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 Using the UCI-HAR dataset, this paper examines human activity recognition 

(HAR) from the perspectives of data science and artificial intelligence. The 

primary objective is to present and evaluate the effectiveness of a multi-layer 

perceptron (MLP) model, concentrating on six different activity categories. 

We train and assess the MLP model using the UCI-HAR dataset, contrasting 

its results with those of convolutional neural networks (CNN). The MLP 

model shows competitive results, attaining an amazing 97% validation and 

testing accuracy, highlighting its efficiency for smaller datasets. An 

extensive study is carried out to assess the model's adaptation to a larger 

Motion Sense dataset using confusion matrices and cross-entropy, the model 

shows robustness with an accuracy of 89%. The MLP model performs 

admirably, demonstrating its capacity to pick up complex patterns. Results 

from comparative analysis with CNN are competitive, especially when 

dealing with smaller datasets. The suggested MLP model shows up as a 

practical and efficient way to advance HAR techniques. Its remarkable 

performance and versatility not only show its usefulness in real-world 

scenarios but also point to interesting directions for further study in the area 

of HAR. 
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1. INTRODUCTION 

Human activity recognition (HAR) is an area of study and application that is quickly emerging in 

the domains of artificial intelligence and data science [1]. It involves the automatic identification and 

classification of human actions based on data provided by sensors [2]. These activities can include a broad 

range of movements and behaviors, including sitting, running, walking, and even more complex movements 

like driving or cooking. HAR is required associated with the possibility it has to transform several industries, 

such as security systems, healthcare, smart homes, fitness tracking, supported living for the elderly, and 

sporting analysis of performance [3]–[6]. Through precise identification of human actions in either the 

present or past, HAR provides a significant understanding of human behavior and facilitates tailored 

interventions, enhanced security measures, and improved user experiences [7]. While the conceptual 

frameworks of vision-based HAR methods are well-established, certain limitations hinder their practical 

implementation, such as the influence of ambient lighting, camera placement, potential obstacles, and 

security concerns [8]. One of the primary approaches in HAR is the utilization of sensor data, often obtained 

https://creativecommons.org/licenses/by-sa/4.0/
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from wearable devices like accelerometers and gyroscopes [9]. These sensors capture intricate patterns of 

movement and orientation, forming the foundational data that supports HAR models. Due to its ability to 

provide abundant, continuous, and multidimensional knowledge of human movements, sensor data is the 

most effective option for HAR as it enables precise and comprehensive activity recognition [10]. 

The UCI-HAR dataset is widely used for evaluating and training HAR models [11]. This dataset 

includes accelerometer and gyroscope data from thirty individuals who performed various everyday tasks 

such as walking, ascending stairs, descending stairs, sitting, standing, and lying down. With its extensive and 

comprehensive set of labeled data, the UCI-HAR dataset is particularly suitable for research and 

experimentation purposes, allowing for thorough testing and training of HAR algorithms [12]. The dataset's 

reliability, inclusiveness, and overall size contribute to its efficiency, ensuring accurate performance 

evaluation and enabling the development and validation of HAR models with varying levels of complexity. 

Prior to analysis, preliminary techniques like feature extraction, normalization, and data cleaning are crucial 

steps in preparing the data [13]. Activities are classified using a range of deep learning and machine learning 

models, including convolutional neural networks (CNNs) [14], recurrent neural networks (RNNs) [15], and 

support vector machines (SVMs) [16]. 

Most previous work on the topic of human activity classification has concentrated on identifying 

human activities using a range of sensor data. Models based on CNN suggested tremendous potential, 

superior performance other state-of-the-art techniques in terms of recognition accuracy. Nair et al. [17] 

employed the Instantaneous CNN architecture, a class of contemporary models utilizing a hierarchical 

framework of temporal convolutions. According to Dua et al. [18] employ CNNs, an end-to-end model 

known as the Gated Recurrent Unit is proposed that can automatically extract features and categorize the 

actions. A CNN-based approach to sensor fusion was proposed by Münzner et al. [19] to overcome 

difficulties in normalizing and combining data from multimodal sensors. Nevertheless, neither approach 

could discern between comparable actions such as standing and sitting. Researchers in the field of HAR have 

also applied RNN, a deep learning technique, extensively. The ability of RNNs to make sense of spatial data 

sequences is one of its specific characteristics. For example, wearable or inertial sensor-based HAR greatly 

benefits from long short-term memory (LSTM)-based networks, which can capture long-term relationships 

within data sequences. Agarwal and Alam [20] developed a lightweight model for activity recognition using 

LSTM and shallow RNN. However, the accuracy of their model did not meet the required standards.  

Research by Zebin et al. [21] was able to classify human activities by capturing spatiotemporal 

characteristics through the use of LSTM-based architectures, where they faced difficulties in accurately 

distinguishing between walking downstairs and walking, as well as sitting and standing. Hybrid models, such 

as CNN-RNN [22], CNN-LSTM [23], and CNN-gated recurrent unit (GRU) [24], were also presented in 

several studies, and they significantly increased the accuracy of identification. However, when convolutional 

layers and other methods are integrated, the computational complexity increases and results in a larger 

number of hyperparameters. 

Our research endeavors are concentrated on addressing the gaps in knowledge present within the 

UCI-HAR dataset, with the ultimate goal of creating highly efficient and instantly applicable models for 

HAR. Our compact deep-learning model achieves 96.81% accuracy in under three minutes of training. Ideal 

for resource-constrained devices, like microcontrollers, smartphones, and smartwatches. Combining 

traditional ML with deep learning techniques enhances identification precision and extracts more data points. 

Our suggested multi-layer perceptron (MLP) model, prioritizes simplicity for faster execution and 

outperforms existing deep cognition models. Anticipating further improvements, our model represents a 

significant advancement in HAR research. 

 

 

2. THE PROPOSED METHOD 

2.1.  Architectural design 

The system architectures are shown in Figure 1, where Figure 1(a) presents our proposed model 

architecture, replacing the intricate CNN architecture showcased in Figure 1(b). Our proposed model's neural 

network is built using the Sequential API, which suggests a progressive layer-by-layer framework. At the 

forefront lies a dense layer boasting 64 units, employing the activation function known as the rectified linear 

unit (ReLU), accompanied by an ordinary weight initialization method. The input dimension of this layer is 

carefully chosen, taking into account the nature of the training data. Subsequently, a dropout layer enters the 

scene, randomly discarding 20% of the units in each training batch, serving as a safeguard against the perils 

of overfitting. The subsequent layers consist of a dense layer with 36 units, another with 12 units, yet another 

with 36 units, and finally, a concluding layer housing 6 units. Except for the final layer, which embraces the 

softmax activation function, all these layers employ the ReLU activation function and normal weight 

initialization. 
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(a) 

 

 
(b) 

 

Figure 1. System architecture (a) proposed MLP architecture for the identification of human activity and (b) 

CNN architecture for identifying human activity (conv refers to a convolutional layer) 

 

 

2.2.  Algorithm of the proposed model 

The CNN algorithm for HAR is explained in Algorithm 1. It describes the steps used to create the 

CNN model, which includes the convolutional layers, LSTM layer, max pooling, batch normalization, 

dropout layers, and dense layers with ReLU activation functions. The suggested method for HAR is shown in 

Algorithm 2. It explains a sequential model for classification that has a dropout layer, dense layers, and a 

final dense layer with a softmax activation function. 

 

Algorithm 1. CNN algorithm for HAR 
Initialize the model Model=Sequential () 

1 Convolution1D → Conv1D (filter, kernel dimensions, padding, input shape, activation) 

2  Batch Normalization () 

3 Convolution1D → Conv1D (filter, kernel dimensions, activation, padding) 

4 Max pooling → MaxPooling1D (pool dimensions) 

5  Dropout (rate) 

6 Convolution1D → Conv2D (filter, kernel dimensions, activation, padding) 

7  Batch Normalization () 

8  Flatten () 

9 LSTM → LSTM (units) 

10  Dropout (rate) 

11 Dense → Dense (Units, Karnel initializer, activation=”Relu”) 

12  Dropout (rate) 

13 Dense → Dense (Units, Karnel initializer, activation=”Relu”) 

14 Dense → Dense (Units, Karnel initializer, activation=“Relu”) 

15 Dense → Dense (Units, Karnel initializer, activation=“Relu”) 

16 Dense → Dense (Total number of categorization classes, activation="softmax") 

End 
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Algorithm 2. Proposed algorithm for HAR 
Initialize the model Model=Sequential () 

1 Dense → Dense (Units, Karnel initializer, activation=”Relu”, input shape) 

2  Dropout (rate) 

3 Dense → Dense (Units, Karnel initializer, activation=”Relu”) 

4 Dense → Dense (Units, Karnel initializer, activation=“Relu”) 

5 Dense → Dense (Units, Karnel initializer, activation=“Relu”) 

6 Dense → Dense (Total number of categorization classes, activation="softmax") 

End 

 

 

3. RESEARCH METHOD 

3.1.  Dataset ingestion and initial analysis 

For further study, the UCI-HAR dataset was acquired and imported into a Pandas DataFrame. The 

dataset contains six measurements from sensors namely gyroscope and accelerometer. A Label Encoder was 

utilized to convert the activity labels into numerical values. To standardize the sensor data and mitigate 

potential biases arising from variations in feature sizes, feature scaling was performed. The study included a 

total of thirty participants. The dataset was divided into a training dataset and a test dataset to train and 

evaluate the model. Specifically, the model was trained using data from 21 volunteers, and its performance 

was evaluated using the test dataset, which contained data from the remaining 9 individuals. Graphical 

representations were created to visually depict the distribution of activities within these databases. Figure 2 

presents a visual depiction of the characteristics of the entire dataset, showcasing the patterns and variations 

evident in the collected data. Where Figure 2(a) represents the training dataset and Figure 2(b) represents the 

test dataset. Additionally, a comprehensive analysis is displayed in Figure 3 to comprehend the structure of 

the tasks performed in the training and test datasets. Where Figure 3(a) represents the training dataset and 

Figure 3(b) represents the test dataset. These visualizations provide insights into the distribution of activities 

and their relative frequencies in the training and test datasets by showcasing the count of instances for each 

unique activity. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Overview of volunteer demographics in (a) train dataset and (b) test dataset 



Int J Adv Appl Sci  ISSN: 2252-8814  

 

Enhanced human activity recognition through deep multi-layer perceptron on the … (Md. Anwar Hossain) 

433 

 
 

(a) (b) 

 

Figure 3. Distribution of activities in (a) train dataset and (b) test dataset 

 

3.2.  Sensor signals visualization 

The signals were sampled by employing 128 readings for each window of sliding windows with a 

fixed width, incorporating a 50% overlap and lasting 2.56 seconds. The sampled signal visualization is 

depicted in Figure 4. This temporal segmentation greatly aided in the identification of significant patterns and 

characteristics within the time-series data shown in Figure 4(a). One of the most important steps in HAR is 

the conversion of time-domain signals to frequency domains, enabling a more thorough analysis. This 

conversion is achieved through the utilization of a signal manipulation technique known as fast Fourier 

transform (FFT). Notably, the frequency domain representations, as demonstrated in Figure 4(b), offer 

valuable insights into the underlying patterns associated with diverse activities. 

 

3.3.  Compilation of the model 

The model is made ready for training during the process of compilation by establishing three crucial 

elements: loss function (SparseCategoricalCrossentropy): this loss function is used to quantify, during 

training, the discrepancy between the true labels and the model's predictions. SparseCategorical-Crossentropy 

is used for multi-class classification tasks, where each input corresponds to a single class. Optimizer (Adam): 

the optimizer determines how to update the weights of the model based on the determined slopes of the loss 

function. Adam is a popular optimizer that adjusts the learning rate dynamically to increase the efficiency of 

weight updates during training. Learning rate (0.001): this hyperparameter controls how big of a step the 

optimizer takes when changing the model's weights. In this model, it remains fixed at 0.001. 

 

3.4.  Model training procedure 

Throughout the training phase, the trained model receives input from training data (x_train and 

y_train), and iterative updates to the model's parameters (weights and biases) are made to minimize the given 

loss function. Key training variables include Batch size (64): the batch size is the number of samples 

processed during a single training phase. The parameters of the model are changed once for every batch. 

Epochs (250): the total number of times the neural network runs the training dataset both forward and 

backward. There are multiple data batches in each epoch. Validation data (x_test, y_test): an impartial subset 

of the dataset that's meant to detect overfitting and assess how well the model performs on missing data. 

 

3.5.  Model prediction procedure 

After training, the model is applied to the test data (x_test) for prediction. The actions to take are as 

follows: Logits calculation (logits=model (x_test)): the logits, or unnormalized predictions produced by the 

model, are computed by applying the model to the test data. Softmax activation (prediction=tf.nn.softmax 

(logits)): the predicted probabilities for every class are obtained by applying Softmax activation, which 

guarantees that they add up to 1 and reflect the confidence of the model for every class. Predicted classes 

(pred_class=np.argmax (prediction, axis=1)): The category with the highest probability is selected to 

determine the predicted class for each input sample using argmax along the appropriate axis. 
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(a) 

 

 
(b) 

 

Figure 4. Sampled signal visualization of different activity in (a) time domain representation and  

(b) frequency domain representation 
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4. RESULTS AND DISCUSSION 

In our research, our objective was to address significant gaps in the field of HAR. To achieve this, 

we introduced a specialized MLP model for the UCI-HAR dataset. Previous research lacked efficient models 

that were suitable for real-time applications. Our objective was to fill this gap and provide a lightweight yet 

precise solution. The proposed model achieved an accuracy of 97% in testing and validation. The training 

process utilized the Adam optimizer, a dropout rate of 20%, and a learning rate of 0.001. Throughout 250 

epochs, we meticulously monitored the accuracy and loss trends for both the training and validation sets. We 

examine the effectiveness of our proposed model further by using a confusion matrix and a normalized 

confusion matrix. The confusion matrix compared projected outputs to actual outputs. The normalized 

confusion matrix scaled values between 0 and 1, with 1 representing 100% accuracy. 

Figure 5 demonstrates the assessment of the effectiveness of our proposed model. The confusion 

matrix is showcased in Figure 5(a), while Figure 5(b) presents the corresponding normalized confusion 

matrix. However, when we applied our CNN model to the UCI-HAR dataset, its performance experienced a 

significant decline. Despite having a training accuracy of 97%, the CNN's validation and testing accuracies 

were only 91%. To monitor accuracy and loss trends over 200 epochs, we employed the Adam optimizer 

with a 20% dropout rate and a learning rate of 0.00001. Figure 6 displays the evaluation of the CNN model. 

Where, Figure 6(a) depicts the confusion matrix, and Figure 6(b) exhibits the normalized confusion matrix. 

Based on this comparison, we conclude that the proposed MLP model is better suited for the UCI-HAR 

dataset than the CNN architecture. 

Furthermore, our modified MLP model exhibited impressive performance on the MotionSense 

dataset, achieving evaluation and verification accuracies of 89%. This improvement was achieved by 

increasing the number of neurons in the current linked layers, using an Adam optimizer, a dropout rate of 

20%, and a learning rate of 0.001. The performance evaluation of this is shown in Figure 7. Figure 7(a) 

presents the confusion matrix, while Figure 7(b) presents the normalized confusion matrix. These visuals 

highlight the model's commendable performance even when dealing with a larger dataset. 

 

 

  

(a) (b) 

  

Figure 5. UCI-HAR dataset confusion matrix and corresponding normalized confusion matrix using MLP (a) 

confusion matrix and (b) normalized confusion matrix 

 

 

  

(a) (b) 

  

Figure 6. UCI-HAR dataset confusion matrix and corresponding normalized confusion matrix using CNN (a) 

confusion matrix and (b) normalized confusion matrix 
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(a) (b) 

  

Figure 7. MosionSense dataset confusion matrix and corresponding normalized confusion matrix using MLP 

(a) confusion matrix and (b) normalized confusion matrix 

 

 

Table 1 illustrates how our proposed MLP model fared compared to other methods on the UCI-HAR 

dataset. Specifically, our model performs better than the CNN-LSTM model that was published in [23], 

which only managed to get an accuracy rate of 92.13%. With an accuracy of 96.71%, CNN-GRU [24] proved 

effective; nevertheless, because of its computational complexity, which arises from the combination of 

recurrent units and convolutional layers, a greater number of hyperparameters are needed. The accuracy rates 

of other techniques, such as the CNN-LSTM [25] and CNN-SVM [26] architectures, were 91.89% and 95% 

respectively. Additionally, a CNN method developed by [27] achieved a 95.25% accuracy rate. 

 

 

Table 1. Comparison of the proposed model with the CNN approach 
Method Model Dataset Accuracy (%) 

[23] CNN-LSTM UCI-HAR 92.13 

[24] CNN-GRU UCI-HAR 96.71 

[25] CNN-LSTM UCI-HAR 91.89 

[26] CNN-SVM UCI-HAR 95 
[27] CNN UCI-HAR 95.25 

Our CNN UCI-HAR 90.63 

Proposed 

method 

MLP MotionSense 89.03 

MLP UCI-HAR 96.81 

 

 

Although our work sheds light on HAR, there are several limitations. Our study was mainly 

conducted on the UCI-HAR and MotionSense datasets, for example, which would have limited the 

applicability of our results to other datasets or real-world situations. To further investigate the scalability and 

applicability of our suggested MLP model to bigger and more varied datasets, more research may be 

required. Our results provide new avenues for future HAR studies. In particular, to enhance the suggested 

MLP model's performance across a range of datasets and in practical applications, subsequent research might 

focus on fine-tuning and optimizing it. Further research on workable approaches to HAR system 

implementation in many scenarios may yield important new understandings of the applicability and 

usefulness of these systems. The findings of this research suggest that MLP offers a faster and more accurate 

alternative for small datasets like UCI-HAR compared to CNNs. Additionally, the MLP model that we 

propose exhibits extraordinary accuracy when tested and validated using the MotionSense dataset. This 

achievement is particularly noteworthy due to the MotionSense dataset's larger size as compared to UCI-

HAR, thereby signifying the robustness and efficiency of the MLP model. 

 

 

5. CONCLUSION 

We propose a strong MLP model for HAR using the UCI-HAR dataset. Although the proposed 

model is simple, it competes well with larger models like CNN. In fact, our model outperforms CNN in terms 

of accuracy and provides a faster solution for smaller datasets. We emphasize the model's ability to 

effectively learn complex patterns and its practicality through the use of confusion matrices. Additionally, the 

model's exceptional results on the MotionSense dataset suggest that it may be scalable to larger datasets. We 

firmly believe that our approach has the potential to significantly advance the field of human activity 
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detection and analysis on smaller devices. Moving forward, our goal is to continuously enhance our 

algorithm's capability to recognize a wide range of human actions. 
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