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 This paper presented the kinetic study of molybdenum borides via the 

Volmer-Heyrovsky-Tafel (V-H-T) mechanistic steps for hydrogen evolution 

reaction (HER). A theoretical approach was carried out to investigate the 

kinetic properties of several molybdenum boride materials for HER in 0.5 M 

H2SO4. Our findings offer definitive proof that the simulated results show 

that B, Mo, Mo2B, and α-MoB, proceed through V-H mechanistic steps 

(slower kinetics) while β-MoB and MoB2 exhibit V-H-T mechanistic steps 

with higher kinetics. The kinetic parameters were determined in terms of the 

standard rate constant parameters for the Volmer step (kV, k-V), Heyrovsky 

step (kH, k-H), and rate constant for the Tafel step (kT, k-T). The simulation 

was able to predict the overpotential at 10 mA/cm2, η10 recorded at 

approximately 780, 585, 480, 350, 310, and 300 mV for B, Mo, Mo2B, α-

MoB, β-MoB, and MoB2 respectively. Based on these findings, the adopted 

mathematical model shows good coherency to the experimental findings. 

The simulation work provides a good numerical estimation of the 

characteristics of the electrocatalyst for HER. This paper successfully 

elucidated the reaction mechanisms (V-H-T steps) and understood the rate-

limiting steps involved in the HER process on Mo-B materials. 
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1. INTRODUCTION 

Developing highly efficient HER low-cost electrocatalysts is of utmost importance to realize 

hydrogen economy. Earth's abundant compounds such as carbons have attracted tremendous research 

interest. Among them, molybdenum carbides have exhibited great potential catalytic properties [1]–[3]. 

Recent studies demonstrated the efficacy of boron-containing materials in improving the catalytic activity for 

hydrogen evolution. It has been discovered that when a boron atom is close to a carbon atom, the valence 

orbital energy levels of the carbon atom are lowered. Park et al. [4] presented The HER activity of B, Mo, 

Mo2B, α-MoB, β-MoB, and MoB2 catalysts. The HER kinetics rise dramatically as the boron concentration 

rises. The findings demonstrate that boron inclusion had significantly enhanced the molybdenum catalyst.  

Jian et al. [5] introduce a material of MoO2 layer on Mo foil, MoSe2/MoO2 hybrid nanosheets with 

an abundant edge and high electrical conductivity can be synthesized on the surface of Mo foil to improve 

HER on the material. The developed MoSe2/MoO2/Mo exhibits highly improved HER performance 

https://creativecommons.org/licenses/by-sa/4.0/
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compared with that of the pure MoSe2 catalyst. MoSe2/MoO2/Mo has a small Tafel slope of 48.9 mV dec-1, a 

low onset potential of 60 mV versus RHE, and a small overpotential of 142 mV versus RHE at a current 

density of 10 mA/cm2. The high catalytic activities of MoSe2/MoO2/Mo are ascribed to the synergistic 

effects of the abundant active sites at the MoSe2 surface and fast charge transport efficiency between MoSe2 

and MoO2/Mo substrate. Similar works on CoS2 were presented by Zhang et al. [6] on the positive effect of 

The study by Zhang et al. [7] presented a one-pot approach for manufacturing B-doped RhFe alloy with high 

catalytic performance for HER. It has been found that the BRF21 catalyst, in its current form, is highly stable 

in acidic environments. It has remarkable stability and high HER activity in an aqueous solution (0.5 M 

H2SO4), with an initial overpotential that is almost negligible. It requires an overpotential of around 25 mV at 

a current density of 10 mA/cm2, which is four mV lower than that of commercial Pt/C (29 mV). In addition, 

the Tafel slope of 32 mV/dec1 with Pt/C is similar for BRF21 (30 mV dec–1). Before and after being put 

through the durability test, the amount of B in its atomic percentage increases from 9.57 to 12.51. These 

results suggest that boron dopants may be stable in 0.5 M H2SO4 aqueous solution. Therefore, boron-doping 

may be an effective method for boosting HER activity. While electrocatalyst testing in acidic conditions 

shows tremendous HER activity, the study of electrocatalysts for HER in alkaline condition had also 

significan progress [8].  

Work such as Danaee and Noori [9] stated that the HER of 1T MoS2 nanosheets happens mainly via 

the Volmer-Heyrovsky mechanism. Azizi et al. [10] presented that the HER mechanism for tin at low 

negative potentials is a serial combination of the Volmer step and parallel Tafel and Heyrovsky steps. At high 

negative potentials where the hydrogen coverage reaches its limiting value, a Tafel line with a slope of  

126 mVdec-1 is obtained. In this potential region, the mechanism of the HER follows Volmer–Heyrovsky 

while the Tafel step has negligible contribution. The kinetic studies indicate that the rate of HER is controlled 

by the Volmer step. Studies of the HER on nickel boride electrodes doped by Rh, Ru, Co, Cr, Zn and Pt 

carried out by quasi steady-state galvanostatic experiments and by ac impedance spectroscopy show that the 

overall electrode reaction proceeds via the Volmer-Heyrovsky mechanism. 

One of the primary contributions of this paper is the in-depth kinetic study of molybdenum borides 

regarding their efficacy in catalyzing the HER. This paper took inspiration from the published works of Luo et 

al. [11], Lasia and Rami [12], Los et al. [13], Xu et al. [14] to determine the Volmer-Heyrovsky-Tafel (V-H-

T) mechanistic steps of B, Mo, Mo2B, α-MoB, β-MoB, and MoB2 catalysts for HER in acidic condition. The 

standard rate constant of these steps will be determined by adopting the VHT model for HER [15]–[17]. The 

obtained values will be compared to the experimental findings by Park et al. [4] on multiple molybdenum 

borides (Mo2B, α-MoB, β-MoB, and MoB2) with increasing HER activity.  

 

 

2. METHODOLOGY 

2.1.  Volmer Heyrovsky Tafel mechanistic steps 

In general, the basic concept of HER is the cathodic side of the electrochemical splitting of water 

molecules (H2O) to H2 (HER) and O2 (OER). The overall reaction is represented as in (1), a reaction 

occurring at the cathode. 

 

2𝐻+ + 2𝑒− → 𝐻2 (1) 

 

The elementary steps of HER that occur on the surface of the surface are called the V-H-T 

mechanism, where (2)-(4) represent V-H-T steps respectively. These reactions could occur simultaneously in 

either VH, VT, or VHT paths depending on the experimental conditions These steps are depicted in Figure 1. 

 

𝐻+ + 𝑠 + 𝑒− ⇄ 𝐻𝑠 (2) 

 

𝐻+ + 𝐻𝑠 + 𝑒− ⇄ 𝐻2 + 𝑠 (3) 

 

2𝐻𝑠 ⇄ 𝐻2 + 2𝑠 (4) 

 

2.2.  Boundary conditions 

V and H are electrochemical reactions and hence are potentially dependent. The rate constants for 

the forward and the backward reactions are expressed as in (5)-(8). 

 

𝐾𝑉 = (𝑘𝑉𝑒
(−

𝛽𝑉𝑛𝐹

𝑅𝑇
)(𝐸(𝑡)−𝐸𝑉

𝑜)) (5) 
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𝐾−𝑉 = (𝑘−𝑉𝑒
(

𝛼𝑉𝑛𝐹

𝑅𝑇
)(𝐸(𝑡)−𝐸𝑉

𝑜)) (6) 

 

𝐾𝐻 = (𝑘𝐻𝑒
(−

𝛽𝐻𝑛𝐹

𝑅𝑇
)(𝐸(𝑡)−𝐸𝐻

𝑜 )) (7) 

 

𝐾−𝐻 = (𝑘−𝐻𝑒
(

𝛼𝐻𝑛𝐹

𝑅𝑇
)(𝐸(𝑡)−𝐸𝐻

𝑜 )) (8) 

 

Where kV and k-V are standard rate constants for forward and backward Volmer steps respectively. While KV 

and K-V are the rate constants for forward and backward Volmer steps respectively. The subscript H would 

represent the Heyrovsky step. Since the Tafel step is a chemical reaction, not an electrochemical reaction, 

hence it is independent of the potential. 

The transfer coefficients or symmetry coefficients are represented by β and α in which (α+β=1). The 

subscripts V and H signify the Volmer and Heyrovsky step respectively. As for the potential parameters, E(t) 

is the electrode potential, and E0
V and E0

H are the standard potentials for Volmer and Heyrovsky respectively. 

Assuming the Langmuir adsorption isotherm, the reaction rates for the corresponding as in (2)-(4) are 

presented as (9)-(11) respectively. 

 

𝑅V = (𝐾V𝑐H+𝑐s) − (𝐾−V𝑐Hs) (9) 

 

𝑅H = (𝐾H𝑐H+𝑐Hs) − (𝐾−𝐻𝑐𝐻2
𝑐𝑠) (10) 

 

𝑅𝑇 = (𝐾𝑇(𝑐𝐻𝑠)2) − (𝐾−𝑇𝑐𝐻2
(𝑐𝑠)2) (11) 

 

Several parameters were kept constant throughout the simulations with the following assumptions: 

i) 0.5 M of H2SO4 of high acidic concentration, hence cH+=1000 mol/m3. 

ii) The maximum surface concentration of the material, Γ𝑚𝑎𝑥=1 x 10-5 mol/m2 (eg given by Diard et al. 

[18] and Faulkner et al. [19]. 

iii) The hydrogen concentration near the electrode is 0.001 M, cH2=1 mol/m3. 

Pertaining the cH2 an elaborate work by Kempainen et al. [20] had presented the concentration 

profiles of dissolved H2 at different current densities. The works stated the change of cH2 with the change of 

current density at different distances near the electrode, but a safe assumption of cH2=1 mol/m3 can be made 

to achieve a current density of -10 mA/cm2. To support the assumption made on cH2, Lasia [21] cited a work 

on solubility series in the year 1981 that stated cH2 is estimated at 0.0008 M or 0.8 mol/m3. 

The general PDE equation was employed to facilitate Fick’s 2nd law of diffusion. The general form 

PDE is written in the form of (12). 

 

𝑒𝑎
𝜕2𝑢

𝜕𝑡2 + 𝑑𝑎
𝜕𝑢

𝜕𝑡
= 𝑓 (12) 

 

Where ea and da are the mass coefficients, Г is the flux vector and f is the source term. Given that u, in this 

case, is cHs in mol/m2, Fick’s 2nd law of diffusion is written in eq. 3.28. The mass coefficient, ea=0 as no 

second-order derivation of time is required. While da=1 to facilitate the first-order derivation of cHs. In 

steady-state conditions, Fick’s 2nd law of diffusion (1st term) and the total rate reaction (the 2nd term) is equal 

to zero. 

 
𝜕𝑐𝐻𝑠

𝜕𝑡
= 𝑅𝑣 − 𝑅𝐻 − 2𝑅𝑇 = 0 (13) 

 

Based on the work such as (Glandut et al., [22], [23]) the equation for current density for a single 

electrode system is written in (14). The currents are due to the electron transfer during the Volmer and 

Heyrovsky steps occurring on the surface of the electrode. By integrating the Volmer and Heyrovsky rate 

reactions on the electrode surface and the multiplication with Faraday’s constant and the number of electrons 

moving the current equation is written as (15). Similar formulizations can also be found in Compton and 

Banks [24]. 

 

𝑖 =
𝐼𝜎

𝐴𝜎
= (−𝑛𝐹(𝑅𝑉 + 𝑅𝐻)𝜎) (14) 
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𝐼𝜎 = −𝑛𝐹 ∫ ∫(𝑅𝑉 + 𝑅𝐻)𝜎
𝜎𝐷

0
𝑑𝜎 (15) 

 

Dividing the current over the effective surface area, ATot would then give the current density, i as shown in 

the (16). Consequently, the Tafel plot can be obtained by plotting (17) against the potential, E(t). 

 

𝑖𝑇𝑜𝑡 =
𝐼𝑇𝑜𝑡

𝐴𝑇𝑜𝑡
 (16) 

 

log10(𝑖𝑇𝑜𝑡) = log10
(𝐼𝑇𝑖𝐶+𝐼𝑡𝑎𝐶)

𝐴𝑇𝑜𝑡
 (17) 

 

Additionally, the analytical equation provided in (18) can be used to verify the Tafel plot for an irreversible 

VH mechanism [23]. 

 

𝐽 = 2𝐹Γ𝑚𝑎𝑥𝑐𝐻+
(𝐾𝑉𝐾𝐻)

𝐾𝑉+𝐾𝐻
 (18) 

 

The essential parameters in this simulation are summarized in Table 1. 

 

 

 
 

Figure 1. Schematic diagram of a VHT reaction on an electrocatalyst surface 

 

 

Table 1. Parameters employed for VHT mechanistic steps in the simulation 
Name Expression Value Description 

n 1 1 No of electron 

R 8.314[J/(mol*K)] 8.314 J/(mol·K) Universal gas constant 

T 298.15[K] 298.15 K Temperature 
F 96485.3[C/mol] 96485 C/mol Faraday’s constant 

H2 1[mol/m^3] 1 mol/m³ Hydrogen concentration (cH2) 

vb 1e-8[V/s] 1×10-8 V/s Potential scan rate (vb) 
Einit 0.5 0.5 Initial potential (Einit) 

cstar 1000[mol/m^3] 1000 mol/m³ Initial concentration for H+ (cH+) 

Gmax 1e-5[mol/m^2] 1×10-5 mol/m² Maximum concentration of Hs (Γ𝑚𝑎𝑥) 

tend 2e8 2×108 Time stop (tend) 

tstep 2e5 2×105 Time step (tstep) 
Erev -0.5[V] −0.5 V Reverse potential (Erev) 

 



                ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 13, No. 3, September 2024: 698-706 

702 

2.3.  Time-dependent properties 

For the time-dependent properties, a similar approach to the example given on redox reaction was 

used. The potential of the system as a function of time, E(t), is written as in (19). 

 

𝐸(𝑡) = |𝑣𝑏𝑡 + 𝐸𝑟𝑒𝑣 − 𝐸𝑖𝑛𝑖𝑡| + 𝐸𝑟𝑒𝑣 − 𝐸𝑜 (19) 

By setting the scan rate, vb at a low value of 1×10-6 V/s a slow reaction time like steady state situation was 

simulated. This was translated into the software transient program of the time step, tstep, and end time, tend. 

The equations used for the mentioned parameters are given in (20) and (21). 

 

𝑡𝑒𝑛𝑑 =
(𝐸𝑖𝑛𝑖𝑡−𝐸𝑟𝑒𝑣)

𝑣𝑏
× 2 (20) 

 

𝑡𝑠𝑡𝑒𝑝 =
𝑡𝑒𝑛𝑑

𝑛𝑜.𝑜𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (21) 

 

The standard potential, E0 is specific to the types of electrodes and the mechanistic steps. For 

example (E0
V)TiC indicates the standard potential of the Volmer step for the TiC electrode (shown in Table 2). 

This simulation is modeled to emulate the experimentation of HER where it is known that the cathodic 

formation of hydrogen occurs at 0 V (examples given by Zubair et al. [25]). Lasia [21] stated that it is much 

simpler to refer working potentials to the HER equilibrium which is 0 V. 

 

 

Table 2. Summary of VHT kinetic parameters obtained in simulation 
Materials B Mo Mo2B α-MoB β-MoB MoB2 

Boron content 100 0 5.33 10.13 18.4 

Volmer kinetics parameters 
kV 9.0×10-4 6.0×10-5 9.0×10-6 3.0×10-6 1.5×10-5 8.0×10-6 
k-V 9.0×10-1 6.0×10-2 9.0×10-3 3.0×10-3 1.5×10-2 8.0×10-3 

βV 0.24 0.35 0.58 0.79 0.85 0.85 

Heyrovsky kinetics parameters 
kH 1.0×10-4 5.0×10-5 5.0×10-5 4.0×10-6 8.0×10-5 8.0×10-5 
k-H 1.0×10-1 5.0×10-2 5.0×10-2 4.0×10-3 8.0×10-2 8.0×10-2 

βH 0.21 0.33 0.54 0.85 0.29 0.29 

Tafel kinetic parameters 
kT 0 0 0 0 1×108 1×109 
k-T 0 0 0 0 1×108 1×109 

Mechanistic steps V-H V-H V-H V-H V-H-T V-H-T 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Kinetic parameters and current density at 10 mA/cm2 

This work has provided kinetic insight into the molybdenum boride surfaces (reaction intermediates, 

reaction pathways, and rate-determining steps, which are crucial for designing efficient catalysts). The study 

was able to predict the behavior of molybdenum borides during the HER by determining the electrochemical 

steps standard rate constant of V, H, and the chemical reaction step rate constant of T (given in Table 2). 

The utilization of MoB2 as a catalyst in electrocatalysis has garnered significant attention due to its 

exceptional properties, specifically in terms of its standard rate constant and charge transfer coefficient. The 

efficient conversion of reactants is facilitated by the rapid. The current density (mA/cm2) holds significant 

importance in determining the efficacy and effectiveness of electrochemical processes, especially 

electrolyzers. A good-performing electrocatalyst would exhibit a high current density value. Figure 2 show 

the comparison of experimental and simulation findings of the current density of Mo, B, Mo2B, α-MoB, β-

MoB, and MoB2. 

The plotted graph proves the coherency between the experimental and simulation findings. The 

dotted experimental curves show that the experimental data were limited to -3.5 to 5 mA/cm2. By adopting 

the VHT model the simulation was able to predict the overpotential at 10 mA/cm2, η10 recorded at 

approximately 880, 680, 560, 350, 310, and 298 mV for B, Mo, Mo2B, α-MoB, β-MoB, and MoB2 

respectively. This result shows that MoB2 was able to achieve convincing current density values for a 

transition metal catalyst. The obtained standard rate constant data given in Table 3 has proven to be a good 

numerical estimation and reference for electrocatalyst physical modeling. Our research shows that the Tafel 

step exists at higher kinetics this was shown by β-MoB and MoB2 exhibiting VHT steps. Future research may 

look into altering the material surface to produce a catalyst with a high surface area. 
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Figure 2. Polarization curves for amorphous B, Mo, Mo2B, α-MoB, β-MoB, and MoB2 in 0.5 M H2SO where 

solid lines are the experimental curves (Park et al. [4]) and dotted plots are the simulation curves 

 

 

3.2.  Tafel plots 

The log10 of current density, j (in mA/cm2) is generally known as the T plots. It is a graphical 

representation of the kinetic of electrochemical reactions in multiple electrochemical systems including HER. 

Figure 3 shows the comparison of experimental plots by Park et al. [4] and the simulation plots by this study. 

The simulation lines were plotted from 0 to -0.5 V while the experimental lines were plotted in the region of  

-1 to 1 of log10 (j) in mA/cm2. 

 

 

 
 

Figure 3. The corresponding T plots of B, Mo, Mo2B, α-MoB, β-MoB, and MoB2 scan rate was 1 mV/s in  

0.5 M H2SO4 where solid lines are the experimental curves (Park et al. [4]) and dotted plots are the 

simulation curves 
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Murthy et al. [26] proposed that the T constant can be considered as the onset potential of HER. The 

T constant becomes the defining parameter between two electrocatalysts when other parameters such as the T 

slope or exchange current density become the same. The intrinsic reaction rates of the V and H reactions are 

represented by the standard rate constants kV and kH, respectively. The kinetics of the reactions are 

determined by these constants, which exhibit a direct correlation with the T plot. An increased value of kV 

and kH denotes an augmented reaction rate, which leads to more pronounced inclines in the T plot. An 

electrocatalyst that possesses higher values of kV and kH demonstrates an increased level of catalytic 

activity, which is evidenced by higher current densities for a given applied potential. The presence of the 

Tafel step was evident on a plateau-like plot as shown by MoB2 stagnation from -0.35 to -0.5 V. The HER 

performances of the studied catalyst are summarized in Table 3. 

 

 

Table 3. Summary of the HER performances of the electrocatalysts 
Materials Tafel slope 

(mV/dec) 

Overpotentials at 3.5 mA/cm2, 

η3.5 (mV) [4] 

Overpotentials at 10 mA/cm2, 

η10 (mV) 

(simulation-present study) 

Exchange current density, jo 

(mA/cm2) 

(simulation-present study) Exp [4]  Sim 

B - 270 650 780 6.31×10-3 

Mo - 180 500 585 3.16×10-3 

Mo2B 128 100 420 480 3.98×10-4 
α-MoB 76 80 310 350  

β-MoB 84 70 290 310  
MoB2 75 60 270 300 7.94×10-4 

 

 

4. CONCLUSION 

Recent observations indicate that boron exhibits a T slope of 270 mV/dec, slow reaction kinetics, 

and high energy requirements for electrochemical processes. Mo follows with a T slope of 180 mV/dec, 

suggesting slightly better electrochemical kinetics and lower activation energy compared to boron. Mo2B 

demonstrates a lower T slope of 100 mV/dec, indicating even more favorable kinetics and energetically 

favorable reactions. Finally, MoB2 exhibits the lowest T slope of 60 mV/dec, indicating highly favorable 

kinetics and efficient electrochemical processes. Our findings offer definitive proof that the simulated results 

show that B, Mo, Mo2B, and α-MoB, proceed through V-H mechanistic steps (slower kinetics) while β-MoB 

and MoB2 exhibit V-H-T mechanistic steps with higher kinetics. The kinetic parameters were determined in 

terms of the standard rate constant parameters for the Volmer step (kV, k-V), Heyrovsky step (kH, k-H), and 

rate constant for the Tafel step (KT, K-T). The simulation was able to predict the overpotential at 10 mA/cm2, 

η10 recorded at approximately 780, 585, 480, 350, 310, and 300 mV for B, Mo, Mo2B, α-MoB, β-MoB, and 

MoB2 respectively. Boron exhibits slower reaction kinetics and higher energy requirements, making it less 

efficient as an electrocatalyst compared to Mo, Mo2B, α-MoB, β-MoB, and MoB2. Based on these findings, 

the adopted mathematical model shows good coherency to the experimental findings. Given the importance 

of designing an electrocatalyst for HER, this work sheds light on the mathematical approach to understanding 

the VHT steps. The simulation work provides a good numerical estimation of the characteristics of the 

electrocatalyst for HER. 
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