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 By utilizing variational autoencoder (VAE) architectures in musical 

instrument digital interface (MIDI)-based generative neural networks 

(GNNs), this study explores the field of creative music composition. The 

study evaluates the success of VAEs in generating musical compositions that 

exhibit both structural integrity and a resemblance to authentic music. 

Despite achieving convergence in the latent space, the degree of 

convergence falls slightly short of initial expectations. This prompts an 

exploration of contributing factors, with a particular focus on the influence 

of training data variation. The study acknowledges the optimal performance 

of VAEs when exposed to diverse training data, emphasizing the importance 

of sufficient intermediate data between extreme ends. The intricacies of 

latent space dimensions also come under scrutiny, with challenges arising in 

creating a smaller latent space due to the complexities of representing data in 

N dimensions. The neural network tends to position data further apart, and 

incorporating additional information necessitates exponentially more data. 

Despite the suboptimal parameters employed in the creation and training 

process, the study concludes that they are sufficient to yield commendable 

results, showcasing the promising potential of MIDI-based GNNs with 

VAEs in pushing the boundaries of innovative music composition. 
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1. INTRODUCTION 

The field of automatic music composition has captivated researchers and practitioners across diverse 

disciplines for decades [1]–[4]. This interdisciplinary interest stems from the desire to leverage artificial 

intelligence and computational methods in musical creativity. Automated composition in music serves as a 

platform for discovering novel musical expressions, pushing the boundaries of conventional composition  

[5]–[9]. Musicology benefits from studying patterns generated by automated systems, shedding light on the 

evolution of musical forms and styles. Music philosophy engages in profound inquiries regarding the nature 

of creativity and the collaborative potential between human composers and algorithmic systems [10]–[12]. 

Computer science plays a crucial role, providing tools and techniques for implementing generative 

algorithms and neural networks, and facilitating the automated creation of music [13]–[16]. This collective 

exploration promises to unveil new dimensions of creativity, bridging the gap between human artistic 

intuition and the computational capabilities of evolving technologies. 

The evolution of music production has undergone a profound transformation owing to rapid strides 

in artificial intelligence, notably in the field of generative neural networks (GNNs) employing variational 
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autoencoder (VAE) architectures [17]–[20]. This blend of technology and musical creativity marks a 

paradigm shift in music composition, ushering in an era of unprecedented possibilities. One illustrative 

example is the capability of GNNs empowered by VAEs to analyze and generate novel musical compositions 

based on intricate patterns learned from existing datasets. For instance, a GNN with VAE architecture can 

seamlessly process and reinterpret musical instrument digital interface (MIDI) based musical data [21], [22], 

capturing nuances in rhythm, melody, and harmony to produce innovative compositions. Figure 1 illustrates a 

visual representation of a MIDI file, showcasing the seamless exchange of data facilitated by MIDI. This 

digital communication standard enables electronic musical instruments, computers, and various devices to 

communicate and synchronize, fostering harmony among these systems. The graphical depiction assigns the 

Y-axis to different musical notes, while the X-axis signifies the progression of time, offering a clear insight 

into the temporal organization of notes and providing a comprehensive view of the musical composition's 

structure and rhythm. MIDI's role is evident not only in facilitating communication but also in enhancing our 

understanding of musical elements within the digital domain. 

 

 

 
 

Figure 1. An example of the visualization of a MIDI file 

 

 

The integration of GNNs with MIDI technologies, particularly harnessing the intelligence of VAEs, 

responds dynamically to the escalating demand for original and groundbreaking music. The traditional 

landscape of music composition, deeply rooted in creative expression, has undergone a significant 

metamorphosis with the advent of MIDI, enabling the digital representation of musical notes and laying the 

foundation for computational approaches to music creation. The subsequent integration of GNNs into the 

MIDI-based framework amplifies this transformative journey. GNNs showcase an impressive capacity to 

generate diverse and innovative content across various domains and hold the potential to revolutionize the 

essence of music production [23]–[27]. By synthesizing the expressive roots of traditional music composition 

with cutting-edge technology, the amalgamation of GNNs with MIDI technologies stands at the forefront of 

reshaping the landscape of music creation. This convergence meets the contemporary demand for originality 

and serves as a promising focal point for research, exploring the intricate correlation between GNNs and 

MIDI frameworks, paving the way for novel avenues in the creative realm of music. This research aims to 

push the boundaries of innovative music creation by harnessing the intelligence of MIDI-based GNNs with 

VAEs. By delving into the synergy between GNNs and MIDI technologies, this study aims to unlock new 

possibilities for composers and musicians, providing them with unprecedented tools to explore, experiment, 

and redefine the frontiers of musical creativity. This fusion of traditional musical roots with cutting-edge 

technology promises not only to preserve creative expression but also to propel the art of music composition 

into uncharted and exciting territories. 

This research approach involves a detailed investigation into the convergence of latent spaces within 

VAEs, specifically focusing on the impact of training data variation. This study aims to scrutinize the 

challenges associated with latent space dimensions, seeking avenues to improve convergence and optimize 

the representation of musical data. Through the meticulous refinement of parameters and the incorporation of 

insights derived from the unique characteristics of MIDI data, the objective is to present an enhanced 

approach for MIDI-based GNNs utilizing VAEs in the realm of music composition. The innovation of this 

research lies in advancing the nuanced understanding and capabilities of MIDI-based GNNs with VAEs, 

thereby pushing the boundaries of achievable outcomes in music composition. By systematically addressing 

the identified challenges, this research not only contributes to the academic understanding of neural network 

applications in music but also holds practical implications for the development of tools tailored for 
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composers and musicians. The anticipated outcomes include the creation of a more refined and adaptable 

system, empowering musicians to explore previously uncharted territories in music composition. Ultimately, 

this research endeavors to bridge the gap between artificial intelligence and human creativity, facilitating a 

harmonious integration of technological innovation into the creative landscape of music. 

 

 

2. RESEARCH METHOD 

In our research methodology, we adopt a layered strategy to condense data into a latent space, 

employing convolutional neural networks (CNNs) for processing spectrogram inputs. The pivotal role of CNN 

layers lies in capturing nuanced spatial hierarchies inherent in music data, facilitating effective feature 

extraction. The subsequent decoder network intricately replicates the encoder's architecture, adeptly 

transforming condensed latent representations into coherent, meaningful musical outputs. By harnessing the 

spatial analysis capabilities of CNNs, our method efficiently compresses and reconstructs complex musical 

features, establishing a robust framework for innovative music creation. This not only enhances information 

representation efficiency but also contributes to the generation of novel and compelling musical compositions. 

The synergy between CNNs and latent space transformations is visually represented in Figure 2, providing a 

comprehensive illustration of our methodology. 

 

 

 
 

Figure 2. Schematic representation of the layered approach in MIDI-based GNNs with VAEs 

 

 

2.1.  Musical instrument digital interface file 

We employ music files in the MIDI format, a symbolic representation akin to sheet music. MIDI 

files consist of multiple tracks, each capable of being active with a specific pitch, velocity, and duration 

sustained over multiple time steps, or inactive, representing silence. Moreover, each track is assigned a 

specific instrument. This format provides a flexible and structured way to encode musical information, 

allowing for the representation of complex compositions with various instruments and dynamic elements. 

The MIDI's versatility in handling multiple tracks enables the nuanced portrayal of musical intricacies, 

capturing the expressive nuances of each instrument. The use of MIDI as a symbolic representation facilitates 

the synthesis of diverse musical elements, making it an ideal choice for our research focused on innovative 

music creation through GNNs. The MIDI data can be represented as (1). 

 

𝑀𝐼𝐷𝐼 = {(𝑃𝑡,𝑖 , 𝑉𝑡,𝑖 , 𝐷𝑡,𝑖)}|1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁𝑡 (1) 

 

Where T is the total number of tracks in the MIDI file, 𝑁𝑡 as the number of notes in track 𝑡, 𝑃𝑡,𝑖 as the pitch 

of the i-th note in the track 𝑡, 𝑉𝑡,𝑖 as the velocity of the i-th note in track 𝑡, 𝐷𝑡,𝑖 as the duration of the i-th note 

of the track 𝑡. 

 

2.2.  Variational autoencoder’s input 

In the next step, the music in the MIDI file undergoes a transformation, transitioning from the audio 

waveform to a mel-spectrogram, an image-based representation of the audio signal. This mel-spectrogram 

serves as input for the VAE, a type of neural network. The VAE processes this spectrogram, generating an 

output that reflects the encoded features of the musical information. This conversion from audio to mel-

spectrogram provides a condensed and structured representation, allowing the VAE to capture essential 

musical characteristics and patterns. The utilization of mel-spectrograms enhances the model's ability to 

extract meaningful features, facilitating the creation of innovative music through the generative capabilities 

of the VAE. The construction of the VAE model will adhere to the architectural framework depicted in 

Figure 3. This figure illustrates the specific layers, connections, and configurations integral to the VAE's 

structure. The model design encompasses the encoder section, responsible for mapping input data into a 

latent space, and the decoder section, adept at reconstructing the input from the encoded latent 

representations. 

MIDI File VAE's Input  Encoder
2D Latent 

Space
Decoder VAE's Output

Generated 
MIDI Music
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Figure 3. The model of the VAE 

 

 

2.3.  Encoder 

The audio variational autoencoder (AVAE) encoder consists of four layers, commencing with the 

Input layer that receives mel spectrogram data, representing the temporal frequency distribution of a MIDI 

piece. The input layer receives the mel spectrogram data, which represents the temporal frequency 

distribution of a MIDI piece. Let's denote the input mel spectrogram as 𝑋, which has dimensions 𝑊𝑥𝐻, 

where 𝑤 is the width (time steps) and 𝐻 is the height (frequency bins) of the spectrogram. The flattened layer 

is applied to convert the 2D mel spectrogram into a 1D tensor, which reshapes the spectrogram into a vector 

of size 𝑊𝑥𝐻. 
 

𝑋𝐹𝑙𝑎𝑡 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 (𝑋) (2) 
 

The flattened mel spectrogram is then passed through two Dense layers. The first Dense layer 

computes the mean (𝜇) and the second Dense layer calculates the variance (𝜎2) of the features within the 

data. Let ℎ1 and ℎ2 be the outputs of the first and second Dense layers, respectively. The mean (𝜇) and the 

log variance (𝑙𝑜𝑔(𝜎2))are computed as (3) to (4). 
 

𝜇 =  𝐷𝑒𝑛𝑠𝑒1(𝑋𝐹𝑙𝑎𝑡) (3) 
 

(𝑙𝑜𝑔(𝜎2)) =  𝐷𝑒𝑛𝑠𝑒1(𝑋𝐹𝑙𝑎𝑡) (4) 
 

To sample from the learned distribution, the model uses a reparameterization trick. It samples from a 

standard normal distribution (𝜖) and then scales and shifts the samples by the mean (𝜇) and standard 

deviation (𝜎) to obtain the latent representation (𝑧). 
 

𝑧 = 𝜇 + 𝜎 ⊙ 𝜖 (5) 
 

Where ⊙ represents element-wise multiplication. 

The sampled 𝑧 represents a point in the 2D latent space. Each point in this space encapsulates the 

encoded mean and variance of an audio sample from the dataset. The encoder strategically organizes these 
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points so that similar data points, sharing musical features like pitch or rhythm, are proximately located, 

while dissimilar ones are more distantly positioned. 

 

2.4.  2D latent space 

The 2D latent space in a VAE is a lower-dimensional representation where each point corresponds 

to the encoded mean and variance of an input sample. This space is constructed by the encoder part of the 

VAE and serves as a compressed, abstract representation of the input data. Figure 4 illustrates a  

2-dimensional latent space graph, offering a visual representation of diverse data points. In this graphical 

depiction, each point corresponds to a unique position within the transformed latent space, encapsulating the 

encoded mean and variance of audio samples. 

 

 

 
 

Figure 4. A graph depicting various data in a 2-dimensional latent space 

 

 

The intentional arrangement of these points ensures that similar data, characterized by shared 

musical features like pitch or rhythm, are situated in proximity, fostering a coherent representation. In the 

decoder phase, the process begins with input derived from the latent space, characterized by its latent_dim 

dimensionality. This latent representation serves as the foundation for reconstructing the original music data. 

Subsequently, a Dense layer, activated by a sigmoid function, is utilized to map these latent representations 

back into the comprehensive feature space of the music, effectively reversing the compression process 

initially executed by the encoder. This layer meticulously restores the intricate details embedded within the 

music, ensuring the faithful reproduction of its characteristics. The final layer of the decoder is crucial in 

reshaping the output from the Dense layer to align with the original spectrogram dimensions. This pivotal 

step essentially completes the reversal of the encoding process, providing a reconstructed representation of 

the original music data. Throughout this reconstruction process, the decoder leverages the encoded means 

extracted from actual music data within the latent space, ensuring that the generated outputs encapsulate the 

essential characteristics of the input. 

 

2.5.  Decoder 

During the reconstruction phase, the decoder utilizes the encoded means from the latent space to 

sample points and reconstructs the input data. The reconstruction loss, often calculated using the mean 

squared error (MSE) for image data such as spectrograms, measures the disparity between the input data and 

the data reconstructed by the decoder. Simultaneously, the KL-divergence loss quantifies the difference 

between the learned latent distribution and a prior distribution, typically a standard normal distribution. This 

loss term encourages the latent space to align with the prior distribution, promoting the learning of a 

disentangled and continuous latent space. Mathematically, the KL-divergence loss is computed as (6). 

 

𝐿𝐾𝐿 = −
1

2
∑ (1 + log(𝜎2) − 𝜇𝑖

2 − 𝜎𝑖
2)𝑁

𝑖=1  (6) 

 

Where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of the learned latent distribution for the i-th data point, 

respectively. 
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3. RESULTS AND DISCUSSION 

In previous studies, the impact of various factors on musical composition and generation has been 

explored. However, there is a notable gap in explicitly addressing the influence of the latent space quality in 

VAE models on the generation of coherent and meaningful musical compositions. While prior research has 

focused on the technical aspects of VAEs and their application in music generation, few studies have delved 

into the specific characteristics of the latent space that contribute to the quality and creativity of the generated 

music. To fill this gap, this study evaluates the effectiveness of the model through various criteria, 

emphasizing the construction of a robust latent space representation and accurate reconstruction of input data 

with minimal loss of information. A methodology is proposed to gauge the model's improvement over 

epochs, measuring progress iteratively during training and using checkpoints to evaluate performance. This 

approach, leveraging Keras' callback function, enables the generation of the latent space and corresponding 

outputs using matplotlib graphs, facilitating a detailed analysis. The evaluation of latent space quality focuses 

on two key aspects: the latent space's discriminative capability and its convergence to the true posterior 

distribution. By assessing these aspects, the study aims to gain insights into the latent space's capacity to 

capture meaningful representations of input data and its ability to learn the underlying structure of the data 

distribution. 

Throughout the model testing process, the effectiveness of the model is evaluated through various 

criteria. It is imperative that the model constructs a robust latent space representation and accurately 

reconstructs the input data with minimal loss of information. Since assessing these aspects cannot be simply 

represented by a binary outcome, a methodology is proposed to gauge the model's improvement over epochs. 

Instead of evaluating the model on a per-scenario basis, its progress is measured iteratively during training. 

Leveraging Keras' callback function, checkpoints are set to evaluate the model's performance at designated 

intervals during training. At these checkpoints, the model generates its latent space and corresponding 

outputs using matplotlib graphs. For the output, an 8𝑥8 2-dimensional matrix is generated, with each element 

containing coordinates to sample from in the latent space, mapped from 0 to 1. Figure 5 illustrates these 

coordinates. 

 

 

 
 

Figure 5. Sample coordinates to draw from the latent space 

 

 

The latent space quality will be assessed based on its ability to classify snippets from different 

training data accurately and its convergence to closely approximate the true posterior distribution. This 

evaluation entails two key aspects: first, the latent space's discriminative capability, measured by its 

effectiveness in distinguishing between snippets originating from distinct training data sources. Secondly, the 

latent space's convergence to the true posterior distribution is gauged by its proximity to the distribution of 

latent variables conditioned on the observed data. These assessments provide insights into the latent space's 

capacity to capture meaningful representations of the input data and its ability to learn the underlying 

structure of the data distribution. By scrutinizing these aspects, we gain a comprehensive understanding of 

the latent space's quality and its suitability for generating coherent and representative outputs during the 

model's training process. 

Figure 6 shows illustrates the latent space in its initial state. Both the latent space (depicted in  

Figure 6(a)) and the generated result (depicted in Figure 6(b)). It's evident that the latent space appears to 

lack meaningful structure, resembling randomness, while the generated result exhibits characteristics akin to 

noise. These observations indicate that the model has not yet effectively learned the underlying patterns and 
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features of the input data. The latent space, intended to encapsulate meaningful representations of the data, 

appears disorganized and devoid of discernible patterns. Similarly, the generated output lacks coherence and 

fails to capture the salient features of the original music data. These results suggest that further refinement 

and optimization of the model architecture and training process are necessary to achieve the desired 

outcomes of meaningful latent space representations and coherent generative outputs. 

 

 

  
(a) (b) 

 

Figure 6. Illustrates the latent space in its initial state, showcasing the initial result in (a) the initial latent 

space and (b) the initial result 

 

 

Figure 7 shows illustrates both the latent space (Figure 7(a)) and the generated result (Figure 7(b)) 

obtained at the 10th epoch. Notably, the encoder component of the VAE is discernibly attempting to classify 

the training data across the latent space. This suggests that the latent space representation is evolving towards 

capturing more meaningful and structured representations of the input data. Additionally, compared to earlier 

epochs, the generated results exhibit reduced noise, indicating improved coherence and fidelity to the original 

music data. These developments signify the progress of the VAE model in learning and representing the 

underlying patterns and features of the input music data. However, further optimization and refinement may 

still be necessary to achieve even more robust latent space representations and higher-quality generative 

outputs. 

 

 

  
(a) (b) 

 

Figure 7. Illustrates (a) the latent space at the 10th epoch and (b) the result at the 10th epoch 
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Figure 8 displays both the latent space (Figure 8(a)) and the generated result (Figure 8(b)) obtained 

at the 1000th epoch. It appears that the encoder is encountering difficulties in creating a more compact latent 

space. This challenge may arise from the random selection of training data with varying tempos, note ranges, 

and other factors, leading to a complex and diverse input distribution. Despite these challenges, the results 

are beginning to exhibit structural characteristics. This suggests that the VAE model is gradually learning to 

extract meaningful features from the input data and generate outputs with discernible patterns. While the 

latent space may not yet be fully optimized, the emergence of structure in the generated results indicates 

progress in the model's training. Continued iterations and adjustments may further refine the latent space 

representation and enhance the quality of the generated outputs. 

 

 

  
(a) (b) 

 

Figure 8. Depicts (a) the latent space at the 1000 th epoch and (b) the result at the 1000 th epoch 

 

 

Figure 9 illustrates the implementation result, focusing on the generated result display. Within this 

display, sliders are utilized to represent the values used to draw samples from the latent space, thus 

generating musical compositions. Each slider corresponds to a dimension within the latent space. 

Additionally, the latent space graph is depicted, showcasing the distribution of training data points within the 

latent space. This graph also indicates the position from which the user will draw samples, aligned with the 

slider values. The generated result display exhibits the outcomes of the generation process, with the X-axis 

representing time and the Y-axis denoting the note values. This visualization provides users with a 

comprehensive understanding of the generation process, enabling them to interactively manipulate latent 

space parameters to produce desired musical compositions. 
 

 

 
 

Figure 9. MIDI-based GNNs with VAE implementation result 
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Figure 10 depicts the effect of a very high tolerance level on the generated musical composition. In 

this scenario, notes are only positioned where the neural network prediction for note placement approaches 1, 

indicating a high level of confidence in those placements. When the user presses the up arrow on the 

keyboard, the application adjusts by increasing the tolerance level of the neural network. This alteration 

prompts the neural network to generate output with a broader tolerance for variations or deviations from the 

input data. Consequently, the generated output may display heightened diversity or creativity, incorporating 

more unconventional or unique musical elements. This adjustment allows for a broader exploration of 

musical possibilities, potentially leading to the creation of compositions with novel and innovative 

characteristics. 

 

 

 
 

Figure 10. The effect of a very high tolerance level on the generated musical composition 

 

 

Conversely, when the user presses the down arrow on the keyboard, the application adjusts by 

decreasing the tolerance level of the neural network. This modification prompts the neural network to 

generate output with a reduced tolerance for variations or deviations from the input data. Consequently, the 

generated output may demonstrate greater adherence to the patterns and characteristics of the training data. In 

Figure 11, representing a very low tolerance level, the resulting musical composition features notes placed 

only where the neural network exhibits some confidence that a note should be positioned there. This 

conservative approach ensures that notes are added to the composition only when the neural network's 

predictions are relatively certain. As a result, the generated output tends to closely resemble conventional or 

familiar musical styles, aligning more closely with the patterns learned from the training data. 
 

 

 
 

Figure 11. The effect of a very low tolerance level on the generated musical composition 
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4. CONCLUSION 

In conclusion, the integration of MIDI-based GNNs with VAEs represents a transformative 

approach to innovative music creation. This research journey has unveiled the potential of leveraging 

advanced artificial intelligence techniques to push the boundaries of traditional music composition. By 

synthesizing the expressive roots of music with cutting-edge technology, this fusion offers unprecedented 

opportunities for composers and musicians to explore new realms of creativity. Through meticulous 

experimentation and iterative refinement, the study has demonstrated the evolving capabilities of GNNs with 

VAEs in generating novel musical compositions. The evaluation of latent space representations and 

generated outputs has provided valuable insights into the model's learning process and its ability to capture 

meaningful patterns from input music data. 

Moreover, the exploration of tolerance levels within the neural network's generation process has 

offered nuanced control over the diversity and coherence of generated compositions. This adaptive approach 

allows for the exploration of a spectrum of musical possibilities, from highly structured compositions to more 

experimental and innovative pieces. Looking ahead, the development of enhanced methodologies for MIDI-

based GNNs with VAEs holds promise for further advancing the field of automatic music composition. By 

continuing to bridge the gap between artificial intelligence and human creativity, future research can unlock 

even greater potential for musical expression and exploration. 
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