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 Fire and smoke pose severe threats, causing damage to property and the 

environment and endangering lives. Traditional fire detection methods 

struggle with accuracy and speed, hindering real-time detection. Thus, this 

study introduces an improved fire and smoke detection approach utilizing 

the you only look once (YOLO)v8-based deep learning model. This work 

aims to enhance accuracy and speed, which are crucial for early fire 

detection. The methodology involves preprocessing a large dataset 

containing 5,700 images depicting fire and smoke scenarios. YOLOv8 has 

been trained and validated, outperforming some baseline models- YOLOv7, 

YOLOv5, ResNet-32, and MobileNet-v2 in the precision, recall, and mean 

average precision (mAP) metrics. The proposed method achieves 68.3% 

precision, 54.6% recall, 60.7% F1 score, and 57.3% mAP. Integrating 

YOLOv8 in fire and smoke detection systems can significantly improve 

response times, enhance the ability to mitigate fire outbreaks, and potentially 

save lives and property. This research advances fire detection systems and 

establishes a precedent for applying deep learning techniques to critical 

safety applications, pushing the boundaries of innovation in public safety.  
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1. INTRODUCTION 

The main smoke detection plays a vital role in mitigating the risks associated with fires, industrial 

accidents, and natural disasters. Traditional methods, which predominantly utilize heat or optical sensors, 

often suffer from delayed responses and limitations in accuracy, particularly in challenging environments 

where factors such as steam or airborne particles can lead to false alarms or missed detections. The advent of 

computer vision and machine learning (ML) technologies has paved the way for more sophisticated smoke 

detection systems. Among these, you only look once (YOLO)V8 [1] model stands out as a state-of-the-art 

solution for real-time detection. This model, part of the YOLO series, operates on a single-stage detection 

principle, offering substantial improvements in speed and accuracy over its predecessors and two-stage 

counterparts like faster region-based convolutional neural network (R-CNN) [2], [3], Mask R-CNN [4], and 

other segmentation-based techniques [5]–[7]. Notably, YOLOv8's deep architecture ensures robust 

performance across diverse conditions, including poor lighting and complex backgrounds. The evolution of 

YOLO models from versions 4 through 7 has been marked by significant enhancements in detection 

capabilities, processing speed, and user accessibility. Starting with YOLOv4 [8], which was notable for its 

https://creativecommons.org/licenses/by-sa/4.0/
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ability to identify a wide array of objects across a vast dataset, each subsequent version has introduced 

improvements in speed, accuracy, and functionality, culminating in YOLOv7's unparalleled efficiency [9] 

and YOLOv8's advanced features [10], like multi-object tracking and optimized performance for challenging 

detections. Research literature underscores the effectiveness of YOLO models in smoke detection. For 

instance, studies [11] and [12] demonstrate the application of YOLOv5 and YOLOv6, respectively, in 

detecting smoke with high accuracy, leveraging temporal information, and enhancing spatial features to 

minimize false positives.  

This work presents a comprehensive evaluation of a smoke detection system based on the YOLOv8 

model. By training the model on a custom dataset comprising smoke and non-smoke images, and employing 

metrics such as precision, recall, and accuracy, the study aims to offer an advanced solution for fire safety. 

The system's flexibility and efficiency make it applicable in real-world scenarios, including fire detection, 

industrial safety, environmental monitoring, and potentially revolutionizing the development of smoke 

detection technologies. The proposed framework is unquestionably flexible and can be utilized in true 

circumstances, such as fire detection systems, industrial safety systems, and environmental monitoring 

systems. Additionally, it enables the invention of services and products such as smoke alarms and smoke 

detection cameras. YOLOv8 is a powerful smoke detection model that is well-suited for real-world 

applications. It is fast, accurate, efficient, and versatile. YOLOv8 is fast enough to be used for real-time 

smoke detection; it can detect smoke in videos and images as they are being captured. This is important for 

applications such as smoke detection systems in buildings and forests. YOLOv8 is also accurate, even in 

challenging lighting conditions and complex backgrounds, including dark rooms, foggy forests, and busy 

streets. YOLOv8 is efficient and requires relatively few resources to run, which makes it suitable for use on a 

variety of devices, including smartphones, embedded systems, and servers. YOLOVv8 is versatile and can be 

used to detect a wide variety of smoke types and sizes, such as fire detection systems, industrial safety 

systems, and environmental monitoring systems. The proposed YOLOv8-based smoke detection technology 

has the potential to significantly improve both environmental and public safety. 

The main contribution of the proposed work is, i) First, a large dataset containing 5,700 images has 

been built. Then the collected image data is pre-processed using various image processing tools such as 

augmentation, resizing, annotating, or labeling; ii) After that, the pre-processed data is processed which 

prepares the data for training. Then the processed data is trained using the YOLOv8-based model; and iii) 

Finally, the results of the proposed YOLOv8-based model performance are compared with other baseline 

models, such as YOLOv7, YOLOv5, MobileNetv2, and ResNet32, where YOLOv8 outperforms them in all 

cases. 

 

 

2. LITERATURE REVIEW 

Smoke and fire detection using YOLOv8 reviews a diverse range of studies showcasing the 

evolving capabilities and applications of the YOLO algorithm in smoke and fire detection. The studies 

highlight significant advancements in speed, and efficiency across various contexts, including urban 

environments, marine engine rooms, and forest areas. Key contributions involve the integration of 

lightweight models like Light-YOLOv5, accomplishing an adjustment between exactness and computational 

effectiveness for real-time applications. The literature indicates a trend toward more sophisticated, efficient, 

and versatile YOLO-based smoke and fire detection systems, with potential applications in emerging 

technologies like the internet of things (IoT) and cloud computing for enhanced emergency management 

systems.  

While advancements in YOLO-based smoke detection algorithms have shown significant progress, 

key areas like adaptability to diverse and challenging environments, computational efficiency for resource-

constrained settings, and specificity to varying types of smoke and fire scenarios need further research and 

development. This ongoing refinement and testing are crucial for the practical and widespread application of 

these technologies in real-world scenarios. YOLO-F [13] shows high accuracy using YOLOv3 and YOLOv4 

for flame detection. A notable shortcoming is the lack of testing in diverse fire scenarios, particularly in 

environments with varying light and smoke intensities. This raises questions about its adaptability to real-

world, diverse fire situations. In research [14], a multi-task learning-based forest fire detection model (MTL-

FFDET) introduces a multi-task approach, improving accuracy and reducing false detections. Despite these 

advancements, the model's complexity might hinder its deployment in resource-constrained environments, 

and its performance in detecting very small or distant fire sources has not been thoroughly evaluated. In 

research [15], common weed and crop dataset (CWC)-YOLOv5s used for marine engine room smoke 

detection demonstrate good precision and recall rates. However, the model's performance in environments 

with varying smoke densities and types, as well as its effectiveness in detecting smoke at the early stages of 

fire, are areas that need further exploration. Improved YOLOv7 [16] is applied for coal mine detection that 
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shows effectiveness in challenging environments. Its application, however, is limited to specific scenarios 

(coal mines), and its adaptability to other smoke detection contexts like forest fires or urban settings is not 

addressed. In research [17], a smart fire detection system (SFDS) based on YOLOv8 is applied for smart 

cities that integrate with IoT and cloud computing, offering high precision. The potential limitation is the 

dependence on robust network infrastructure for real-time data processing, which could be a challenge in less 

developed areas. In research [18], Enhanced YOLOv7 unmanned aerial vehicles (UAV)-based forest fire 

smoke detection focuses on aerial imagery. The model's dependency on the quality of UAV imagery and its 

performance in different weather conditions are potential limitations.  

In research [19], YOLOv8- multinational corporations (MNC) is used for smoking behavior 

detection and demonstrates improved accuracy. The algorithm's specific focus on smoking behavior limits its 

broader applicability to general fire or smoke detection scenarios. CNN-based smoke detection system [20] 

incorporates attention mechanisms and improved upsampling. The system’s performance in detecting smoke 

from different sources and in various lighting conditions is not fully explored. In research [21], a 

characteristics-based fire detection system called YOLO-v4 and ViBe is introduced for fire detection under 

electric fields that demonstrates high accuracy. However, the algorithm’s performance in varied 

environmental conditions beyond electric fields and its scalability to different fire detection scenarios remain 

untested. In research [22], YOLOv4 combined with MobileNetV3 is applied for fire detection which reduces 

the computational burden. The shortcoming lies in the algorithm's performance on less powerful hardware 

and its adaptability to larger, more complex scenes. In research [12], YOLOv6-based fire detection in smart 

cities demonstrates YOLOv6’s efficiency, but the study lacks extensive evaluation in different urban settings, 

especially in environments with diverse lighting and occlusion challenges. In researchers [23]–[25], 

improved YOLOv5 is proposed by targeting better accuracy for small targets. A potential limitation is its 

performance in detecting fires in diverse agricultural environments and varying weather conditions. In 

research [26], a forest fire classification and detection model (FCDM) is proposed that improves the detection 

of various forest fire types but may face challenges in differentiating fires in dense forest areas and under 

varying environmental conditions. In research [27], they compare YOLO models for smoke detection, but 

there is a lack of in-depth analysis of each model's performance in rapidly changing environmental 

conditions. ReSTiNet [28] showcases the application of Tiny-YOLO-based CNN architecture. The model's 

applicability to fire or smoke detection scenarios is not discussed, which limits its relevance to this specific 

review.  

The review identifies common shortcomings across these studies. One significant challenge is the 

adaptability of these algorithms to diverse and dynamically changing environments, such as varying weather 

conditions and landscapes. Additionally, the computational efficiency of more complex models in resource-

constrained settings remains a concern. There is also a need for further research to improve the models' 

effectiveness in detecting different types and stages of fires and smoke, especially in early detection 

scenarios. 

Overall, the literature indicates a strong trend towards more sophisticated, efficient, and versatile 

YOLO-based smoke and fire detection systems. These systems show promise in not only enhancing current 

fire detection capabilities. They are also integrating with emerging technologies such as IoT and cloud 

computing for smarter, more responsive emergency management systems.  

 

 

3. RESEARCH METHODOLOGY 

In this section, procedures for carrying out the study are covered. A framework for the detection and 

localization of smoke and fire zones was developed using the YOLOv8 model. The architecture 

automatically extracted many smoke and fire aspects from an input image in order to identify and precisely 

localize the potential location.  

Figure 1 presents a process flowchart for all methods used to detect smoke, fire, and both smoke and 

fire, which aids in a deeper understanding of the paper's concept. First of all, collect data from different 

sources, which is presented in detail in subsection 3.1. Then the collected data is pre-processed which is 

explained in subsection 3.2 with proper diagrams and explanations. After that, the pre-processed data is 

processed and divided into two phases. In phase 1, the training part is described. Here, a label map is created 

and the YOLOv8 model is configured. Then the data is trained with the proposed YOLOv8 model. Finally, 

the desired training graphs from the training process are extracted. In phase 2, the testing part is explained. 

After completing the training process, the data set is set for testing. In this case, first, the parameters are 

adjusted and feed data for accurate predictions. Then, we must go through some steps (fire proposed return 

on investment (RoI) polling and softmax). After that, we get output with a bounding box while evaluating the 

test data.  
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Figure 1. Workflow architecture diagram for the whole detection process 

 

 

3.1.  Image acquisition 

Information collection is a vital step that includes gathering data from differing, substantial sources. 

Within the setting of this situation, in this ponder, the information is first collected from diverse online 

sources, which are as if they were pictures. These online sources can be websites, social media platforms, 

online databases, or any other significant online store. To supplement the dataset, other photos from the web 

are also collected in this dataset. Once the vital information and pictures are collected from online sources, a 

custom dataset is formed. This compilation comprises diverse images showcasing day and night fires, aerial 

views, fixed shot fires, mountain, surface, trunk, and canopy fires, as well as natural forest images with 

disturbances. Table 1 shows the measurements of the picture dataset, where we have categorized picture 

datasets into three sorts (fire pic, smoke pic, and both fire and smoke) for the proposed framework.  
 

 

Table 1. Dataset statistics 
Category Train  Test Validation Total 

Fire 2,379 670 350 3,399 

Smoke 665 190 95 950 
Fire and Smoke 946 270 135 1,351 

Total 3,990 1,130 580 5,700 

 

 

A dataset serves as one of the most profitable for preparing machine learning models, conducting 

investigations, or performing examinations. The custom dataset is curated based on the necessities and targets 

of the extent, guaranteeing that it includes a different run of significant information to support the planning 

objectives. Figure 2 appears in a few sample picture datasets. In Table 1, it is evident that the total number of 

fire-related images is 3,399. These images are partitioned for different purposes, with 70% allocated for 

training, 10% for validation, and the remaining 20% designated for testing. Similarly, we used an equal 

percentage of images for both smoke and fire. The number of pictures is 950 and 1,351, respectively. This 

distribution ensures a comprehensive and balanced dataset for the development and evaluation of models 

related to fire detection or analysis.  
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Figure 2. Samples of raw image data 

 

 

3.2.  Data pre-processing 

3.2.1. Augmentation 

Data augmentation is a commonly employed technique aimed at enhancing dataset diversity and 

variability, ultimately enhancing the execution and flexibility of ML models. We have collected our 

information from different sources with distinctive sizes and resolutions. That's why we apply information 

enlargement methods in a few pictures to make the information set more reasonable. We have connected 

distinctive information enlargement procedures for the pictures, as taken after. In case 1, we applied crop and 

rotational augmentation techniques. Since we have collected our data set from different sources, we have to 

crop some data and sometimes apply rotation to our data to label the shapes. This method involves 

augmenting specific images by randomly applying rotations within a range of -20 to +20 degrees. This 

augmentation technique aims to mimic real-world scenarios where objects can appear in various orientations, 

thereby making the dataset more representative. Exposing the model to rotated images during training 

improves its capacity to memorize and generalize, supporting superior execution when experiencing pivoted 

pictures amid deduction or testing stages. In case 2, there were some images in our data set that lacked 

brightness, which is why we had to make a brightness adjustment. We used some random brightness 

adjustments in the data augmentation step. The percentage of the adjustment was between +20 to -20. This 

method proved instrumental in improving the visibility and definition of dimly lit images, rendering them 

more conducive for analysis and facilitating their suitability for model training purposes. In case 3, we used 

the flip technique. Here, we selected some random data and then just flipped it in a different position. We 

used this technique to enhance our data set. 

 

3.2.2. Image resizing 

The process of resizing an image involves standardizing the dimensions of all images within a 

dataset, ensuring uniformity in their shapes. In this context, the entire custom dataset, comprising various 

images, underwent resizing procedures to achieve dimensions of 640×640 pixels. Resized images are shown 

in Figure 3. Then, the resized data is a set of annotations.  

 

 

 
 

Figure 3. Samples of resized image data 

 

 

3.2.3. Image labeling or annotating 

First, roboflow labeling software was used to choose the necessary scaled image. Following that, the 

smoke or fire region of the picture data was highlighted and labeled as ‘smoke’ and ‘fire’ using the options 

entitled ‘bounding box tool’ and ‘polygon tool’. The annotation gets saved automatically, and there is an 

export option that creates the TXT file, which provides information in-depth on the selected smoke and fire 

region. Figure 4 shows a flowchart for labeling the resized image data and data pre-processing steps.  

Figure 4(a) shows the flowchart for labeling the images. 

The aggregate of the information pre-processing steps is clearly delineated in Figure 4(b) and 

labeled portions of sample data are shown in Figure 5. Upon concluding these steps, the prepared information 

experienced division, apportioning 70% for preparation, 20% for testing, and 10% for validation purposes to 

encourage demonstration preparation. Then the pre-processed data is set for data processing steps. 
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(a) 

 

 
(b) 

 

Figure 4. Flowchart for (a) labeling the resized image data and (b) data pre-processing steps 

 

 

 
 

Figure 5. Samples of labeled image data 

 

 

3.3.  Data processing 

In this data processing context, only one step is considered for generating a TXT file. Considering 

that, a file of plain text was created for exporting data easily and importing in a structured manner. Then the 

processed data is set for model training steps. 
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4. RESULTS AND DISCUSSION 

Numerous pivotal training configurations and hyperparameters are intricately woven into the 

process of training the YOLOv8-based model for detecting fire and smoke. This section provides a 

comprehensive overview, delving into the hyperparameters meticulously utilized throughout the training 

regimen. During the training phase, an epoch count of 100 is set, leveraging the stochastic gradient descent 

(SGD) optimizer and the common objects in context (COCO) pre-trained model. To curtail overfitting and 

streamline the training trajectory, an early stopping mechanism is integrated into the model. This intervention 

halts the training prematurely when improvement is absent over the last 50 epochs, effectively preventing 

unnecessary computation cycles. Employing an early stopping technique with a patience value of 50 implies 

that if no discernible enhancement occurs for 50 consecutive epochs, the training process will cease 

automatically. It is worth noting that future experiments could explore fine-tuning the patience value to 

achieve even greater optimization. 

Moreover, meticulous attention is paid to other pivotal parameters. Parameters such as batch size, 

learning rate, and weight decay values are calibrated at 16, 0.01, and 0.001, respectively, in a concerted effort 

to amplify model optimization. These nuanced adjustments fortify the model's ability to discern fire and 

smoke instances with heightened accuracy and robustness, warranting a thorough exploration of potential 

refinements in forthcoming experiments. 

 

4.1.  Model evaluation 

The evaluation metrics employed in this paper to assess the model's performance included precision 

(P), recall (R), average precision (AP), mean average precision (mAP), F1 score, parameters, floating point 

operations (FLOPs), and frames per second (FPS). AP represents the area under the precision-recall (PR) 

curve, while mAP signifies the average AP across different categories. The formulas used for these metrics 

are outlined as (1)-(3).  
 

Precision = 
𝐓𝐏

𝐓𝐏+𝐅𝐏
 (1) 

 

Recall = 
𝐓𝐏

𝐓𝐏+𝐅𝐍
 (2) 

 

mAP = 
𝟏

𝐧
 ∑ ∫ 𝐩(𝐑) 𝐝𝐑

𝟏

𝟎
𝐧
𝐢−𝟏  (3) 

 

True positive (TP) signifies accurate classification of a sample as positive, while false positive (FP) 

denotes incorrect classification of a sample as positive. False negative (FN) signifies the misclassification of 

a sample as negative. 'n' represents the count of categories. FLOPs are a measure of computational 

complexity, indicating the number of computations performed by a model. FPS stands for frames per second, 

representing the rate at which frames are transmitted. 

The YOLOv8 model was evaluated for fire and smoke detection within a data collection system. 

The evaluation was conducted using Python on a platform equipped with CUDA 12.0 and NVIDIA-SMI 

525.85.12, employing a GTX 1650 GPU with 4 GB of VRAM and 12 GB of RAM. The model comprises 

225 layers and 11138309 parameters, showcasing efficient computation with a GFLOP value of 28.7. 

Various metrics were employed to gauge the model's efficacy in detecting fire and smoke.  

 

4.2.  Analysis of results 

Figure 6 shows the YOLOv8-based recall confidence curve and training graph with 85 epochs. The 

YOLOv8-based recall confidence curve is shown in Figure 6(a) for individual fire and smoke classes, where 

all class values are around 0.83 at 0.0. Then, the YOLOv8-based training graphs with  

85 epochs are depicted in Figure 6(b), showing that the best results are obtained at training step 80 for the 

proposed scheme. Thus, the decision to train for 100 epochs is based on the observed performance. The early 

stopping mechanism was not activated because there was not much difference between the maximum epoch 

and the best result steps. Further, the proposed YOLOv8 exhibits a recall of 54.6%, a precision value of 

68.3%, and a mAP of 57.3% when trained with 85 epochs. For all classes, the recall confidence threshold 

value is 0.83 at 0.000. The graph, recall vs. confidence curve merged smoothly. 
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(a) 

 

 
(b) 

 

Figure 6. YOLOv8-based (a) recall confidence curve and (b) training graph with 85 epochs 

 

 

4.2.1. Confusion matrix 

A confusion matrix is a fundamental tool in machine learning for evaluating the performance of a 

classification algorithm which is particularly useful in understanding the strengths and weaknesses of a 

model, aiding in the assessment of precision, recall, and overall accuracy. The confusion matrix from  

Figure 6(a) reveals insightful information about the model's performance. It defines three classes: fire, 

smoke, and background. TP indicates correctly identified instances, while FP represents misclassifications. 

For fire, the model correctly identifies 70% (TP) as fire but confuses 30% (FN) with the background. 

Similarly, smoke detection achieves 56% (TP) accuracy, but misclassifies 43% (FN) as background. It is 

important to note that the values within the matrix range from 0.01 to 0.70, offering further insights into 

specific confidence levels for each classification. This analysis highlights areas for improvement, such as 

potentially reducing false negatives to enhance overall detection accuracy.  

Analyzing the training curve in Figure 6(b), we can see that the better result is achieved on 82 

iterations and continues up to 85. The evaluation of the proposed fire-related phenomena detection instances, 

employing the YOLOv8 model, extends to a comparative analysis with other established object detection 

models such as YOLOv7 [9], YOLOv5 [25], Mobilenet-v2 [29], and ResNet-32 [30]. The performance 

metrics are meticulously assessed across all classes with varying iteration steps, as detailed in Table 2. The 
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mAP@0.5 is tracked during the training phase, indicating the model's ability to learn on the validation set, 

with a higher value denoting superior learning.  

Additionally, the F1score, calculated through a precise formula, reveals that the YOLOv8-based 

model consistently outperforms others, boasting an F1score and mAP@0.5 values of 60 and 57.3%, 

respectively. A detailed examination of model complexities in Table 2 further highlights YOLOv8's 

superiority, particularly over YOLOv7, which exhibits the highest number of trainable parameters, 

potentially compromising generalization capacity. 

Furthermore, Figure 7 offers a comprehensive view of the confusion matrix diagram at the 85th 

iteration, showcasing the model's performance limitations with an accuracy of 90.45%. This matrix visually 

dissects predicted and actual classes, with notable accuracy peaks observed for the fire class (70%) and a 

corresponding dip for the smoke class (56%). The YOLOv8-based model, however, reveals promising 

potential for real-time fire and smoke detection in diverse scenarios, emphasizing its efficacy in still images, 

videos, and camera feeds through rigorous testing and analysis. 

 

 

 
 

Figure 7. Confusion matrix diagram for 85 epochs 

 

 

Table 2. Testing execution of YOLOv8 with YOLOv7, YOLOv5, MobileNet V2 and ResNet-32 
Model Epoch Class Trainable Parameters F1 Score mAP@0.5 

Proposed YOLO v8 50 All 11.13M 0.587 0.555 
Proposed YOLO v8 85 All 11.13M 0.607 0.573 

YOLO v7 [9] 50 All 37.2M 0.430 0.372 

YOLO v7 [9] 85 All 37.2M 0.458 0.391 
YOLO v5 [25] 50 All 7.2M 0.487 0.426 

YOLO v5 [25] 85 All 7.2M 0.487 0.426 

MobileNet- v2 [29] 50 All 3.4M 0.359 0.324 
MobileNet- v2 [29] 85 All 3.4M 0.365 0.335 

ResNet- 32 [30] 50 All 0.47M 0.267 0.245 

ResNet- 32 [30] 85 All 0.47M 0.276 0.255 

 

 

4.3.  Visualization 

The model's training spanned 100 epochs, signifying a complete iteration through the entire training 

dataset in each epoch. The training process involved iterative updates to the model's parameters based on 
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calculated losses and gradients. The decision to conclude the training at 85 epochs aligns with the 

configuration settings, with optimal results emerging around the 80th step. The non-engagement of the early 

stopping mechanism is justified, as its activation criteria weren't met within the specified 85 epochs after 

achieving the best result. Consequently, the training process halted at 85 iterations, consuming approximately 

3 hours. This duration, subject to variations based on computational resources and hardware, underscores the 

resource-intensive nature of the training. The performance of the object detection model peaked at 85 epochs 

and then started to decline. This is a common phenomenon called overfitting, which occurs when the model 

memorizes the training data too well and loses its ability to generalize to new data.  

The individual detection accuracies for YOLOv8, YOLOv7, and YOLOv5 in 85 training steps are 

shown in Figure 8, considering all the classes. In the case of the first row, the detection accuracies are 90 and 

51% for the YOLOv8, and YOLOv5 models, but we see that YOLOv7, ResNet-32, and MobileNet-v2 cannot 

detect any fire portion. Similarly, for the YOLOv8 model, we see in the second row’s first picture that the 

detection accuracy for smoke is 64% and for fire is 66%, We also see that for YOLOv7 and ResNet-32 there 

was no detection for this picture, but for the same picture, the YOLOv5 and MobileNet-v2 models can detect 

only the fire portion, which is 53 and 52%, respectively. For the YOLOv8 model and MobileNet-v2, we see 

in the third row’s first and last pictures that the detection accuracy for smoke is 75 and 59%, respectively, but 

for the same picture, the YOLOv7, YOLOv5, and ReNet-32 models cannot detect any smoke region. Lastly, 

here we also see the detection accuracies are 79, 60, 47, 27, and 49% for YOLOv8, YOLOv7, YOLOv5, 

ResNet-32, and MobileNet-v2 models for the fourth row. Thus, for all classes in most cases, the detection 

accuracy is higher in the proposed YOLOv8-based smoke and fire detection model compared to the other 

YOLOv7 and YOLOv5 models with 85 epochs. Among all the models that are being trained with our custom 

dataset, the YOLOv8 gave the best performance metrics along with detection accuracy in all aspects. The 

model is trained with different epochs; among them, the training curve of the YOLOv8 50 Epoch is slightly 

better, but in terms of all other evaluation metrics, the YOLOv8 85 Epoch model performs best, and the 

performance started to decrease in the 100 and 150 epochs for overfitting. 

 

 

Proposed YOLOv8 YOLOv7 [9] YOLOv5 [25] ResNet-32 [30] MobileNet-v2 [29] 

     

     

     

     
 

Figure 8. Sample detected images 

 

 

5. CONCLUSION 

This study presents a significant leap in the field of smoke and fire detection by leveraging the 

capabilities of the YOLOv8 deep learning model. Demonstrating a marked improvement over traditional 

detection methods and previous iterations of the YOLO model, YOLOv8 distinguished itself through 
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superior accuracy, speed, and dependability. With a training dataset of 5700 images, the system showcased 

notable performance metrics: precision of 68.3%, recall of 54.6%, F1 score of 60.7%, and mAP of 57.3%. 

These outcomes highlight YOLOv8's robust potential in practical settings, facilitating quicker and more 

flexible responses to emergent fire and smoke situations, which is vital for averting extensive calamities. 

Nevertheless, this research acknowledges existing constraints. It identifies the necessity for a broader 

examination of the variability of environmental factors, fire and smoke properties, and the overall system's 

adaptability. Future research directions could include the expansion of the training dataset to encompass 

instances of smoke under various obstructions, different lighting and weather conditions, and a range of fire 

origins. Further, exploring synergies between the model and additional sensing technologies, alongside 

integration with real-time monitoring systems, could significantly boost both the efficacy and reliability of 

detection systems. 
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