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 Betta fish sellers and breeders often face challenges in accurately identifying 

Betta fish species due to variations in colors, patterns, and shapes, leading to 

potential financial losses and deceptive transactions. To address this issue, 

we developed a mobile application that employs MobileNet, a deep learning 

(DL) technique, to classify Betta fish species. The dataset, acquired from 

online stores, comprises 400 images, with 100 images representing each of 

the four studied Betta fish species: comb tail, delta tail, spade tail, and veil 

tail. Prior to model implementation, the dataset undergoes pre-processing 

with data augmentation techniques, including rotation, shear, zoom-in, 

horizontal flip, and brightness adjustments, enhancing the model 

performance. Training utilizes 80% of the data, with the remaining 20% 

allocated for testing. Three distinct MobileNet models are developed for 

males, females, and both genders combined, achieving accuracies of 70, 

83.75, and 65%, respectively. These trained models are the foundation for a 

mobile application developed for the Android platform that enables users, 

particularly Betta fish sellers, and breeders, to efficiently classify Betta fish 

species, empowering them to set accurate prices based on the identified 

species. 
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1. INTRODUCTION 

In recent years, the hobby of collecting and breeding Betta fish has evolved into a lucrative venture 

for many enthusiasts [1]. The allure of Betta fish lies in their captivating beauty, especially evident in their 

unique shapes and distinctive tail patterns. However, breeders often encounter challenges in accurately 

classifying different Betta fish species, such as Crowntail Betta, Veiltail Betta, Half Moon Betta, and 

Doubletail Betta [2]. In addition, because the male Betta fish has more attractive and colorful features than 

the females, they are worth more economically. This classification issue has prompted the need to implement 

Betta fish species recognition using deep learning (DL) tailored explicitly for mobile applications.  

The pervasive presence of mobile devices in our daily lives is undeniable, with a projected 

ownership rate of over 90% among adults in developed countries by the end of 2023 [3]. The success of DL 

in various machine learning (ML) tasks has fuelled the integration of this technology into mobile 

applications. Recognizing this trend, implementing DL for Betta fish species classification in mobile 

applications becomes essential. 

Betta fish, also known as Fighting fish, has gained popularity among fish enthusiasts due to its ease 

of care and vibrant aesthetics. The hobby of collecting these fish has transformed into a profitable source of 
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income, with individual fish fetching high prices, reaching up to RM700 [4]. The unique color patterns and 

shapes of Betta fish contribute to their market value, resulting in an increasing demand and subsequent rise in 

selling prices. However, the variability in tail shapes, colors, and patterns poses a challenge for sellers and 

buyers alike. Not all enthusiasts can accurately recognize the species of Betta fish, leading to potential 

financial losses for sellers and the risk of buyers paying inflated prices for misidentified fish [5]. 

This research focuses on developing a mobile application for Betta fish species classification using 

lightweight DL models to address these challenges. The objective is to provide a user-friendly tool to identify 

Betta fish species accurately, empowering sellers and buyers. Considering the computational constraints of 

mobile devices, incorporating lightweight models is crucial, and it aims to optimize the classification process 

for real-time applications in the dynamic Betta fish market. 

Not much research has been conducted on Betta fish classification, and no publicly available dataset 

can be used for comparative analysis. The ML approach has been applied to identify five species of Betta fish 

by extracting grey-level co-occurrence matrix (GLCM) features as input to the K-nearest neighbor (K-NN) 

classifier [6]. With 60 personal collection images per species for the data set, which totals up to 300 images, 

excellent classification has been achieved; however, the fish has to be in a specific angular direction. 

Mookdarsanit and Mookdarsanit [7] conducted research to create a region-based convolutional neural 

network (R-CNN) model named “SiamFishNet” that classifies the breed of an unknown Betta fish image 

based solely on the image itself. The researchers formulated this model using a dataset of 87,560 Betta fish 

images representing 12 different breeds of Bettas. The findings revealed that the model achieved an average 

precision of 84%, indicating its effectiveness in accurately identifying the breed of Betta fish. Another ML 

approach used the Gabor feature and artificial neural network classifier, but the results were not encouraging 

[8]. DL methods such as ResNet-50 have been utilized for Betta fish classification based on personal data 

collection and achieved 80% accuracy [9]. ResNet-50 is a heavyweight DL that consists of 48 convolutional 

layers, one MaxPool layer, and one average pool layer. However, a heavyweight DL usually needs high 

storage and high-power devices [10], which may be a barrier for users, especially small pet shops. Therefore, 

this research proposes to use a lightweight DL model that can achieve high accuracy at minimal cost and 

memory requirements while still being competitive with heavyweight models. 

This paper is organized as follows. The next section discusses the works related to DL. Section 3 

explains the classification method utilized in this research, the dataset used, and the various experimental 

results based on fine-tuning various hyperparameters. Section 4 discusses the result analysis, followed by a 

conclusion in the last section. 

 

 

2. BACKGROUND STUDY 

Operating DL models on edge devices poses significant challenges due to limited resources and 

computational capabilities. Using lightweight DL models has emerged as a crucial strategy to address this. 

Lightweight algorithms are designed to be computationally efficient with a small memory footprint, making 

them suitable for deployment on resource-constrained devices like mobile phones, internet of thing (IoT) 

devices, and edge computing platforms [11], [12].  

These lightweight models aim to reduce computational demands by optimizing network structures 

and employing efficient building methods. The concept of lightweight algorithms minimizes the number of 

parameters and computations, making them ideal for real-time processing on devices with limited 

computational resources [13]. Additionally, these models typically have smaller memory footprints, an 

advantageous feature for devices with limited random-access memory (RAM). 

Several notable lightweight convolutional neural network (CNN) models have been proposed to 

address these challenges. SqueezeNet, introduced by the Berkeley and Stanford research teams in 2016, and 

MobileNet, presented by the Google team in 2017, are noteworthy examples. ShuffleNet, proposed by Ignore 

Technology in 2017, and EfficientNet, introduced by Google in 2018, further contribute to the arsenal of 

lightweight models. These models optimize network structures, decrease the number of parameters, and 

enhance accuracy, even achieving full convolution accuracy [14]–[16]. ShuffleNet utilizes both group 

convolution and channel shuffle operations to simplify pointwise convolutions. Group convolution divides 

the input channels into groups, reducing computational complexity. Channel shuffle is then applied to 

exchange information between groups, promoting information flow and maintaining model efficiency [17], 

[18] using group convolution and channel shuffle to simplify pointwise convolution. MicroNet’s micro-

factorized convolution and adjusting node connectivity and network width aim to balance model efficiency 

and expressive power [19].  

MobileNet stands out as a particularly lightweight deep CNN. It is smaller and faster than many 

well-known classification models, making it suitable for image detection, face attributes, and image analysis 

[20]. MobileNet utilizes a simplified architecture with depth-wise separable convolutions, providing an 

efficient solution for both mobile and embedded devices [21], [22]. The advantages of MobileNet lie in its 
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real-time performance on tasks like image classification, object detection, and segmentation. The 

architecture’s flexibility allows users to control the trade-off between model accuracy and computational 

efficiency through hyperparameters like the width and resolution multipliers. This adaptability proves 

invaluable when optimizing models for specific deployment scenarios, offering low-latency responses for 

various applications [20]. 

In the context of this research, the focus is on constructing a network based on MobileNet for Betta 

fish species classification. MobileNet’s main contribution is the proposal of deep separable convolution, a 

decomposition form significantly reducing computational complexity and model size. This research aims to 

leverage MobileNet’s lightweight design to create an efficient Betta fish species classification system, 

catering to the unique demands of edge devices and contributing to real-time applications in the field of 

aquatic species identification. 

 

 

3. METHOD AND MATERIAL 

This conceptual framework outlines the systematic procedures employed in the research, delineating 

key phases encompassing dataset collection, pre-processing, model architecture design, training, evaluation, 

and experimentation. It serves as a structured guide, offering insight into the anticipated methods and 

materials deployed in the study. 

 

3.1.  Data collection 

This study collected 300 images of seven types of Betta fish from Betta fish sellers that do  

E-commerce in Lazada, Instagram, and Facebook. These data are all in .jpg format, smaller than the .png file. 

Table 1 lists the collected data and total images for every Betta fish species. The number of images for comb 

tail, delta tail, and double tail is 34, respectively. Forty-six images were collected each for spade tail and veil 

tail. Crown tail and halfmoon tail have 64 and 58 images, respectively. Overall, 316 images were obtained 

from online stores. The data was then augmented, and the images were resized as part of the pre-processing. 

 

 

Table 1. The total number of images acquired for each species 
Betta Fish Species Number of Images 

Comb Tail 34 

Crown Tail 64 
Delta Tail 34 

Double Tail 34 

Halfmoon Tail 58 
Spade Tail 46 

Veil Tail 46 

Total 316 

 

 

3.2.  Data pre-processing  

Data pre-processing is the most significant and influential factor in the generalization performance 

of a supervised ML algorithm [23]. After the dataset was collected, all the images were resized to  

224×244 pixels for fitting into MobileNet. Then, as shown in Figure 1, the dataset was augmented due to the 

small amount of data by using Figure 1(a) a rotation range of 0.2, Figure 1(b) a shear range of 0.2,  

Figure 1(c) a zoom-in range of 0.2, Figure 1(d) a horizontal flip is equal to true, and Figure 1(e) a brightness 

range of 0.5 to 1.5.  

 

 

     
(a) (b) (c) (d) (e) 

 

Figure 1. Augmentation codes and sample results of (a) rotation range, (b) shear range, (c) zoom-in range,  

(d) horizontal flip is equal, and (e) brightness range 
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It is crucial to augment image data properly to increase accuracy and prevent overfitting [24]. The 

parameters of augmentation were adjusted four times to gain more training datasets. After augmentation, the 

total number of Betta fish images for every species has increased significantly. Before the data augmentation 

process, the total number of images for every species was mostly lower than 100. Based on Table 2, a total of 

700 images were created from the original 316 images, where each of the seven classes contains 100 images. 

From each of the seven classes, 80 images (80%) were used for training, and 20 images (20%) were used for 

testing. Figure 2 shows a snippet of the Betta fish dataset that was divided accordingly.  

 

 

Table 2. The total number of Betta fish images before and after augmentation 
 

Betta Fish Species 

Total Number of Images 

Before Data Augmentation After Data Augmentation 

Comb Tail 34 240 
Crown Tail 64 240 

Delta Tail 34 240 

Double Tail 34 240 
Halfmoon Tail 58 240 

Spade Tail 46 240 

Veil Tail 46 240 
Total 316 1680 

 

 

 
 

Figure 2. The snippet of the Betta fish dataset 

 

 

3.3.  Model architecture 

This research used MobileNet to classify Betta fish species by specific architectural configurations. 

The primary purpose of choosing MobileNet is to address the challenges associated with deploying DL 

models on resource-constrained devices, such as mobile phones while achieving accurate and efficient Betta 

fish classification. MobileNet’s architecture is characterized by its lightweight design, making it well-suited 

for real-time image processing on devices with limited computational capabilities. 

The critical innovation in MobileNet is the use of depthwise separable convolutions, which 

significantly reduces the number of parameters and computations compared to traditional convolutional 

layers [25]–[27]. This design enables MobileNet to maintain satisfactory accuracy while significantly 

lowering the model’s size, making it practical for deployment on mobile platforms. An overview of the 

MobileNet architecture is illustrated in Figure 3. It consists of 28 layers, including a deep convolution layer, 

1×1 point convolution layer, batch norm, ReLU, average collecting layer, and SoftMax.  
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Figure 3 MobileNet architecture [28], [29] 

 

 

3.4.  Experimental approach and optimization for MobileNet training 

Several experiments have been meticulously conducted to create a reliable and accurate model for 

Betta fish species classification using MobileNet. These experiments aimed to enhance the classification 

accuracy through two primary approaches: increasing the number of training images and fine-tuning four key 

hyper-parameters, namely epoch, dropout layer, pooling layer, and batch size. The culmination of these 

efforts involved eight distinct experiments, each contributing valuable insights to the overall model 

performance. 

 

3.4.1. Experiment 1: comparison between two sets of datasets  

In this experiment, there are two sets of datasets. In the first set, the testing images consist of only 

the original images, while in the second set, the testing images consist of a combination of the original and 

augmented images. The experiment involved seven classes representing different Betta fish species and  

700 images. The division between training and testing datasets was executed with 80% for training and 20% 

for testing, adhering to DL model development standards [30]. A hyperparameter called “epochs” determines 

how many times the learning algorithm will run over the training dataset [31], [32]. This experiment was run 

for 80 epochs, and it took two hours for each model to learn. Table 3 illustrates the results which show that 

the model with combined images (validation accuracy of 0.3357) performs better than the one with the 

original images (validation accuracy of 0.2786). However, an overfitting problem occurs where the value of 

the validation accuracy is very much lower than the training accuracy. Therefore, in the next experiment, a 

dropout layer is added. 
 

 

Table 3. Experiment 1 training results on the original image dataset and combined dataset 
Dataset Training Accuracy Training Loss Validation Accuracy Validation Loss 

Original Images 0.9036 0.3298 0.2786 4.5028 

Combined Images (Original and Augmented) 0.9125 0.3007 0.3357 6.4944 

 

 

3.4.2. Experiment 2: comparison between using a dropout layer and without a dropout layer  

Dropout is an efficient way to reduce overfitting [33]. It randomly sets input units to 0 with a pre-

determined percentage at each step during training time [34]. The dataset for this experiment is the same as in 

Experiment 1. This experiment was run for 40 epochs, and it took one hour for each model to learn. Table 4 

illustrates the outcome of the experiment and it indicates that the model with combined images (validation 

accuracy of 0.3643) showed a better result than the model with original images (validation accuracy of 

0.2357) when a dropout layer was added. Furthermore, the performance has slightly improved compared to 

Experiment 1. However, overfitting still occurs. Hence, the total number of images is added with different 

pooling layers in Experiment 3. 
 
 

Table 4. Experiment 2 training results on the original image dataset and combined dataset with a  

dropout layer 
Dataset Training Accuracy Training Loss Validation Accuracy Validation Loss 

Original Images 0.6464 1.0404 0.2357 4.5466 
Combined Images  

(Original and Augmented) 
0.5875 1.2169 0.3643 3.8393 
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3.4.3. Experiment 3: comparison between max pooling and average pooling  

Max pooling and average pooling are the two types of pooling layers. The maximum value from the 

portion of the image that the kernel (filter) has covered is returned by max pooling [35], [36]. On the 

contrary, the average of all the values from the portion of the image covered by the kernel is returned by 

average pooling [37]. Two things were selected, which are the pool size and a stride, to perform max pooling 

and average pooling. The stride controls how many pixels the window will move across the image pooling 

[38], [39]. This experiment compared max pooling and average pooling kernel size 3×3 with a pool size of 7 

and stride 1. Since the two previous experiments have proven that a combination dataset of original images 

and augmented images, with a dropout layer is a better option, this case is also applied in Experiment 3. 

Moreover, 1680 images were added, 200 for training (80%) and 40 for testing (20%) for each of the seven 

classes. At the end of this experiment, two models were trained. This experiment was run for ten epochs, and 

it took five hours for each model to learn. Table 5 illustrates the results of the experiments. By referring to 

Table 5, we can see that the model with max pooling is better than the model with average pooling since 

there is no overfitting for max pooling. Overfitting occurs with average pooling where the training accuracy 

is higher than its validation accuracy. However, the accuracy achieved by the model with max pooling was 

not high. Thus, different pooling sizes were experimented with and compared in the next experiment.  

 

 

Table 5. Experiment 3 training results on max pooling and average pooling 
Pooling Layer Training Accuracy Training Loss Validation Accuracy Validation Loss 

Max Pooling 0.2000 2.2227 0.2000 2.2842 

Average Pooling 0.2736 1.8567 0.2464 2.2027 

 

 

3.4.4. Experiment 4: comparison between pool size  

In the previous experiment, the pool size used was 7. In this experiment, a comparison between max 

pooling and average pooling with a pool size of 6 is performed. This experiment was run for ten epochs and 

took five hours for each model to learn. Table 6 lists the results and the model with max pooling performs 

slightly better than the model with average pooling since the overfitting that occurs by max pooling is less 

than average pooling. However, the accuracy was still not high. Thus, in the next experiment, different 

dropout hyperparameters were compared.  

 

 

Table 6. Experiment 4 training results on max pooling and average pooling with a pool size of 6 
Pooling Layer Training Accuracy Training Loss Validation Accuracy Validation Loss 

Max Pooling 0.4193 1.5644 0.2429 3.0617 

Average Pooling 0.5157 1.3223 0.2500 5.5521 

 

 

3.4.5. Experiment 5: comparison between dropout hyperparameter 

Experiment 5 compared the dropout hyperparameters of 0.2 and 0.5. This experiment was run for 

ten epochs and took five hours for each model to learn. Table 7 illustrates that the model with a dropout 

hyperparameter of 0.2 (validation accuracy of 0.2429) shows better results than the model with a dropout 

hyperparameter of 0.5 (validation accuracy of 0.2). The following experiment compared two different 

hyperparameter values of the batch size to determine which would arrive at a better validation accuracy. 

 

 

Table 7. Experiment 5 training results on dropout hyperparameters 
Dropout Hyperparameters Training Accuracy Training Loss Validation Accuracy Validation Loss 

0.2 0.4793 1.4193 0.2429 2.4662 

0.5 0.2000 2.2227 0.2000 2.2842 

 

 

3.4.6. Experiment 6: comparison between batch size hyperparameter 

The batch size, a gradient descent hyperparameter, determines how many training samples must be 

examined before the model's internal parameters are updated [40], [41]. Experiment 6 compared the batch 

size hyperparameters of 2 and 5. This experiment was run for ten epochs and took five hours for each model 

to learn. Table 8 shows that the model with a batch size hyperparameter of 5 produces better results 

(validation accuracy of 0.2464) than the model with a batch size hyperparameter of 2 (validation accuracy  

of 0.2).  
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Table 8. Experiment 6 training results on batch size hyperparameters 
Batch Size Hyperparameters Training Accuracy Training Loss Validation Accuracy Validation Loss 

2 0.2000 2.2227 0.2000 2.2842 
5 0.2507 3.2279 0.2464 4.4298 

 

 

3.4.7. Experiment 7: retrain experiment 3 with 200 epochs 

Since the best model so far was achieved in experiment 3 where the model was trained with max 

pooling with a pool size of 7, dropout hyperparameter of 0.5, and batch size hyperparameter of 2, this 

experiment used the same hyperparameters but with 200 epochs. It took three days for this model to learn, 

but the validation accuracy produced was lower than in experiment 3. Since this model did not produce high 

validation accuracy as shown in Table 9, the collected data was analyzed again. It was found that the 

background images and the appearances of the male Betta fish and female Betta fish differ significantly. 

Therefore, in the next experiment, the dataset was separated according to the Betta fish gender, male and 

female, with four classes only due to the lack of female Betta fish images, time, and hardware constraints.  

 

 

Table 9. Experiment 7 training results on retrain experiment 3 with 200 epochs 
Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss 

200 0.9993 0.0043 0.4464 5.1301 

 

 

3.4.8. Experiment 8: three models 

Three models were trained in this experiment: the male Betta fish dataset, the female Betta fish 

dataset, and the combination of the male and female Betta fish dataset. The dataset was reduced to  

400 images in each model. Based on experiment 3, it turned out that max pooling, pool size of 7, dropout of 

0.5, and batch size of 2 showed the best result. Therefore, these hyperparameters were used in this 

experiment. Besides, these models used stochastic gradient descent (SGD) as an optimizer and SoftMax as an 

activation function. This experiment was run for 80 epochs and took three hours for each model to learn. As 

shown in Table 10, the validation accuracy was much improved compared to the previous experiments. 

 

 

Table 10. Experiment 8 training results on three models 
Model Training Accuracy Training Loss Validation Accuracy Validation Loss 

Male 0.9875 0.0237 0.7000 7.4765 

Female 0.9563 0.1721 0.8375 0.9622 

Male and Female 0.9656 0.1016 0.6500 2.0234 

 

 

4. RESULTS AND DISCUSSION  

This study conducted a comprehensive series of eight experiments to optimize Betta fish species 

classification through DL, yielding 14 distinct models. The primary objective was to develop a robust 

classification system to classify Betta fish species. These experiments were executed with meticulous 

attention to factors such as data augmentation, hyperparameter tuning, and the utilization of the MobileNet 

model for its efficiency in large-scale image classification processing. The culmination of these efforts is 

encapsulated in the comparison of the 14 models, detailed in Table 11. Within Table 11, the performance of 

each model is scrutinized, and the findings reveal that the final three models from experiment 8 exhibit the 

most promising results. The ensuing section delves into a detailed analysis of these outcomes, shedding light 

on the key factors influencing the superior performance of the selected models. 

The Betta fish classification model, employing MobileNet architecture, demonstrates exceptional 

accuracy by utilizing max pooling, a pool size of 7, a dropout rate of 0.5, and a batch size of 2, coupled with 

SGD optimizer and SoftMax as the activation function across 80 epochs. The validation accuracy for male 

Betta fish reaches 0.7, while female Betta fish achieves an impressive 0.8375. However, combining both 

male and female images results in a slightly lower accuracy of 0.65. Notably, the decision to employ separate 

models for male and female classification proves advantageous, highlighting the substantial differences in 

shape and color between male and female Betta fish that impact accurate classification. It underscores the 

importance of tailored models for distinct genders to optimize classification performance. 
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Table 11. Summary of experimental results with various training models 

Experiment Dataset 
Accuracy Loss 

Training Validation Training Validation 

1 Original 0.9036 0.2786 0.3298 4.5028 

Combined 0.9125 0.3357 0.3007 6.4944 

2 Original 0.6464 0.2357 1.0404 4.5466 
Combined 0.5875 0.3643 1.2169 3.8393 

3 Combined (Max Pooling) 0.2000 0.2000 2.2227 2.2842 

Combined (Average Pooling) 0.2736 0.2464 1.8567 2.2027 
4 Combined (Max Pooling, Pool Size = 6) 0.4193 0.2429 1.5644 3.0617 

Combined (Average Pooling, Pool Size = 6) 0.5157 0.2500 1.3223 5.5521 

5 Combined (Dropout (0.2)) 0.4793 0.2429 1.4193 2.4662 
Combined (Dropout (0.5)) 0.2000 0.2000 2.2227 2.2842 

6 Combined (Batch Size = 2) 0.2000 0.2000 2.2227 2.2842 

Combined (Batch Size = 5) 0.2507 0.2464 3.2279 4.4298 
7 Combined (Epoch = 200) 0.9993 0.4464 0.0043 5.1301 

8 Male 0.9875 0.7000 0.0237 7.4765 

Female 0.9563 0.8375 0.1721 0.9622 

Male and Female 0.9656 0.6500 0.1016 2.0234 

 

 

4.1.  Mobile application development 

The mobile application development involves harnessing the capabilities of the trained models to 

produce a user-friendly application tailored for Betta fish species classification on the Android platform. 

Integrating an intuitive interface within the application enables users to seamlessly capture or upload images 

for instantaneous species identification. This feature-rich application aims to provide users with a 

straightforward and engaging experience, allowing them to actively participate in the real-time identification 

of Betta fish species easily and accurately. 

Figure 4 illustrates a sample interface of the Betta fish species classification mobile application. 

Figure 4(a) illustrates the main page, which consists of two buttons, namely ‘Buka Kamera’ to capture the 

image of the Betta fish using the mobile’s camera and ‘Buka Galeri’ to select a saved image stored in the 

gallery to classify the species. Figure 4(b) will be displayed if a user clicks the ‘Buka Kamera’ button, while 

Figure 4(c) will be shown if a user clicks the ‘Buka Galeri’ button. Users can also press the back arrow 

button to navigate to the previous page. Figure 5 shows the result page, where the name of the Betta fish 

species and its range of prices in Ringgit Malaysia (RM) are shown. The user can then repeat this process for 

the next Betta fish image classification. 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4. Sample interface of the mobile application of (a) main page, (b) page to capture the image after 

clicking the ‘Buka Kamera’ button, and (c) page to select an image after clicking the ‘Buka Galeri’ button 
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Figure 5. Sample interface for the result page 

 

 

5. CONCLUSION AND FUTURE WORK  

In conclusion, this research successfully explores and implements the MobileNet architecture to 

classify Betta fish species, addressing challenges faced by breeders and sellers in accurately identifying these 

aquatic species. MobileNet, which uses depthwise separable convolutions, is an efficient solution for 

deployment on resource-constrained devices. The crucial finding is that having separate models for male and 

female classifications improves accuracy significantly, highlighting the nuanced differences in shape and 

color between genders. This research not only contributes to the advancement of the Betta fish classification 

technique but also provides a practical tool for industry stakeholders to enhance their decision-making 

processes and reduce monetary losses associated with misclassification. 

Concerning future work, several avenues exist for enhancing the Betta fish species classification 

model based on MobileNet architecture. Expanding the dataset to include a broader spectrum of Betta fish 

images with diverse colors, patterns, and tail shapes can contribute to the improvement of model 

generalization and reduce the overfitting problem. Considering the potential benefits, utilizing pre-trained 

models, and experimenting with advanced data augmentation techniques could further enhance the model's 

robustness. Investigating ensemble learning approaches and integrating user feedback mechanisms in the 

mobile application can contribute to continuous model improvement. Optimization for real-time deployment, 

compatibility with various mobile devices, and collaboration with aquatic experts to incorporate domain 

knowledge are crucial considerations. These future directions aim to refine the model’s accuracy, usability, 

and adaptability to benefit Betta fish breeders and sellers. 
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