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 The distortion observed in fisheye cameras has proven to be a persistent 

challenge for numerous state-of-the-art object detection algorithms, 

instigating the development of various techniques aimed at mitigating this 

issue. This study aims to evaluate various methods for mitigating distortion 

in fisheye camera footage and their impact on video object detection 

accuracy and speed. Using Python, OpenCV, and third-party libraries, the 

researchers modified and optimized said methods for video input and created 

a framework for running and testing different distortion correction methods 

and object detection algorithm configurations. Through experimentation 

with different datasets, the study found that undistorting the image using the 

longitude-latitude correction with the YOLOv3 object detector provided the 

best results in terms of accuracy (PASCAL: 68.9%, VOC-360: 75.1%, 

WEPDTOF: 15.9%) and speed (38 FPS across all test sets) for fisheye 

footage. After measuring the results to determine the best configuration for 

video object detection, the researchers also developed a desktop application 

that incorporates these methods and provides real-time object detection and 

tracking functions. The study provides a foundation for improving the 

accuracy and speed of fisheye camera setups, and its findings can be 

valuable for researchers and practitioners working in this field. 
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1. INTRODUCTION 

This study focuses on the performance evaluation and integration of distortion mitigation methods 

for fisheye video object detection. Many establishments and public areas today employ a combination of 

regular and fish-eye cameras for surveillance and monitoring. While established algorithms and models excel 

in object detection using standard cameras, they face significant challenges when applied to fish-eye footage 

due to the inherent distortion caused by the wider lens and its increased field of view [1]. 

To address these challenges and enhance the accuracy and speed of object detection in fisheye 

camera setups, this research endeavors to systematically evaluate various distortion mitigation techniques. 

The aim is not only to identify the most effective approach but also to provide valuable insights for 

researchers and practitioners in this field. Moreover, beyond performance evaluation, this study explores the 

practical implementation of its findings in a real-time monitoring system that leverages fish-eye cameras. 

Such a system holds promise for a wide range of applications, including enhanced surveillance in public 

spaces, improved navigation in autonomous vehicles, and more accurate object tracking in various industries. 

This paper will delve into its potential benefits and applications in further detail. 

https://creativecommons.org/licenses/by-sa/4.0/
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Hemispherical lenses are increasingly favored due to their ability to capture panoramic shots, 

providing an extended field of view. However, such shots necessitate compensation for lens distortion 

through computer vision techniques. This distortion correction can take place before, during, or after object 

detection and tracking, with each approach offering distinct advantages and drawbacks in terms of speed, 

accuracy, preparation, system requirements, and compatibility. The complexity of these setups escalates as 

various combinations are explored to attain optimal outcomes. 

Unlike conventional perspective cameras, single-fisheye cameras offer wider coverage at a lower 

cost. When mounted on ceilings, these cameras also reduce object occlusion [2]. Their popularity in 

expansive areas like parking lots, airports, malls, and warehouses is bolstered by the potential to enhance 

security. Their extensive field of view has implications beyond surveillance, benefiting vehicle safety 

systems, robot navigation, drones, virtual tours, endoscopy, and various other applications [3]-[11]. Despite 

inherent distortions, the trade-off between an improved field of view and distortion remains favorable, with 

fisheye cameras excelling in cost-effectiveness, compactness, and panoramic imaging. This trade-off is 

especially advantageous in constrained spaces, making fisheye cameras a preferred choice for a variety of 

scenarios. 

The ubiquity of monitoring applications relies heavily on effective object detection, segmentation, 

and tracking, particularly in scenarios demanding heightened security and crisis management. While 

conventional cameras fulfill this role to a great extent, the utilization of fisheye cameras in security systems, 

owing to their wide-angle perspective, introduces unique challenges. Unlike their traditional counterparts, 

fisheye cameras lack standardized hardware optimization and necessitate substantial preprocessing. This 

distinct nature mandates careful consideration of setup parameters to ensure compatibility with a variety of 

detection algorithms. One of the primary obstacles lies in seamlessly integrating perspective and fisheye 

cameras within existing multi-camera systems. The inherent distortion in fisheye footage demands additional 

processing power to achieve detection accuracy and speed comparable to conventional images. Bridging the 

gap between perspective and fisheye setups is pivotal for harnessing the full potential of advanced detection 

techniques in diverse surveillance scenarios. 

 

 

2. LITERATURE REVIEW 

2.1.  Object detection for perspective images 

The domain of computer vision has extensively explored object detection in perspective images. 

Indulkar's [12] work showcases this, utilizing the YOLOv4 algorithm for social distancing and face mask 

detection, achieving a notable mean average precision (mAP) of around 90%. However, transposing these 

techniques to fisheye cameras presents unique hurdles. An example study using Faster-RCNN ResNet101 

and YOLOv2 models for crowded restaurant detection reveals accuracy challenges in fisheye images, even 

with advanced techniques like inverse mapping and Supersampling [1]. Faster-RCNN outperformed 

YOLOv2, achieving a 76% detection rate compared to 61%, highlighting the need for precision 

enhancements [1]. While pursuing fisheye-specific strategies introduces computational complexities, it also 

opens avenues to optimize setups for a balance between accuracy and computational load, thereby advancing 

state-of-the-art detection algorithms. 

 

2.2.  Object detectors and datasets for fisheye 

The adaptation of object detectors for fisheye imagery entails innovative modifications to tackle 

inherent challenges. To address distortions affecting smaller object detection, methods prioritize the 

preservation of image features. Notably, an altered YOLOv3 network, employing up-sampling and 

concatenation, elevates detection accuracy by up to 89.75% for cars and 87.23% for pedestrians [13]. 

Rotation-aware people detection (RAPiD) and anchor-free rotation-aware people detection (ARPD) 

networks, integrating rotation-aware functions, achieve remarkable accuracies of up to 97% [14]. 

Additionally, the FisheyeDet algorithm introduces distortion-shape matching, incorporating irregular 

quadrilateral bounding boxes, as shown in Figure 1, to enhance accuracy by 74.87% compared to YOLOv3’s 

68.92% [15]. While excelling in fisheye image precision, these models lag in model diversity, dataset 

availability, and hardware optimization compared to their perspective counterparts. 

Complementing algorithmic strides, tailored datasets for fisheye images advance the field. 

Noteworthy is the in-the-wild events for people detection and tracking from overhead fisheye cameras 

(WEPDTOF) dataset, which adapts bounding boxes to counter fisheye's rotational distortion [16]. Given the 

limited fisheye data, synthetic datasets are created through image processing. The VOC-360 dataset leverages 

PASCAL VOC 2012, employing equidistant projection-based transformation for fisheye-specific 

annotations, as shown in Figure 2 [17]. 
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Figure 1. Distortion shape matching intersection over 

union (IoU) visualization and example [2] 

Figure 2. Sample VOC-360 image and 

segmentation mask [3] 

 

 

2.3.  Distortion correction methods 

Various methods have emerged to address the challenge of fisheye object detection through 

distortion correction, encompassing techniques aimed at rectifying distortions prior to object detection. The 

longitude-latitude coordinate correction is employed in (1) for horizontal pixel correction, coupled with a 

straightforward vertical adjustment in (2). Here, 𝑂(𝑋𝑂, 𝑌𝑂)  represents the center of the image, 𝐴(x, y) 

denotes the original distorted point, and 𝐵(u, v) represents the coordinates of the corrected point, 

respectively. Additionally, in this context, 𝑅 denotes the distance between point 𝑂 and point 𝐴 [18]. 

 
𝑥−𝑋𝑂

𝑢−𝑋𝑂
=

√𝑅2−(𝑦−𝑌𝑂)2

𝑅
 (1) 

 

𝑣 = 𝑦 (2) 

 

The spherical perspective projection correction, with a defined radius (𝑟), mirrors the longitude-

latitude method for accurate point correction as shown in (3) and (4), where 𝑂(𝑋𝑂 , 𝑌𝑂) represents the center 

of the fish-eye image, 𝑃(𝑋𝑃, 𝑌𝑃) is the point in the corrected image, and point 𝑚(𝑋𝑚, 𝑌𝑚) is the distorted 

point in the fish-eye image [18]. 

 

𝑋𝑃 =
𝑑(𝑋𝑚−𝑋𝑂)

√𝑟2−(𝑋𝑚−𝑋𝑂)2−(𝑌𝑚−𝑌𝑂)2
 (3) 

 

𝑌𝑃 =
𝑑(𝑌𝑚−𝑌𝑂)

√𝑟2−(𝑋𝑚−𝑋𝑂)2−(𝑌𝑚−𝑌𝑂)2
 (4) 

 

Radial and tangential distortion correction, incorporated in OpenCV, employs a quintic polynomial 

for precise correction [19]. This function involves nine correction parameters (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑎1, 𝑎2, 𝑎3, 𝑎4) 

that need to be constrained after setting a viewing angle (𝜃). The radial (𝜙′) and tangential (𝜃′) deformation 

formulas are provided in (5), (6), and (7) to correct the distortion. In these equations, 𝜙′ is a function of the 

radius (𝑟), which is the distance from the center of the fisheye image. Additionally, 𝜃′ is a function of 𝜃, 

representing the viewing angle. Parameter 𝑎5 is calculated as shown in (7). These equations collectively 

describe the radial and tangential distortion correction process [20]. 

 

𝜙′ = 𝑐1𝑟 + 𝑐2𝑟2 + 𝑐3𝑟3 + 𝑐4𝑟4 + 𝑐5𝑟5 (5) 

 

𝜃′ = 𝑎1𝜃 + 𝑎2𝜃2 + 𝑎3𝜃3 + 𝑎4𝜃4 + 𝑎5𝜃5 (6) 

 

𝑎5 =
(1−𝑎1−2𝜋𝑎2−4𝜋2𝑎3−8𝜋3𝑎4)

16𝜋4  (7) 

 

Generating panoramic images from fisheye footage introduces innovative solutions, including 

methods that utilize a coordinate conversion formula to remap each pixel, resulting in the equirectangular 

coordinates of a panorama [21]. The automation of distortion correction employs various methods, with 

template calibration being a prevalent approach. This technique, exemplified by chessboard and elliptical 

templates, automates the acquisition of correction parameters through image detection and corner 

identification [3], [18]. More complex scenarios are addressed using intricate algorithms involving neural 

networks or complex models [18]. 
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Image reconstruction techniques are also employed, such as the fisheye GAN (FEGAN)-based 

fisheye image rectification network with a flow prediction and warping module [22]. An alternative approach 

by Beijing Jiaotong University utilizes image flow for separate structure correction and content 

reconstruction, enhancing image quality and accuracy [23]. These automated methods encompass diverse 

correction approaches and algorithms, contributing to enhanced image fidelity and accuracy. Furthermore, all 

the discussed correction methods are invaluable for synthetic dataset generation, enabling artificial image 

distortion and congruent bounding box adjustment. 

 

2.4.  Region splitting and composite images 

This section delves into innovative approaches for addressing distortion in fisheye images by 

prioritizing representation over complete correction. These strategies involve different coordinate systems, 

image splitting, and projection techniques. For instance, composite images generated through equidistant 

mapping enable region-specific detectors and subsequent synthesis of detection results [24]. Techniques like 

cubic box mapping and icosahedral remapping offer unique perspectives, aiming for minimal distortion 

through multi-plane or spherical projections [25], [26]. These methods contribute to the development of 

versatile video monitoring systems, where the trade-off between correction and adaptability plays a crucial 

role. The combination of these techniques and the exploration of various approaches will guide the balance 

between accurate detection and computational efficiency while accommodating different camera setups and 

environments. 

 

2.5.  Intended output of the study 

To address the existing gap, this research highlights the limitations of confined testing of distortion 

mitigation methods within their specific domains. To bridge this void, the study pioneers the development of 

an integrated framework that combines these techniques, assessing their collective impact on both speed and 

accuracy. Central to this exploration is the creation of a real-time monitoring system using a fish-eye camera, 

which is challenged by image distortion that negatively affects the precision of object detection algorithms. 

As a result, the study's objectives encompass the implementation of various distortion-handling methods, 

utilizing Python, OpenCV, and third-party libraries. These methods are then applied to an object detection 

algorithm, enabling a comprehensive assessment of accuracy and speed outcomes to identify the optimal 

configuration for video object detection. An additional aim is the development of a desktop application that 

not only visualizes the rectified feed but also incorporates real-time object detection and tracking 

functionalities. Through this collaborative effort, the research aims to establish a robust foundation for 

enhancing the efficiency and precision of fisheye camera setups, providing valuable insights to researchers 

and practitioners in the field. 

 

 

3. METHODOLOGY 

3.1.  Theoretical framework 

Addressing fisheye distortion involves three key areas: preprocessing, training, and the detection 

algorithm itself. These areas offer numerous configurations to mitigate distortion effects. In the preprocessing 

stage, options include remapped images, distortion correction, or the generation of composite images. The 

training step encompasses choices between perspective datasets, real fisheye datasets, or synthetically 

distorted datasets. Algorithm selection ranges from state-of-the-art perspective models to custom-made 

fisheye detection models. Exploring various combinations of these options is crucial to identifying the 

optimal approach for fisheye object detection. 

Different areas of distortion mitigation require distinct evaluation methodologies. In the context of 

fisheye object detectors, we measure accuracy using the mAP metric, while speed is quantified in terms of 

frames per second (FPS) or inference time. These metrics are then compared with the results obtained by 

state-of-the-art or fisheye detectors [15]. The computation of mAP involves several key components, 

including the confusion matrix, recall, IoU, and precision. 

The confusion matrix, as illustrated in Figure 3, consists of four essential attributes. It defines true 

positives (TP) as instances where the model correctly predicts a label matching the ground truth, while true 

negatives (TN) are situations where both the prediction and the ground truth are absent. False positives (FP) 

occur when the model predicts an incorrect label, and false negatives (FN) emerge when the model fails to 

detect an object present in the ground truth. For object detectors, IoU assesses the bounding box overlap 

between predictions and the ground truth. This concept significantly impacts the outcome of the confusion 

matrix, as shown in Figure 4 and formulated in (8). Precision and recall, as outlined in (9) and (10), 

respectively, are then calculated [27]. 
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Figure 3. Confusion matrix Figure 4. The IoU 

 

 

IoU =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (8) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 

Precision quantifies the accuracy of the model's positive predictions, while recall measures the 

model's ability to correctly identify positives within the image. To calculate the average precision (AP), 

precision-recall curves are plotted by varying IoU thresholds. The AP contributes to the computation of the 

mAP using (11) and following the block diagram in Figure 5 [27]. 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1  (11) 

 

 

 
 

Figure 5. Average precision block diagram 

 

 

For distortion correction and remapping techniques, runtime speed measurement is complemented 

by qualitative methods or reprojection error calculations, which evaluate the effectiveness of the correction 

[18], [19], [28]. In neural network-based distortion correction, image similarity is assessed through peak 

signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) scores. These metrics measure 

the resemblance of images against original perspective and synthetic fisheye images within synthetic datasets 

[29]. Evaluating correction results against ground truth perspective images also gauges network effectiveness 

[22]. While reprojection error or similarity scores provide insights into image clarity, some methodologies 

stop at this stage. Hence, integrating these methods with object detection algorithms reveals their impact on 

overall mAP enhancement. 

The study categorizes the myriad methods into three main segments: input preprocessing, training 

datasets, and object detection, with an optional fourth segment for post-processing composite images. 

Evaluations involve combinations of preprocessing, object detection, and training set choices. For example, 

one configuration includes fisheye input undergoing a latitude-longitude correction, followed by training 

YOLOv3 on the VOC-360 dataset. Another approach divides fisheye images into tangent images, which are 

then processed by the RAPiD algorithm, trained on a mixed dataset of perspective and fisheye images. This 

structured framework, shown in Figure 6, facilitates the assessment and comparison of distortion correction 

methods, synthetic datasets, and mapping techniques in conjunction with state-of-the-art and fisheye object 

detection algorithms. 

 



                ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 13, No. 3, September 2024: 743-758 

748 

 
 

Figure 6. Proposed framework methodology 

 

 

3.2.  Distortion mitigation 

3.2.1. Implementation 

The study is conducted within the Python environment, leveraging essential packages for the 

development process. Notably, OpenCV is utilized for image processing functions, PyTorch facilitates neural 

network and algorithm implementation, and the spherical distortion package is harnessed for generating 

tangent images [19], [30], [31]. The implementation follows a structured approach, encompassing the 

integration of distortion mitigation methods with object detection algorithms. Figure 7 provides an overview 

of the methodology, illustrating the key steps. 
 

 

 
 

Figure 7. Methodology block diagram 
 

 

In pursuit of the optimal combination, the study undertakes a comprehensive exploration of diverse 

distortion mitigation methods, encompassing longitude-latitude, perspective, cylindrical, panorama, and 

radial-tangential remapping techniques. Furthermore, the research delves into distortion correction neural 

networks such as FEGAN and progressively complementary network (PCN), as well as the tangent image 

method. 

When dealing with video footage or streams, where fixed pixel resolution and camera parameters 

are expected, the system strategically enhances computational efficiency by pre-generating fixed maps of 

new x and y coordinates during initialization. These maps are then harnessed in conjunction with OpenCV's 

remap function to effectively implement distortion correction [19]. For popular techniques like longitude-

latitude, perspective, and cylindrical projection, the planar grid methodology is employed for map generation. 

In the case of radial and tangential distortion correction, the integration leverages OpenCV's in-built 

functions coupled with default camera parameters [19], [32], [33]. Panorama generation takes a modified 

formulaic approach for map generation, utilizing OpenCV's remap function for seamless conversion [21], 

[34]. Distortion correction through neural networks such as FEGAN and PCN, alongside the tangent image 

method, necessitates framework adaptation for video input, as well as adjustments to postprocessing 

functions to ensure compatibility with YOLOv3 and RAPiD's bounding box annotations. 
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3.2.2. Integration 

After implementing and adapting the distortion mitigation methods for video input, the study 

seamlessly integrates them with the YOLOv3 and RAPiD object detection algorithms for comprehensive 

testing and evaluation. To facilitate thorough examination, a simulated fisheye module is introduced, 

leveraging VOC-360’s formula to illustrate the process using a regular camera. Notably, the fisheye video 

input undergoes panorama generation prior to tangent image creation, as the panorama image serves as a 

prerequisite input. These methods are harmoniously integrated with object detection algorithms, 

encompassing 1 checkpoint of YOLOv3 and 3 checkpoints of RAPiD, each utilizing distinct datasets: 

perspective, fisheye, and mixed. This integration results in a matrix of 36 distinct combinations, facilitating 

meticulous evaluation and testing. A comprehensive program flow diagram detailing the methodology is 

depicted in Figure 8. 

 

 

 
 

Figure 8. Program flow diagram 

 

 

3.3.  Training and evaluation 

Training is conducted using both the PASCAL VOC dataset and its fisheye-augmented counterpart, 

VOC-360, offering access to both perspective and fisheye images. YOLOv3 is exclusively trained on the 

PASCAL VOC dataset, while RAPiD undergoes training using variations of both the PASCAL VOC and 

VOC-360 datasets. Evaluation involves employing the PASCAL VOC test set, VOC-360 test set, and the 

WEPDTOF dataset, details of which are provided in Table 1. Given the focus on dataset performance 

differences, 20,000 training iterations are executed for each configuration. Distortion mitigation methods 

undergo testing using different test sets, with accuracy quantified using AP0.5 to ensure consistency with the 

evaluation metric of the PASCAL VOC dataset. 
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Table 1. Datasets for evaluation 
Test set Total images Total labels Description 

PASCAL VOC 569 1043 Regular image dataset 
VOC 360 651 1111 PASCAL VOC synthetic dataset 

WEPDTOF 10463 93364 Real fisheye dataset with rotation angle 

 

 

To account for distortion correction's influence on bounding boxes, a remapping step is applied to 

bounding boxes before evaluation. In this study, remapping involves utilizing bounding box edges and a 

reverse function to ensure accurate evaluation. Speed evaluation encompasses pre-process time (𝑡1), 

inference time (𝑡2), post-process time (𝑡3), and frames per second (𝐹𝑃𝑆), calculated using (12). The 

comprehensive evaluation entails ranking combinations based on speed, accuracy, and a combined aggregate. 

This evaluation approach incorporates a weighted scoring mechanism, with a specific emphasis on relevant 

dataset performance, as illustrated by (13) and (14). 
 

𝐹𝑃𝑆 =
1

𝑡1+𝑡2+𝑡3
 (12) 

 

𝑆 = [(𝐴𝑃 × 0.5) + [𝑀𝐼𝑁(𝐹𝑃𝑆, 30)/30 × 0.5]] × 100% (13) 
 

𝑆𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = [0.7(𝑆𝑊𝐸𝑃𝐷𝑇𝑂𝐹) + 0.2(𝑆𝑉𝑂𝐶360) + 0.1(𝑆𝑃𝐴𝑆𝐶𝐴𝐿)] × 100% (14) 
 

The methodology presents a systematic and rigorous framework, systematically exploring diverse 

combinations of distortion correction methods and algorithm setups. A threshold recommendation score of 

61.333 is established, derived by substituting AP values of 70 for PASCAL and VOC-360, 50 for 

WEPDTOF, and 20 for all test set FPS into (13), and using (14) to obtain the final value. This score aids in 

determining optimal strategies for fisheye object detection, striking a balance between speed and accuracy 

considerations.  

 

 

4. RESULTS AND DISCUSSION 

The evaluation process entailed assessing the accuracy and speed of each combination using the 

PASCAL VOC test set, VOC-360 test set, and the WEPDTOF dataset. Combinations were classified 

according to their speed, accuracy, and overall performance. This process facilitated the identification of 

optimal combinations within each category and dataset. This chapter presents the evaluation outcomes, 

contrasting the highest-performing combinations across different datasets and categories. Furthermore, the 

strengths, weaknesses, and potential real-world applications of each combination are thoroughly discussed. 

 

4.1.  Overall results 

The results, presented in Table 2, reveal variations in optimal combinations across datasets. Notably, 

the no correction and YOLOv3 combination exhibited the highest accuracy on the PASCAL test set, while 

the pairing of FEGAN and YOLOv3 outperformed others on the VOC-360 test set, which encompasses 

synthetic fisheye images. In contrast, the WEPDTOF dataset, featuring top-view angle fisheye images, 

demonstrated lower accuracy across all combinations due to variations in object appearance and perspective 

compared to the training sets. 

 

 

Table 2. The best combination results in accuracy, speed, and score 

Test set 
Accuracy Speed Score 

Combination AP0.5 Combination FPS Combination Score 

PASCAL 
VOC 

No Correction + YOLOv3-
PASCAL 

0.776 Panorama + YOLOv3-
PASCAL 

17.331 No Correction + YOLOv3-
PASCAL 

50.662 

VOC-360 FEGAN + YOLOv3-

PASCAL 

0.769 Panorama + YOLOv3-

PASCAL 

17.391 No Correction + YOLOv3-

PASCAL 

49.723 

WEPDTOF Longitude-Latitude + 

YOLOv3-PASCAL 

0.159 Panorama + YOLOv3-

PASCAL 

17.073 Panorama + YOLOv3-

PASCAL 

30.370 

 

 

In terms of speed, the Panorama and YOLOv3 combination consistently achieved the highest frames 

per second (FPS) across all datasets. This outcome can be attributed to the elongated shape of panorama 

images, aligning well with YOLOv3's input specifications and thus leading to swifter processing. Notably, on 

the WEPDTOF dataset, the longitude-latitude and YOLOv3 combination attained the highest accuracy with 
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an AP0.5 of 0.159. However, its score was surpassed by the panorama and YOLOv3 combination with a 

score of 30.370, underscoring the significant influence of speed on overall object detection performance. 

Subsequent sections delve into comprehensive analyses of results and discussions for each dataset: 

PASCAL VOC, VOC-360, and WEPDTOF. These sections meticulously scrutinize combinations of 

distortion mitigation methods, considering both accuracy and speed. Furthermore, the study explores how 

each method impacts dataset performance and sheds light on potential sources of performance discrepancies. 

 

4.2.  Test set results 

4.2.1. PASCAL VOC test set 

Table 3 displays the scores for each individual combination, while Table 4 showcases the top 10 

scores from the PASCAL test set alongside their corresponding AP0.5 and FPS values. Notably, the 

YOLOv3-PASCAL algorithm occupies the first eight positions, aligning with expectations given the dataset's 

characteristics. However, RAPiD-MIXED and RAPiD-VOC-360 combinations emerge as standouts among 

RAPiD variants, securing the 9th and 10th spots, respectively. In contrast, the panorama correction method, 

despite its higher speed, occupies the 8th position due to diminished accuracy, thus illustrating the inherent 

trade-off between speed and precision in this approach. 

Discrepancies in performance between RAPiD and YOLOv3 on the PASCAL test set may stem 

from dataset characteristics. RAPiD's flexible bounding box strategy might yield predictions that are less 

aligned with the ground truth, especially when ground truth bounding boxes maintain a fixed 0-degree 

orientation. Conversely, YOLOv3's fixed grid system could be better suited for this dataset, consistently 

predicting rectangular bounding boxes that closely match the ground truth. 

The top three performers in terms of accuracy are YOLOv3-PASCAL without correction, YOLOv3-

PASCAL with cylindrical correction, and YOLOv3-PASCAL with longitude-latitude correction, as depicted 

in Table 4. Distortion correction methods could introduce reverse distortion, leading to relatively lower 

accuracy compared to the no-correction approach. However, the cylindrical and longitude-latitude methods 

exhibit relatively favorable accuracy, suggesting they might introduce less reverse distortion or better 

preserve image details and shape, thus enhancing object detection accuracy. 
 

 

Table 3. PASCAL test set score results 

Correction 
Algorithm 

Avg. correction score 
YOLOv3-PASCAL RAPiD-PASCAL RAPiD-VOC360 RAPiD-MIXED 

No Correction 50.662 17.603 17.723 17.827 25.954 

Longitude-Latitude 45.992 14.752 14.989 15.474 22.802 

Perspective 37.481 13.254 13.351 13.641 19.431 
Cylindrical 47.792 15.244 15.826 15.717 23.645 

Radial + Tangential 34.232 9.619 9.487 10.060 15.850 

FEGAN 38.262 9.792 9.518 9.949 16.880 
PCN 39.375 9.879 10.730 10.689 17.668 

Panorama 32.355 11.672 11.869 11.788 16.921 

Tangent Images 7.409 5.508 5.585 5.598 6.025 
Avg. Algorithm Score 37.062 11.925 12.120 12.305  

 

 

Table 4. Top 10 scores from PASCAL test set 
Rank Correction Algorithm AP0.5 FPS Score 

1 No Correction YOLOv3-PASCAL 0.776 7.117 50.662 
2 Cylindrical YOLOv3-PASCAL 0.725 6.925 47.792 

3 Longitude-Latitude YOLOv3-PASCAL 0.689 6.925 45.992 

4 PCN YOLOv3-PASCAL 0.644 4.305 39.375 
5 FEGAN YOLOv3-PASCAL 0.634 3.937 38.262 

6 Perspective YOLOv3-PASCAL 0.517 6.978 37.481 

7 Radial + Tangential YOLOv3-PASCAL 0.508 5.299 34.232 
8 Panorama YOLOv3-PASCAL 0.069 17.331 32.355 

9 No Correction RAPiD-MIXED 0.129 6.826 17.827 
10 No Correction RAPiD-VOC360 0.126 6.854 17.723 

 

 

Qualitative insights from Figure 9 reveal that while YOLOv3-PASCAL generally maintains 

consistent object detection, there are instances where all YOLO combinations struggle to detect objects that 

RAPiD combinations successfully identify. This divergence might result from YOLO's reliance on a fixed 

grid system, which could be less effective in certain image types or object contexts as shown in Figure 9(a). 

In contrast, RAPiD's adaptable bounding box approach might confer an advantage in accommodating diverse 

image and object scenarios, despite its relatively lower overall accuracy score as shown in Figure 9(b). 
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(a) (b) 

  

Figure 9. Qualitative results of different algorithms for PASCAL test set of (a) No Correction + YOLOv3-

PASCAL and (b) No Correction + RAPiD-MIXED 

 

 

4.2.2. VOC-360 test set results 

Like the previous section, two tables, namely Tables 5 and 6, present the scores for each individual 

combination and the top 10 combinations from the VOC-360 test set, accompanied by their corresponding AP0.5 

and FPS values. Within the domain of speed, the panorama + YOLOv3 combination maintains its dominance. 

However, this section contextualizes the significance of speed within the score. Despite FEGAN + YOLOv3 

achieving a remarkable accuracy of 76.9%, its score is tempered by its slower speed, which is only slightly more 

than half of the leading combination's speed: no correction + YOLOv3. The no correction + YOLOv3 combination 

claims the top position in the score, showcasing its adept balance between speed and accuracy for this dataset. 

In terms of accuracy, the leading combinations are FEGAN with YOLOv3-PASCAL, No Correction 

with YOLOv3-PASCAL, and longitude-latitude with YOLOv3-PASCAL, as depicted in Table 6. 

Significantly, the YOLOv3-PASCAL algorithm, which demonstrated excellence on the PASCAL test set, 

consistently exhibits robust accuracy on the VOC-360 test set, highlighting its versatility across diverse 

datasets. Notably, FEGAN, a generative adversarial network for image enhancement, pairs effectively with 

YOLOv3-PASCAL, suggesting the potential of image enhancement techniques to enhance object detection. 

The disparity in accuracy between corrected and uncorrected images has reduced for the VOC-360 test set 

compared to the PASCAL test set. While only the no correction and cylindrical methods achieved an 

accuracy of 70% or higher on the PASCAL test set, the FEGAN, no correction, longitude-latitude, 

cylindrical, and radial + tangential methods attained the same threshold on the VOC-360 dataset. 
 

 

Table 5. VOC-360 test set score results 

Correction 
Algorithm 

Avg. correction score 
YOLOv3-PASCAL RAPiD-PASCAL RAPiD-VOC360 RAPiD-MIXED 

No Correction 49.723 13.484 13.942 13.892 22.760 

Longitude-Latitude 49.100 12.758 13.023 13.039 21.980 
Perspective 46.155 12.483 12.633 12.619 20.973 

Cylindrical 48.032 12.732 13.052 13.110 21.731 

Radial + Tangential 44.748 8.868 9.248 9.156 18.005 
FEGAN 44.978 8.435 8.439 8.715 17.642 

PCN 34.190 8.587 9.040 9.024 15.210 

Panorama 32.356 11.400 11.416 11.400 16.643 
Tangent Images 8.691 5.508 5.898 5.565 6.415 

Avg. Algorithm Score 39.775 10.473 10.743 10.724  
 

 

Table 6. Top 10 scores from the VOC-360 test set 
Rank Correction Algorithm AP0.5 FPS Score 

1 No Correction YOLOv3-PASCAL 0.755 7.184 49.723 
2 Longitude-Latitude YOLOv3-PASCAL 0.751 6.930 49.100 

3 Cylindrical YOLOv3-PASCAL 0.729 6.949 48.032 

4 Perspective YOLOv3-PASCAL 0.690 6.993 46.155 
5 FEGAN YOLOv3-PASCAL 0.769 3.917 44.978 

6 Radial + Tangential YOLOv3-PASCAL 0.708 5.609 44.748 

7 PCN YOLOv3-PASCAL 0.540 4.314 34.190 
8 Panorama YOLOv3-PASCAL 0.067 17.391 32.356 

9 No Correction RAPiD-VOC360 0.051 6.835 13.942 

10 No Correction RAPiD-MIXED 0.050 6.835 13.892 

 
 

Qualitative insights into the VOC-360 test set reveal challenges in detecting objects within synthetic 

fisheye images compared to regular images in the PASCAL test set, particularly at the image edges with 
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higher distortion. Figure 10 illustrates that RAPiD-based combinations can detect some edge objects that 

YOLOv3 combinations miss, Figure 10(a) shows YOLOv3-PASCAL, Figure 10(b) shows no correction + 

RAPiD-MIXED, and Figure 10(c) shows FEGAN + RAPiD-MIXED. This suggests RAPiD's potential 

robustness to fisheye distortion in specific scenarios for this dataset. 
 

 

   
(a) (b) (c) 

 

Figure 10. Qualitative results of different algorithms for VOC-360 test set of (a) YOLOv3-PASCAL, (b) no 

correction + RAPiD-MIXED, and (c) FEGAN + RAPiD-MIXED 

 

 

4.2.3. WEPDTOF dataset results 

The extensive WEPDTOF dataset is segmented into 16 sections for evaluation, with Table 7 

delineating superior combinations for each section across accuracy, speed, and score. Notably, accuracy 

varies across different sections of the WEPDTOF dataset. Longitude-latitude correction with YOLOv3 excels 

in WEPDTOF-CS and WEPDTOF-CC but lags in WEPDTOF-SG. Exceptional results are observed with 

cylindrical correction and YOLOv3 in WEPDTOF-JS2, while no correction with YOLOv3 performs well in 

sections like WEPDTOF-K and WEPDTOF-W. 

While YOLOv3 consistently outperforms RAPiD across datasets, most top-performing 

combinations involve correction methods or RAPiD, emphasizing their potential for enhancing detection 

accuracy in complex fisheye datasets like WEPDTOF. Interestingly, instances favoring no correction + 

YOLOv3 suggest the effectiveness of simpler approaches in specific scenarios. 
 
 

Table 7. WEPDTOF breakdown of best combination results for accuracy, speed, and score 

Test Set 
Accuracy Speed Score 

Combination AP 0.5 Combination FPS Combination Score 

WEPDTOF-CC Longitude-Latitude + 
YOLOv3-PASCAL 

0.055 Panorama + YOLOv3-
PASCAL 

17.036 Panorama + YOLOv3-
PASCAL 

28.493 

WEPDTOF-CS Longitude-Latitude + 

YOLOv3-PASCAL 

0.301 Panorama + YOLOv3-

PASCAL 

17.452 Panorama + YOLOv3-

PASCAL 

35.137 

WEPDTOF-ES No Correction + RAPiD-

MIXED 

0.388 Panorama + YOLOv3-

PASCAL 

17.483 Panorama + YOLOv3-

PASCAL 

40.638 

WEPDTOF-EX No Correction + 
YOLOv3-PASCAL 

0.147 Panorama + YOLOv3-
PASCAL 

17.271 Panorama + YOLOv3-
PASCAL 

28.785 

WEPDTOF-EXS No Correction + 

YOLOv3-PASCAL 

0.079 Panorama + YOLOv3-

PASCAL 

17.241 Panorama + YOLOv3-

PASCAL 

28.786 

WEPDTOF-IO Perspective + YOLOv3-

PASCAL 

0.204 Panorama + YOLOv3-

PASCAL 

17.331 Panorama + YOLOv3-

PASCAL 

30.285 

WEPDTOF-JS Cylindrical + YOLOv3-
PASCAL 

0.241 Panorama + YOLOv3-
PASCAL 

17.422 Panorama + YOLOv3-
PASCAL 

29.936 

WEPDTOF-JS2 Cylindrical + YOLOv3-

PASCAL 

0.528 Panorama + YOLOv3-

PASCAL 

17.331 Cylindrical + YOLOv3-

PASCAL 

37.315 

WEPDTOF-K No Correction + 

YOLOv3-PASCAL 

0.203 Panorama + YOLOv3-

PASCAL 

15.291 Panorama + YOLOv3-

PASCAL 

30.534 

WEPDTOF-LO Perspective + YOLOv3-
PASCAL 

0.070 Panorama + YOLOv3-
PASCAL 

17.452 Panorama + YOLOv3-
PASCAL 

29.087 

WEPDTOF-LO2 Perspective + YOLOv3-

PASCAL 

0.193 Panorama + YOLOv3-

PASCAL 

17.452 Panorama + YOLOv3-

PASCAL 

29.337 

WEPDTOF-PS Perspective + RAPiD-

MIXED 

0.125 Panorama + YOLOv3-

PASCAL 

16.207 Panorama + YOLOv3-

PASCAL 

27.012 

WEPDTOF-RS Perspective + YOLOv3-
PASCAL 

0.279 Panorama + YOLOv3-
PASCAL 

16.722 Panorama + YOLOv3-
PASCAL 

28.571 

WEPDTOF-SG Longitude-Latitude + 

YOLOv3-PASCAL 

0.298 Panorama + YOLOv3-

PASCAL 

17.361 Panorama + YOLOv3-

PASCAL 

28.935 

WEPDTOF-TS Panorama + YOLOv3-

PASCAL 

0.070 Panorama + YOLOv3-

PASCAL 

17.391 Panorama + YOLOv3-

PASCAL 

32.486 

WEPDTOF-W No Correction + 

YOLOv3-PASCAL 

0.118 Panorama + YOLOv3-

PASCAL 

16.722 Panorama + YOLOv3-

PASCAL 

28.271 
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In terms of Table 8 scores and Table 9 rankings, panorama and YOLOv3 emerge as the 

frontrunners, propelled by their impressive speed. Similarly, longitude-latitude + YOLOv3, no correction + 

YOLOv3, and cylindrical + YOLOv3 all perform well, as shown in Figure 11. Correction methods and 

YOLOv3 are the dominant players among the top-performing combinations. Interestingly, RAPiD 

combinations, such as no correction + RAPiD, achieve competitive AP0.5 scores, albeit slightly lower than 

the leaders. The intriguing variation in RAPiD's performance across training datasets is noteworthy. Notably, 

no correction + RAPiD trained on PASCAL outperforms expectations, demonstrating its adaptability beyond 

its original dataset. However, these minor differences suggest that further experimentation is necessary to 

obtain definitive insights. 

 

 

Table 8. WEPDTOF dataset score results 

Correction 
Algorithm 

Avg. correction score 
YOLOv3-PASCAL RAPiD-PASCAL RAPiD-VOC360 RAPiD-MIXED 

No Correction 19.000 14.763 14.053 14.759 15.644 

Longitude-Latitude 19.287 13.247 13.292 13.286 14.778 

Perspective 17.599 14.009 12.639 13.588 14.459 

Cylindrical 18.887 12.878 12.372 13.039 14.294 
Radial + Tangential 10.475 10.001 9.700 10.501 10.169 

FEGAN 7.326 9.732 8.349 9.134 8.635 

PCN 7.054 7.474 7.203 7.244 7.244 
Panorama 30.370 12.143 11.623 11.763 16.475 

Tangent Images 7.970 5.780 5.997 5.806 6.388 

Avg. Algorithm Score 15.330 11.114 10.581 11.013  

 

 

Table 9. Top 10 Scores from WEPDTOF dataset 
Rank Correction Algorithm AP0.5 FPS Score 

1 Panorama YOLOv3-PASCAL 0.038 17.073 30.370 

2 Longitude-Latitude YOLOv3-PASCAL 0.159 6.676 19.287 
3 No Correction YOLOv3-PASCAL 0.142 6.971 19.000 

4 Cylindrical YOLOv3-PASCAL 0.150 6.766 18.887 

5 Perspective YOLOv3-PASCAL 0.125 6.789 17.599 
6 No Correction RAPiD-PASCAL 0.069 6.734 14.763 

7 No Correction RAPiD-MIXED 0.067 6.784 14.759 

8 No Correction RAPiD-VOC360 0.054 6.701 14.053 
9 Perspective RAPiD-PASCAL 0.062 6.519 14.009 

10 Perspective RAPiD-MIXED 0.052 6.576 13.588 

 

 

  
(a) (b) 

 

Figure 11. Qualitative results of different algorithms for WEPDTOF dataset of (a) longitude-latitude + 

YOLOv3-PASCAL and (b) FEGAN + RAPiD-PASCAL 

 

 

4.3.  Additional speed results 

The preceding section employed FPS results from a less powerful HP Pavilion computer, while this 

section explores improved speed outcomes achieved through tests on a more robust system, the Helios 300, 

equipped with an NVIDIA GeForce RTX 3060 GPU. The findings reveal significant speed enhancements 

across all methods, with more than half of them nearing the target of 30 FPS. The updated score tables, 

specifically Tables 10, 11, and 12, illustrate the enhanced performance resulting from increased FPS on the 
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Helios 300 setup. These improved scores correspond to higher rankings, emphasizing the pivotal role of 

robust computing in advancing fisheye object detection capabilities. 

A closer analysis of these tables highlights revised overall score rankings, now incorporating the 

new FPS values from the Helios 300. Remarkably, the top three combinations for the PASCAL and VOC-

360 datasets remain consistent, followed by a reshuffling of ranks that places greater emphasis on accuracy. 

Rankings for the WEPDTOF dataset experience a significant shift, except for ranks 3 and 8. 

 

 

Table 10. HP Pavilion vs. Helios 300 overall score from the PASCAL test set 

Rank Correction Algorithm AP0.5 
HP Pavilion Helios 300 

Δ Rank 
FPS Score FPS Score 

1 No Correction YOLOv3-PASCAL 0.776 7.117 50.662 43.860 88.800 - 

2 Cylindrical YOLOv3-PASCAL 0.725 6.925 47.792 38.168 86.250 - 
3 Longitude-Latitude YOLOv3-PASCAL 0.689 6.925 45.992 38.314 84.450 - 

4 Perspective YOLOv3-PASCAL 0.517 6.978 37.481 39.063 75.850 ↑ 

5 PCN YOLOv3-PASCAL 0.644 4.305 39.375 23.529 71.416 ↓ 
6 No Correction RAPiD-MIXED 0.129 6.826 17.827 37.175 56.450 ↑ 

7 No Correction RAPiD-VOC360 0.126 6.854 17.723 37.736 56.300 ↑ 

8 No Correction RAPiD-PASCAL 0.125 6.812 17.603 36.900 56.250 ↑ 
9 Cylindrical RAPiD-VOC360 0.094 6.676 15.826 33.557 54.700 ↑ 

10 Cylindrical RAPiD-MIXED 0.093 6.640 15.717 33.113 54.650 ↑ 

 

 

Table 11. HP Pavilion vs. Helios 300 overall score from VOC-360 test set 

Rank Correction Algorithm AP0.5 
HP Pavilion Helios 300 

Δ Rank 
FPS Score FPS Score 

1 No Correction YOLOv3-PASCAL 0.755 7.184 49.723 44.053 87.750 - 

2 Longitude-Latitude YOLOv3-PASCAL 0.751 6.930 49.100 38.314 87.550 - 
3 Cylindrical YOLOv3-PASCAL 0.729 6.949 48.032 38.610 86.450 - 

4 Perspective YOLOv3-PASCAL 0.690 6.993 46.155 39.683 84.500 - 

5 PCN YOLOv3-PASCAL 0.540 4.314 34.190 23.095 65.491 ↑ 
6 Radial + Tangential YOLOv3-PASCAL 0.708 5.609 44.748 15.361 61.002 - 

7 FEGAN YOLOv3-PASCAL 0.769 3.917 44.978 10.893 56.605 ↓ 

8 Panorama YOLOv3-PASCAL 0.067 17.391 32.356 72.464 53.370 - 
9 No Correction RAPiD-VOC360 0.051 6.835 13.942 37.175 52.550 - 

10 No Correction RAPiD-MIXED 0.050 6.835 13.892 37.175 52.500 - 

 

 

Table 12. HP Pavilion vs. Helios 300 overall score from the WEPDTOF dataset 

Rank Correction Algorithm AP0.5 
HP Pavilion Helios 300 

Δ Rank 
FPS Score FPS Score 

1 Longitude-Latitude YOLOv3-PASCAL 0.159 6.676 19.287 38.706 1 Longitude-Latitude 

2 Cylindrical YOLOv3-PASCAL 0.150 6.766 18.887 38.713 2 Cylindrical 

3 No Correction YOLOv3-PASCAL 0.142 6.971 19.000 40.696 3 No Correction 
4 Perspective YOLOv3-PASCAL 0.125 6.789 17.599 39.204 4 Perspective 

5 No Correction RAPiD-PASCAL 0.069 6.734 14.763 39.799 5 No Correction 
6 No Correction RAPiD-MIXED 0.067 6.784 14.759 39.546 6 No Correction 

7 Perspective RAPiD-PASCAL 0.062 6.519 14.009 34.601 7 Perspective 

8 No Correction RAPiD-VOC360 0.054 6.701 14.053 39.782 8 No Correction 
9 Perspective RAPiD-MIXED 0.052 6.576 13.588 34.735 9 Perspective 

10 Longitude-Latitude RAPiD-MIXED 0.046 6.550 13.286 34.393 10 Longitude-Latitude 

 

 

While the scores from the HP Pavilion system fell short of the 61.333 threshold, the notably 

improved FPS values on the Helios 300 system have enabled the top four PASCAL combinations to 

successfully surpass this threshold using (14), as outlined in Table 13. These configurations longitude-

latitude + YOLOv3-PASCAL, no correction + YOLOv3-PASCAL, Cylindrical + YOLOv3-PASCAL, and 

Perspective + YOLOv3-PASCAL are recommended for effective video object detection in challenging 

fisheye footage. 
 

 

Table 13. Recommended combinations for video object detection 
Rank Correction Algorithm Overall score 

1 Longitude-Latitude YOLOv3-PASCAL 66.667 

2 No Correction YOLOv3-PASCAL 66.597 
3 Cylindrical YOLOv3-PASCAL 66.242 

4 Perspective YOLOv3-PASCAL 63.884 
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4.4.  Correction breakdown and analysis  

Previous sections demonstrated significant improvements in object detection accuracy using 

correction methods and remapping techniques in fisheye datasets. However, these approaches exhibit 

potential for further refinement, as they encounter accuracy challenges in specific scenarios. For instance, the 

PCN correction method can lead to data loss at image edges, affecting IoU results by truncating object 

portions. Similarly, during panorama-to-fisheye conversion, the remapping process might unintentionally 

truncate bounding boxes, impacting detection accuracy as shown in Figure 12. 

 

 

 
 

Figure 12. PCN and panorama correction and remapping process breakdown 

 

 

Strategies aimed at effectively representing wrapped objects and exploring alternative remapping or 

distortion correction approaches could mitigate these issues. Another avenue for enhancement involves the 

generation of tangent images, which might result in fragmented bounding boxes for objects spanning 

segments, potentially affecting accuracy. Improved synthesis techniques to reconstruct original bounding 

boxes from fragments could alleviate this challenge. While correction methods and remapping offer 

substantial accuracy gains, addressing their limitations through refined processes could further elevate object 

detection accuracy in fisheye datasets. 

 

4.5.  The monitoring system  

In parallel with the experiments conducted, a dedicated monitoring system desktop application was 

meticulously crafted to serve as a versatile platform, utilizing a wide array of correction methods and 

algorithms. Built upon the foundation of the YOLOv3 detect script, this application leverages the framework 

established in this study, seamlessly integrating distinct correction methodologies, including the option to 

employ the RAPiD algorithm. 

With the capability to process images, videos, and camera inputs, including simulated fisheye data, 

this system provides a comprehensive environment for the evaluation, testing, and synergistic combination of 

the correction methods and algorithms investigated in this study. Significantly, it boasts the functionality to 

export corrected frames in various formats, streamlining the dissemination of results and insights while 

extending the capabilities of the existing YOLOv3 detect script. 

This application has convincingly demonstrated its utility in experimental contexts, offering 

adaptability and customization for the evaluation of a diverse array of correction methods and algorithms. Its 

versatility in handling disparate inputs, including fisheye simulation, substantially broadens the scope of 

testing scenarios, thereby enhancing the comprehensive assessment of distortion correction techniques. 

Moreover, it is noteworthy that the qualitative image results featured in this paper were generated by said 

system. 

 

 

5. CONCLUSION  

This study provides a comprehensive evaluation of distortion correction and object detection 

methods for fisheye camera setups. It identifies YOLOv3 as a leading performer in accuracy and speed for 
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undistorted footage, underlining its potential for real-world applications. Notably, the combination of 

longitude-latitude correction with the YOLOv3 object detector stands out as the best-performing 

configuration, achieving remarkable accuracy and surpassing the established threshold. 

The development of a versatile desktop application further highlights the practicality of these 

methods. Looking ahead, several promising avenues for future research emerge. Firstly, there is room for 

fine-tuning object detectors, exploring advanced remapping techniques, and optimizing code to further 

enhance the performance of these methods. Additionally, extending the study to encompass different camera 

models, the integration of multiple cameras, and experimentation in diverse scenarios is of great significance. 

This study, while primarily focused on improving object detection accuracy and speed, indirectly 

contributes to enhancing the overall capabilities of fisheye camera systems. Addressing the challenges of 

distortion correction, opens doors for researchers and practitioners to explore innovative solutions and 

applications, ultimately advancing the field of fisheye camera technology. 
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