured as follows: In section 2, the proposed 

methodologies are expounded upon in detail. Section 3 encompasses the presentation and discussion of results. 

Finally, section 4 encapsulates the conclusions drawn from the study. 

 

 

2. RESEARCH METHOD  

2.1.  Conventional machine learning (ML) based computer-aided detection and diagnosis  

(CAD) systems 

The common architecture of ML-based CAD systems integrates four key stages: preprocessing, 

segmentation, feature extraction and selection, and classification. Typically, such systems leverage 

handcrafted features to effectively classify breast lesions, yielding commendable results in practical 

application. These stages are proposed for the classification of breast cancer. 

 

2.1.1. Image pre-processing  

In the image prepossessing stage, the imaging artifacts and inconsistencies caused by different 

imaging conditions are removed with image prepossessing techniques for better detection [18]. Many 

preprocessing techniques are available like linear filtering, wiener filtering, wavelet despeckling, and wavelet 

filtering. [18]. In this work, the median filter is used. 

 

2.1.2. Image segmentation 

The procedure of image segmentation entails partitioning an image into distinguishable segments to 

identify objects and delineate borders [19]. This is crucial in breast images to isolate relevant regions of 

interest (ROI) for subsequent detection methods. Various segmentation algorithms are available, categorized 

into thresholding, edge-based, seeded region growing, cluster-based, and artificial neural network methods. 

This research utilizes a combination of threshold-based and edge-based segmentation techniques. 

Specifically, it employs edge boundary tracing through Otsu’s thresholding, followed by the application of 

morphological operations to eliminate undesired pixels and fill gaps. Subsequently, exterior boundaries are 

delineated for each identified boundary. 

 

2.1.3. Features extraction and selection 

A group of handcrafted features is used to represent the content of the segmented breast area during 

the features’ extraction stage. Texture features are the most common features utilized to analyze and interpret 

images by considering intensity variation and quantifying different characteristics like coarseness, 

smoothness, and regularity. Texture feature extraction techniques are categorized into four distinct types: 

structural approaches, statistical approaches, transform-based approaches, and model-based approaches [20]. 

The statistical approach features are the most typically used in breast CAD systems, thus it has been utilized 
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to analyze and interpret images in this work. The extracted features are 149 grey-level statistics which 

include: 

i) First-order statistical or histogram-based features: they are based solely on pixel values and are 

independent of pixel spatial distribution; nine features are calculated from the extracted ROIs as follows 

(mean, standard deviation, third moment, smoothness, skewness, kurtosis, harmonic mean, variance, 

and percentile) [21]. 

ii) Matrix of gray-level-co-occurrence (GLCM): high-order statistical features depend on pixel values and 

their spatial correlations. The GLCM matrix is built in four directions=0º, 45º, 90º, and 135º with a one-

pixel distance (d=1). The following measures are based on the GLCM: auto-correlation, correlation, 

contrast, dissimilarity, energy, cluster-prominence, cluster-shade, entropy, homogeneity, maximum 

probability, sum of squares variance, sum-average, sum-variance, sum-entropy, difference variance, 

difference entropy, information measure of correlation, information of correlation 1, information of 

correlation 2, inversed difference normalized [22]. 

iii) Matrix of gray-level-run-length (GLRLM) statistical features of high-order: after constructing the 

GLRLM matrix, its properties are calculated as features. About eleven features are calculated using the 

zigzag method in four directions (0º, 45º, 90º, and 135º). These 44 features include short-run emphasis, 

long-run emphasis, gray-level non-uniformity, run length non-uniformity, run percentage, low gray-

level run emphasis, high gray-level run emphasis, short-run low gray-level emphasis, long run low gray-

level emphasis, long run high gray-level emphasis [23]. 

The process of minimizing input variables in a classification model, known as feature selection, 

entails retaining only the most pertinent features while discarding extraneous noise. Therefore, principal 

component analysis (PCA) was employed to identify and select the most relevant features. 

 

2.1.4. Classification  

The stage in which the extracted features are utilized to train a classifier to discriminate between 

positive and negative ROIs. Once trained, the classifier can predict the class of new ROIs. Here, three 

supervised machine-learning algorithms were utilized: SVM [24], KNN [25], and DT [26]. 

 

2.2.  Deep learning (DL)-based computer-aided detection and diagnosis (CAD) systems 

DL is a component of ML techniques that uses representation learning and artificial neural networks. 

Using multiple network layers is referred to as “deep learning” in this context. These deep networks 

necessitate a substantial volume of training data to achieve optimal performance [27]. Unfortunately, 

gathering the necessary training data to build models in medical applications is challenging. These problems 

could be resolved using a variety of strategies, including data augmentation and transfer learning for 

artificially increasing the instances of images for enhancing precision in results. Typically, four steps are 

followed in implementing a DL model for classification purposes. These steps are displayed in Figure 1 and 

will be briefly explained next. 

 

 

 
 

Figure 1. Implementing a DL model 

 

 

2.2.1. Pre-processing 

In an object or image detection/classification task, the dataset, specifically the images within it, 

stands as the cornerstone of a DL network model. Therefore, the pixel values of these images must be scaled 

correctly before creating this model. Typically, neural networks operate by processing inputs with weights 

that have relatively small values. However, inputs containing large integers, ranging from zero to 255, can 

potentially disrupt or slow down the learning process. As a result, pixel values need to be normalized by 

dividing each pixel’s value by 255, resulting in pixels with values ranging from zero to one. This 
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normalization approach, along with standardization, is a standard technique in pixel value preprocessing. 

This entails converting the pixel values, so they are centered around a mean of zero and have a standard 

deviation of one. This transformation guarantees that the pixel values are normally distributed, facilitating 

comparison and analysis [28]. 

 

2.2.2. Data augmentation 

It involves expanding a dataset by generating new data points from existing ones. This helps to 

enhance the data's diversity and size. Multiple transformations and alteration techniques are applied to the 

data to create new data points such as rotations, translation, zoom, shearing, and flipping. This procedure is 

frequently employed in ML to enhance the performance of models by making them more robust to noise and 

overfitting [29], [30]. 

 

2.2.3. Deep learning (DL) model 

In this work, breast images were classified with three variants of deep architectures: CNN, CAE, and 

deep features with CNN models. The description of each architecture in detail as follows: 

i) CNN model: unlike traditional models, CNNs are self-sufficient, autonomously uncovering valuable 

patterns. CNNs are hierarchical neural networks, and the way the network is trained and the way the 

layers are designed affect how well the network performs. A typical CNN comprises three primary 

parts: convolutional layers, pooling layers, and activation functions [31]. Figure 2 illustrates the 

intricate architecture used in this model. CNN has four convolutional layers, 512 neurons, and a 

function for rectified linear unit (ReLU) activation. Batch normalization and the maximum pooling 

layer come after each convolutional layer. Following the convolutional layers are a flat layer, two FC 

layers with a total of 1024, 512 neurons each with ReLU activation. Finally, the output layer classifies 

data using the SoftMax layer. 

 

 

 
 

Figure 2. CNN model 

 

 

ii) CAE model: A CAE operates as a type of CNN designed to recreate its input data without being 

provided labels during training. This means that CAEs can be trained on unlabeled data, which is often 

easier and more affordable to obtain than labeled data. CAEs are recommended instead of supervised 

learning methods that require a large, labeled dataset, which can be difficult to obtain. A CAE has three 

main components: an encoder, a decoder, and an input layer. The encoder encodes the input into a 

smaller-sized version, and the decoder then utilizes this condensed version to recreate the original input. 

Figure 3 depicts the CAE architecture utilized in this work. The encoder comprises four convolutional 

layers, succeeded by batch normalization and max-pooling layers. The max-pooling layers down-

sample the features. The decoder is composed of three convolutional layers, subsequently followed by 

batch normalization and up-sampling layers. Once the CAE is trained, only the encoder part is used for 

classification. The encoder is then followed by three FC layers with 1024, 512, and 2 neurons, 

respectively. The initial two FC layers utilize the ReLU activation function, while the final FC layer 

employs the SoftMax activation function, see Figure 4. The SoftMax layer converts the encoder output 

into a probability distribution over the different classes [32], [33]. 
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Figure 3. The architecture of autoencoder 

 

 

 
 

Figure 4. Model of CAE, only the encoder part is used after the CAE has been trained.  

 

 

iii) Deep features with CNN model: in this part, as shown in Figure 5, the CAE algorithm was utilized for 

obtaining deep features and then feeding them to the CNN model. The same auto-encoder model 

structure explained in part CAE model is used for the extraction of deep features and then fed to the 

same CNN model structure explained in part CNN model. Once the CAE is trained, only the encoder 

component is utilized for feature extraction, which is then fed into a CNN for classification task [33], 

[34]. Figure 6 shows the final model. 

 

 

 
 

Figure 5. Deep features with CNN model 

 

 

 
 

Figure 6. The final model of deep features with the CNN model 
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2.2.4. Evaluation 

To assess the classification process, the dataset is partitioned into three subsets: the training dataset, 

the validation dataset, and the testing dataset. While the network evaluation is conducted on the training 

dataset, this alone does not provide a robust indication of the network's performance as a “predictive model” 

since it has processed this data before. Instead, the performance is evaluated on a separate dataset (unseen 

during training) that is called the validation dataset. This would be the power of the estimation for the 

network performance to make predictions for new data in the future. Keeping in mind that training a CNN 

may show some complex issues like over-fitting and convergence problems, whose resolution often requires 

repetitive adjustments in the network architecture or changing the learning parameters of the network. The 

last step is making predictions. Upon completion of the former steps and confirming the model's satisfactory 

performance, it is then employed to make predictions on new data, referred to as the test dataset. 

Consequently, the evaluation hinges on the accuracy of classification on the testing dataset. As outlined in 

(1), P denotes the entire positive cases or malignant cases, while N represents the entire negative cases or 

benign. TP signifies the true positive count, encompassing all malignant cases correctly predicted by the 

classifier as malignant, whereas TN denotes the true negatives, indicating all benign cases accurately 

predicted as benign. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑃 + 𝑁) (1) 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Dataset 

The breast ultrasound images (BUSI) dataset [35] is a widely recognized publicly available dataset 

of breast ultrasound images that is categorized into three classes: normal, benign, and malignant images, 

accompanied by their corresponding ground truth data. From this dataset, a subset comprising 168 benign 

and 168 malignant images was selected for training and testing in our experiments. The code was written in 

Python and run-on Google Colab [36] which is a web-based service that offers access to Google's robust 

hardware infrastructure, encompassing graphics processing units (GPUs) and tensor processing units (TPUs), 

to facilitate the execution of ML experiments. 

 

3.2.  Conventional machine learning (ML)-based computer-aided detection and diagnosis (CAD) 

systems’ results 

Researchers exert significant efforts in developing ML-based CAD systems for breast cancer 

classification utilizing various techniques. Many recent studies such as Li et al. [37] developed a CAD 

system for breast tumor classification using radiomic features extracted from multimodal BUS images. Their 

method achieved an accuracy of 84.12%, with an area under curve (AUC) of 91.90%. Also, Hsu et al. [38] 

utilized quantitative features from ultrasound parametric images, achieving an accuracy of 89.40%, with an 

AUC of 96.00%. Chang and Chen [39] introduced an XGBoost classifier with a remarkable testing accuracy 

of 94.00%. However, there remains ample scope for further research and innovation in this area to enhance 

the accuracy and robustness of such systems. In this study, the initial stage involves preprocessing, where 

ultrasound images undergo enhancement and preparation for subsequent analysis. The enhanced images 

are then segmented, as demonstrated in Figure 7. Figure 7(a) displays an original benign image, while 

Figure 7(b) illustrates the resulting segmented image. Conversely, Figure 7(c) exhibits an original 

malignant image, and Figure 7(d) showcases the resultant segmented image. In the third stage, 149 gray-

level statistics features are extracted and the PCA is then used to choose the most essential features. In the 

final stage, SVM (kernel=linear, gamma=auto), KNN, and DT (random state=0) classifiers are employed, 

and Tenfold cross-validation is used to evaluate the system. Experiments run 10 times, then the mean and 

standard deviation are calculated to check the overfitting. The classification accuracy after ten times running 

is calculated and shown in Table 1.  

The results revealed that, for SVM, the mean accuracy across the ten runs is 89.6%, with a standard 

deviation of 4.35. This indicates a relatively consistent performance of the SVM classifier in accurately 

classifying the data, with minimal variability. In contrast, both KNN and DT classifiers show lower mean 

accuracies of 72.4% and 72.1% respectively, with higher standard deviations of 7.57 and 7.58. This suggests 

more variability in performance across runs and generally lower accuracy compared to SVM. 

Figure 8 shows the receiver operating characteristic curve (ROC) and AUC for the three used 

classifiers. The SVM classifier achieved an AUC of 0.938, indicating a high discriminatory ability in 

distinguishing between classes as shown in Figure 8(a). On the other hand, both KNN (Figure 8(b)) and 

DT (Figure 8(c)) classifiers achieved an AUC of 0.741. These AUC values further support the superiority 

of the SVM classifier in accurately classifying the data, highlighting its effectiveness in this classification 

task. Overall, these results indicate that the SVM classifier outperforms KNN and DT in terms of mean 
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accuracy and consistency across multiple runs, making it a more reliable choice for classification in this 

context. While the current accuracy is noteworthy, further enhancements could be achieved by 

incorporating additional features, an avenue for exploration in future research. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 7. Segmentation results in (a) the original image benign, (b) the segmented image benign,  

(c) original image malignant, and (d) segmented image malignant 

 

 

Table 1 Accuracy of different machine-learning classifiers 
Classifier #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean STD 

SVM 83.3 95.8 87.5 91.6 91.6 82.6 91.3 91.3 95.6 86.9 89.6 4.35 
KNN 79.1 75 66.6 66.6 58.3 78.2 65.2 82.6 78.2 78.2 72.4 7.57 

DT 79.1 70.8 70.8 66.6 62.5 69.5 78.2 56.5 82.6 78.2 72.1 7.58 

 

 

   
(a) (b) (c) 

   

Figure 8. The ROC and AUC curves for the used classifiers in (a) SVM, (b) KNN, and (c) DT 

 

 

3.3.  Deep learning (DL)-based computer-aided detection and diagnosis (CAD) systems’ results 

To underscore the effectiveness of DL in breast tumor classification, experiments were conducted 

using the three described DNN models. The initial stage in developing our suggested model is to prepare 

the datasets for training and evaluation. This involves resizing the datasets using cubic in terpolation to 

match the input requirements of the model and then preprocessing. For augmentation, rotations of up to 30 



Int J Adv Appl Sci  ISSN: 2252-8814  

 

A model for classifying breast masses in ultrasound images (Shereen Ekhlas Morsy) 

573 

degrees, shearing within a range of 0.2, zooming with a factor of 0.2, horizontal flipping, and shifting in 

width and height by 0.1 were applied. Subsequently, the images were randomly shuffled, and the dataset 

was divided into 70% for the training set, 10% for the validation set, and 20% for the test set, as depicted 

in Figure 9. 

 

 

 
 

Figure 9. The proposed algorithm 

 

 

For CNN, first, we resized each image to 96×96 to be the model’s input. Also, the Adam 

optimization algorithm was employed during the training process. The model underwent training for  

100 epochs to attain its optimal parameters. The activation function of convolutional layers is ReLU, and the 

SoftMax activation function is employed in the final layer. While the CAE was trained without labels for  

100 epochs using the mean square error (MSE) loss function. The root mean square propagation (RMSprop) 

optimization algorithm was employed with a learning rate (lr) of 0.0001. After training, the CAE’s weights 

were saved for the next stage. The decoder was discarded, and the encoder was used to extract features, 

which were then fed into three FC layers and a SoftMax layer to transform the encoder into a classifier.  

The deep features with the CNN model were trained using the same parameters of the CAE and 

CNN models. It differs from the CAE model in that the part of the three FC layers was replaced with the 

whole CNN model. The autoencoder part used the RMSprop optimizer and the Adam optimizer was used for 

the CNN part, and both were trained for 100 epochs. The used loss function was categorical cross-entropy. 

To effectively assess the models' performance, we leveraged a callback function. This function closely tracks 

the training process, specifically monitoring performance on the validation set. When a model outperforms its 

predecessors on the validation set, the weights of the model are saved. This meticulous approach allows us to 

harness the best-performing model for testing against fresh, unseen images, ensuring a comprehensive 

evaluation. During the 100 epochs training, the validation accuracy is computed after each epoch, the call-

back function checks the highest value achieved and then saves that model. Figures 10-12 show the accuracy 

and loss results of training and validation of CNN (Figures 10(a) and (b)), CAE (Figures 11(a) and (b)), and 

deep features with CNN models (Figures 12(a) and (b)). 

 

 

  
(a) (b) 

  

Figure 10. The performance of the CNN model throughout the training process in (a) accuracy and (b) loss  
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(a) (b) 

  

Figure 11. The performance of the CAE model throughout the training process in (a) accuracy and (b) loss  

 

 

  
(a) (b) 

  

 
(c) 

  

Figure 12. Deep features with CNN model performance during the training process in(a) accuracy, (b) loss, 

and (c) accuracy vs loss 

 

 

To assess the performance of the three executed models, several evaluation metrics were employed, 

including precision (Pre.), recall (Rec.), F1 score (F1), and accuracy (Acc.). To verify result consistency, the 

experiments were run ten times, and both the mean and standard deviation were calculated to check the 

potential for overfitting. Table 2 summarizes the outcomes obtained from the testing dataset after conducting 

ten runs. The results indicate that all models exhibit consistent performance, as evidenced by low standard 

deviation values across all iterations (#1 to #10). Notably, the deep feature with the CNN model consistently 

surpasses both CNN and CAE in precision, recall, F1-score, and accuracy across all iterations. Furthermore, 

the mean values for all evaluation metrics significantly exceed those of both CNN and CAE, underscoring 

the superior effectiveness of the deep feature with the CNN model. 

Additionally, the proposed model exhibits superior performance compared to our previous study 

[40], which employed transfer learning with various pre-trained models on the same dataset (BUSI). Our 

earlier investigation identified the EfficientNetB7 model as the most accurate, achieving an 88% accuracy 

rate on segmented input images. A recent study [41], that also employed the BUSI dataset, introduced a 

hybrid methodology merging a pre-trained CNN with optimization techniques and ML for breast tumor 
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diagnosis. In this approach, the pre-trained CNN model ResNet-50 was utilized for feature extraction, binary 

gray wolf optimization was applied for feature selection, and classification was conducted using SVM. The 

study reported an accuracy rate of 84.9% as a result of this approach. 
 

 

Table 2. Results of the testing dataset for ten times runs 
Model Measures #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean STD 

CNN Pre. 0.92 0.9 0.94 0.87 0.93 0.87 0.89 0.91 0.91 0.9 0.904 0.022 

Rec. 0.91 0.89 0.94 0.88 0.93 0.85 0.88 0.92 0.92 0.89 0.901 0.026 

F1 0.92 0.9 0.94 0.87 0.93 0.84 0.88 0.91 0.91 0.9 0.9 0.028 
Acc. 0.91 0.9 0.94 0.88 0.93 0.84 0.88 0.91 0.91 0.9 0.9 0.026 

CAE Pre. 0.92 0.9 0.93 0.9 0.88 0.87 0.87 0.88 0.93 0.9 0.898 0.021 

Rec. 0.92 0.9 0.93 0.9 0.88 0.87 0.87 0.88 0.93 0.9 0.898 0.021 
F1 0.91 0.9 0.93 0.9 0.88 0.87 0.87 0.88 0.93 0.9 0.897 0.021 

Acc. 0.91 0.9 0.93 0.9 0.88 0.87 0.87 0.88 0.93 0.9 0.897 0.021 

Deep feature with CNN Pre. 0.95 0.96 0.94 0.95 0.94 0.95 0.97 0.94 0.96 0.96 0.952 0.009 
Rec. 0.95 0.96 0.94 0.96 0.94 0.95 0.97 0.94 0.96 0.96 0.953 0.01 

F1 0.94 0.96 0.94 0.96 0.94 0.94 0.97 0.94 0.96 0.96 0.951 0.011 

Acc. 0.94 0.96 0.94 0.96 0.94 0.94 0.97 0.94 0.96 0.96 0.951 0.011 

 
 

In summary, our proposed deep feature with the CNN model demonstrates encouraging outcomes, 

attaining a mean accuracy of 95% with a standard deviation of 1.1%, which aligns well with existing research 

in the field. Nonetheless, while these results have been achieved using a widely utilized dataset, there 

remains a pressing need for the system to undergo training with an ample quantity of BUS images. 

 

 

4. CONCLUSION  

This study investigates the performance of various CAD systems employing both handcrafted and 

deep features. Handcrafted features are integrated into traditional ML systems, while deep features are 

extracted from within DL models. We developed three CAD models utilizing SVM, KNN, and DTs for ML-

based systems, alongside three DL-based systems employing a convolutional neural network, a convolutional 

autoencoder, and a model utilizing deep features with CNN. The performance of these models is evaluated 

using a publicly available BUS image dataset, with each model trained independently on the dataset to 

classify tumors within the images. Our findings indicate that the deep features of the CNN model exhibit 

promising performance potential, even when trained on a limited dataset, achieving a mean accuracy of 95%. 

The results suggest that our proposed model can reduce reliance on handcrafted feature selection methods. 

Future endeavors will involve expanding our analysis to encompass larger datasets, ensuring the model's 

robustness and generalizability across diverse scenarios. 
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