
International Journal of Advances in Applied Sciences (IJAAS)

Vol. 14, No. 1, March 2025, pp. 28~38

ISSN: 2252-8814, DOI: 10.11591/ijaas.v14.i1.pp28-38  28

Journal homepage: http://ijaas.iaescore.com

Betta fish species classification using light weight deep learning

algorithm

Danishah Hana Muhammad Muhaimin Lim, Norizan Mat Diah, Zaidah Ibrahim, Zolidah Kasiran
School of Computing Sciences, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Selangor, Malaysia

Article Info ABSTRACT

Article history:

Received Mar 12, 2024

Revised Sep 27, 2024

Accepted Oct 8, 2024

 Betta fish sellers and breeders often face challenges in accurately identifying

Betta fish species due to variations in colors, patterns, and shapes, leading to

potential financial losses and deceptive transactions. To address this issue,

we developed a mobile application that employs MobileNet, a deep learning

(DL) technique, to classify Betta fish species. The dataset, acquired from

online stores, comprises 400 images, with 100 images representing each of

the four studied Betta fish species: comb tail, delta tail, spade tail, and veil

tail. Prior to model implementation, the dataset undergoes pre-processing

with data augmentation techniques, including rotation, shear, zoom-in,

horizontal flip, and brightness adjustments, enhancing the model

performance. Training utilizes 80% of the data, with the remaining 20%

allocated for testing. Three distinct MobileNet models are developed for

males, females, and both genders combined, achieving accuracies of 70,

83.75, and 65%, respectively. These trained models are the foundation for a

mobile application developed for the Android platform that enables users,

particularly Betta fish sellers, and breeders, to efficiently classify Betta fish

species, empowering them to set accurate prices based on the identified

species.

Keywords:

Betta fish

Classification

Deep learning

Lightweight

MobileNet

This is an open access article under the CC BY-SA license.

Corresponding Author:

Norizan Mat Diah

School of Computing Sciences, College of Computing, Informatics and Mathematics

Universiti Teknologi MARA

40450 Shah Alam, Selangor, Malaysia

Email: norizan289@uitm.edu.my

1. INTRODUCTION

In recent years, the hobby of collecting and breeding Betta fish has evolved into a lucrative venture

for many enthusiasts [1]. The allure of Betta fish lies in their captivating beauty, especially evident in their

unique shapes and distinctive tail patterns. However, breeders often encounter challenges in accurately

classifying different Betta fish species, such as Crowntail Betta, Veiltail Betta, Half Moon Betta, and

Doubletail Betta [2]. In addition, because the male Betta fish has more attractive and colorful features than

the females, they are worth more economically. This classification issue has prompted the need to implement

Betta fish species recognition using deep learning (DL) tailored explicitly for mobile applications.

The pervasive presence of mobile devices in our daily lives is undeniable, with a projected

ownership rate of over 90% among adults in developed countries by the end of 2023 [3]. The success of DL

in various machine learning (ML) tasks has fuelled the integration of this technology into mobile

applications. Recognizing this trend, implementing DL for Betta fish species classification in mobile

applications becomes essential.

Betta fish, also known as Fighting fish, has gained popularity among fish enthusiasts due to its ease

of care and vibrant aesthetics. The hobby of collecting these fish has transformed into a profitable source of

https://creativecommons.org/licenses/by-sa/4.0/

Int J Adv Appl Sci ISSN: 2252-8814 

Betta fish species classification using light weight deep … (Danishah Hana Muhammad Muhaimin Lim)

29

income, with individual fish fetching high prices, reaching up to RM700 [4]. The unique color patterns and

shapes of Betta fish contribute to their market value, resulting in an increasing demand and subsequent rise in

selling prices. However, the variability in tail shapes, colors, and patterns poses a challenge for sellers and

buyers alike. Not all enthusiasts can accurately recognize the species of Betta fish, leading to potential

financial losses for sellers and the risk of buyers paying inflated prices for misidentified fish [5].

This research focuses on developing a mobile application for Betta fish species classification using

lightweight DL models to address these challenges. The objective is to provide a user-friendly tool to identify

Betta fish species accurately, empowering sellers and buyers. Considering the computational constraints of

mobile devices, incorporating lightweight models is crucial, and it aims to optimize the classification process

for real-time applications in the dynamic Betta fish market.

Not much research has been conducted on Betta fish classification, and no publicly available dataset

can be used for comparative analysis. The ML approach has been applied to identify five species of Betta fish

by extracting grey-level co-occurrence matrix (GLCM) features as input to the K-nearest neighbor (K-NN)

classifier [6]. With 60 personal collection images per species for the data set, which totals up to 300 images,

excellent classification has been achieved; however, the fish has to be in a specific angular direction.

Mookdarsanit and Mookdarsanit [7] conducted research to create a region-based convolutional neural

network (R-CNN) model named “SiamFishNet” that classifies the breed of an unknown Betta fish image

based solely on the image itself. The researchers formulated this model using a dataset of 87,560 Betta fish

images representing 12 different breeds of Bettas. The findings revealed that the model achieved an average

precision of 84%, indicating its effectiveness in accurately identifying the breed of Betta fish. Another ML

approach used the Gabor feature and artificial neural network classifier, but the results were not encouraging

[8]. DL methods such as ResNet-50 have been utilized for Betta fish classification based on personal data

collection and achieved 80% accuracy [9]. ResNet-50 is a heavyweight DL that consists of 48 convolutional

layers, one MaxPool layer, and one average pool layer. However, a heavyweight DL usually needs high

storage and high-power devices [10], which may be a barrier for users, especially small pet shops. Therefore,

this research proposes to use a lightweight DL model that can achieve high accuracy at minimal cost and

memory requirements while still being competitive with heavyweight models.

This paper is organized as follows. The next section discusses the works related to DL. Section 3

explains the classification method utilized in this research, the dataset used, and the various experimental

results based on fine-tuning various hyperparameters. Section 4 discusses the result analysis, followed by a

conclusion in the last section.

2. BACKGROUND STUDY

Operating DL models on edge devices poses significant challenges due to limited resources and

computational capabilities. Using lightweight DL models has emerged as a crucial strategy to address this.

Lightweight algorithms are designed to be computationally efficient with a small memory footprint, making

them suitable for deployment on resource-constrained devices like mobile phones, internet of thing (IoT)

devices, and edge computing platforms [11], [12].

These lightweight models aim to reduce computational demands by optimizing network structures

and employing efficient building methods. The concept of lightweight algorithms minimizes the number of

parameters and computations, making them ideal for real-time processing on devices with limited

computational resources [13]. Additionally, these models typically have smaller memory footprints, an

advantageous feature for devices with limited random-access memory (RAM).

Several notable lightweight convolutional neural network (CNN) models have been proposed to

address these challenges. SqueezeNet, introduced by the Berkeley and Stanford research teams in 2016, and

MobileNet, presented by the Google team in 2017, are noteworthy examples. ShuffleNet, proposed by Ignore

Technology in 2017, and EfficientNet, introduced by Google in 2018, further contribute to the arsenal of

lightweight models. These models optimize network structures, decrease the number of parameters, and

enhance accuracy, even achieving full convolution accuracy [14]–[16]. ShuffleNet utilizes both group

convolution and channel shuffle operations to simplify pointwise convolutions. Group convolution divides

the input channels into groups, reducing computational complexity. Channel shuffle is then applied to

exchange information between groups, promoting information flow and maintaining model efficiency [17],

[18] using group convolution and channel shuffle to simplify pointwise convolution. MicroNet’s micro-

factorized convolution and adjusting node connectivity and network width aim to balance model efficiency

and expressive power [19].

MobileNet stands out as a particularly lightweight deep CNN. It is smaller and faster than many

well-known classification models, making it suitable for image detection, face attributes, and image analysis

[20]. MobileNet utilizes a simplified architecture with depth-wise separable convolutions, providing an

efficient solution for both mobile and embedded devices [21], [22]. The advantages of MobileNet lie in its

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 1, March 2025: 28-38

30

real-time performance on tasks like image classification, object detection, and segmentation. The

architecture’s flexibility allows users to control the trade-off between model accuracy and computational

efficiency through hyperparameters like the width and resolution multipliers. This adaptability proves

invaluable when optimizing models for specific deployment scenarios, offering low-latency responses for

various applications [20].

In the context of this research, the focus is on constructing a network based on MobileNet for Betta

fish species classification. MobileNet’s main contribution is the proposal of deep separable convolution, a

decomposition form significantly reducing computational complexity and model size. This research aims to

leverage MobileNet’s lightweight design to create an efficient Betta fish species classification system,

catering to the unique demands of edge devices and contributing to real-time applications in the field of

aquatic species identification.

3. METHOD AND MATERIAL

This conceptual framework outlines the systematic procedures employed in the research, delineating

key phases encompassing dataset collection, pre-processing, model architecture design, training, evaluation,

and experimentation. It serves as a structured guide, offering insight into the anticipated methods and

materials deployed in the study.

3.1. Data collection

This study collected 300 images of seven types of Betta fish from Betta fish sellers that do

E-commerce in Lazada, Instagram, and Facebook. These data are all in .jpg format, smaller than the .png file.

Table 1 lists the collected data and total images for every Betta fish species. The number of images for comb

tail, delta tail, and double tail is 34, respectively. Forty-six images were collected each for spade tail and veil

tail. Crown tail and halfmoon tail have 64 and 58 images, respectively. Overall, 316 images were obtained

from online stores. The data was then augmented, and the images were resized as part of the pre-processing.

Table 1. The total number of images acquired for each species
Betta Fish Species Number of Images

Comb Tail 34

Crown Tail 64
Delta Tail 34

Double Tail 34

Halfmoon Tail 58
Spade Tail 46

Veil Tail 46

Total 316

3.2. Data pre-processing

Data pre-processing is the most significant and influential factor in the generalization performance

of a supervised ML algorithm [23]. After the dataset was collected, all the images were resized to

224×244 pixels for fitting into MobileNet. Then, as shown in Figure 1, the dataset was augmented due to the

small amount of data by using Figure 1(a) a rotation range of 0.2, Figure 1(b) a shear range of 0.2,

Figure 1(c) a zoom-in range of 0.2, Figure 1(d) a horizontal flip is equal to true, and Figure 1(e) a brightness

range of 0.5 to 1.5.

(a) (b) (c) (d) (e)

Figure 1. Augmentation codes and sample results of (a) rotation range, (b) shear range, (c) zoom-in range,

(d) horizontal flip is equal, and (e) brightness range

Int J Adv Appl Sci ISSN: 2252-8814 

Betta fish species classification using light weight deep … (Danishah Hana Muhammad Muhaimin Lim)

31

It is crucial to augment image data properly to increase accuracy and prevent overfitting [24]. The

parameters of augmentation were adjusted four times to gain more training datasets. After augmentation, the

total number of Betta fish images for every species has increased significantly. Before the data augmentation

process, the total number of images for every species was mostly lower than 100. Based on Table 2, a total of

700 images were created from the original 316 images, where each of the seven classes contains 100 images.

From each of the seven classes, 80 images (80%) were used for training, and 20 images (20%) were used for

testing. Figure 2 shows a snippet of the Betta fish dataset that was divided accordingly.

Table 2. The total number of Betta fish images before and after augmentation

Betta Fish Species

Total Number of Images

Before Data Augmentation After Data Augmentation

Comb Tail 34 240
Crown Tail 64 240

Delta Tail 34 240

Double Tail 34 240
Halfmoon Tail 58 240

Spade Tail 46 240

Veil Tail 46 240
Total 316 1680

Figure 2. The snippet of the Betta fish dataset

3.3. Model architecture

This research used MobileNet to classify Betta fish species by specific architectural configurations.

The primary purpose of choosing MobileNet is to address the challenges associated with deploying DL

models on resource-constrained devices, such as mobile phones while achieving accurate and efficient Betta

fish classification. MobileNet’s architecture is characterized by its lightweight design, making it well-suited

for real-time image processing on devices with limited computational capabilities.

The critical innovation in MobileNet is the use of depthwise separable convolutions, which

significantly reduces the number of parameters and computations compared to traditional convolutional

layers [25]–[27]. This design enables MobileNet to maintain satisfactory accuracy while significantly

lowering the model’s size, making it practical for deployment on mobile platforms. An overview of the

MobileNet architecture is illustrated in Figure 3. It consists of 28 layers, including a deep convolution layer,

1×1 point convolution layer, batch norm, ReLU, average collecting layer, and SoftMax.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 1, March 2025: 28-38

32

Figure 3 MobileNet architecture [28], [29]

3.4. Experimental approach and optimization for MobileNet training

Several experiments have been meticulously conducted to create a reliable and accurate model for

Betta fish species classification using MobileNet. These experiments aimed to enhance the classification

accuracy through two primary approaches: increasing the number of training images and fine-tuning four key

hyper-parameters, namely epoch, dropout layer, pooling layer, and batch size. The culmination of these

efforts involved eight distinct experiments, each contributing valuable insights to the overall model

performance.

3.4.1. Experiment 1: comparison between two sets of datasets

In this experiment, there are two sets of datasets. In the first set, the testing images consist of only

the original images, while in the second set, the testing images consist of a combination of the original and

augmented images. The experiment involved seven classes representing different Betta fish species and

700 images. The division between training and testing datasets was executed with 80% for training and 20%

for testing, adhering to DL model development standards [30]. A hyperparameter called “epochs” determines

how many times the learning algorithm will run over the training dataset [31], [32]. This experiment was run

for 80 epochs, and it took two hours for each model to learn. Table 3 illustrates the results which show that

the model with combined images (validation accuracy of 0.3357) performs better than the one with the

original images (validation accuracy of 0.2786). However, an overfitting problem occurs where the value of

the validation accuracy is very much lower than the training accuracy. Therefore, in the next experiment, a

dropout layer is added.

Table 3. Experiment 1 training results on the original image dataset and combined dataset
Dataset Training Accuracy Training Loss Validation Accuracy Validation Loss

Original Images 0.9036 0.3298 0.2786 4.5028

Combined Images (Original and Augmented) 0.9125 0.3007 0.3357 6.4944

3.4.2. Experiment 2: comparison between using a dropout layer and without a dropout layer

Dropout is an efficient way to reduce overfitting [33]. It randomly sets input units to 0 with a pre-

determined percentage at each step during training time [34]. The dataset for this experiment is the same as in

Experiment 1. This experiment was run for 40 epochs, and it took one hour for each model to learn. Table 4

illustrates the outcome of the experiment and it indicates that the model with combined images (validation

accuracy of 0.3643) showed a better result than the model with original images (validation accuracy of

0.2357) when a dropout layer was added. Furthermore, the performance has slightly improved compared to

Experiment 1. However, overfitting still occurs. Hence, the total number of images is added with different

pooling layers in Experiment 3.

Table 4. Experiment 2 training results on the original image dataset and combined dataset with a

dropout layer
Dataset Training Accuracy Training Loss Validation Accuracy Validation Loss

Original Images 0.6464 1.0404 0.2357 4.5466
Combined Images

(Original and Augmented)
0.5875 1.2169 0.3643 3.8393

Int J Adv Appl Sci ISSN: 2252-8814 

Betta fish species classification using light weight deep … (Danishah Hana Muhammad Muhaimin Lim)

33

3.4.3. Experiment 3: comparison between max pooling and average pooling

Max pooling and average pooling are the two types of pooling layers. The maximum value from the

portion of the image that the kernel (filter) has covered is returned by max pooling [35], [36]. On the

contrary, the average of all the values from the portion of the image covered by the kernel is returned by

average pooling [37]. Two things were selected, which are the pool size and a stride, to perform max pooling

and average pooling. The stride controls how many pixels the window will move across the image pooling

[38], [39]. This experiment compared max pooling and average pooling kernel size 3×3 with a pool size of 7

and stride 1. Since the two previous experiments have proven that a combination dataset of original images

and augmented images, with a dropout layer is a better option, this case is also applied in Experiment 3.

Moreover, 1680 images were added, 200 for training (80%) and 40 for testing (20%) for each of the seven

classes. At the end of this experiment, two models were trained. This experiment was run for ten epochs, and

it took five hours for each model to learn. Table 5 illustrates the results of the experiments. By referring to

Table 5, we can see that the model with max pooling is better than the model with average pooling since

there is no overfitting for max pooling. Overfitting occurs with average pooling where the training accuracy

is higher than its validation accuracy. However, the accuracy achieved by the model with max pooling was

not high. Thus, different pooling sizes were experimented with and compared in the next experiment.

Table 5. Experiment 3 training results on max pooling and average pooling
Pooling Layer Training Accuracy Training Loss Validation Accuracy Validation Loss

Max Pooling 0.2000 2.2227 0.2000 2.2842

Average Pooling 0.2736 1.8567 0.2464 2.2027

3.4.4. Experiment 4: comparison between pool size

In the previous experiment, the pool size used was 7. In this experiment, a comparison between max

pooling and average pooling with a pool size of 6 is performed. This experiment was run for ten epochs and

took five hours for each model to learn. Table 6 lists the results and the model with max pooling performs

slightly better than the model with average pooling since the overfitting that occurs by max pooling is less

than average pooling. However, the accuracy was still not high. Thus, in the next experiment, different

dropout hyperparameters were compared.

Table 6. Experiment 4 training results on max pooling and average pooling with a pool size of 6
Pooling Layer Training Accuracy Training Loss Validation Accuracy Validation Loss

Max Pooling 0.4193 1.5644 0.2429 3.0617

Average Pooling 0.5157 1.3223 0.2500 5.5521

3.4.5. Experiment 5: comparison between dropout hyperparameter

Experiment 5 compared the dropout hyperparameters of 0.2 and 0.5. This experiment was run for

ten epochs and took five hours for each model to learn. Table 7 illustrates that the model with a dropout

hyperparameter of 0.2 (validation accuracy of 0.2429) shows better results than the model with a dropout

hyperparameter of 0.5 (validation accuracy of 0.2). The following experiment compared two different

hyperparameter values of the batch size to determine which would arrive at a better validation accuracy.

Table 7. Experiment 5 training results on dropout hyperparameters
Dropout Hyperparameters Training Accuracy Training Loss Validation Accuracy Validation Loss

0.2 0.4793 1.4193 0.2429 2.4662

0.5 0.2000 2.2227 0.2000 2.2842

3.4.6. Experiment 6: comparison between batch size hyperparameter

The batch size, a gradient descent hyperparameter, determines how many training samples must be

examined before the model's internal parameters are updated [40], [41]. Experiment 6 compared the batch

size hyperparameters of 2 and 5. This experiment was run for ten epochs and took five hours for each model

to learn. Table 8 shows that the model with a batch size hyperparameter of 5 produces better results

(validation accuracy of 0.2464) than the model with a batch size hyperparameter of 2 (validation accuracy

of 0.2).

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 1, March 2025: 28-38

34

Table 8. Experiment 6 training results on batch size hyperparameters
Batch Size Hyperparameters Training Accuracy Training Loss Validation Accuracy Validation Loss

2 0.2000 2.2227 0.2000 2.2842
5 0.2507 3.2279 0.2464 4.4298

3.4.7. Experiment 7: retrain experiment 3 with 200 epochs

Since the best model so far was achieved in experiment 3 where the model was trained with max

pooling with a pool size of 7, dropout hyperparameter of 0.5, and batch size hyperparameter of 2, this

experiment used the same hyperparameters but with 200 epochs. It took three days for this model to learn,

but the validation accuracy produced was lower than in experiment 3. Since this model did not produce high

validation accuracy as shown in Table 9, the collected data was analyzed again. It was found that the

background images and the appearances of the male Betta fish and female Betta fish differ significantly.

Therefore, in the next experiment, the dataset was separated according to the Betta fish gender, male and

female, with four classes only due to the lack of female Betta fish images, time, and hardware constraints.

Table 9. Experiment 7 training results on retrain experiment 3 with 200 epochs
Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss

200 0.9993 0.0043 0.4464 5.1301

3.4.8. Experiment 8: three models

Three models were trained in this experiment: the male Betta fish dataset, the female Betta fish

dataset, and the combination of the male and female Betta fish dataset. The dataset was reduced to

400 images in each model. Based on experiment 3, it turned out that max pooling, pool size of 7, dropout of

0.5, and batch size of 2 showed the best result. Therefore, these hyperparameters were used in this

experiment. Besides, these models used stochastic gradient descent (SGD) as an optimizer and SoftMax as an

activation function. This experiment was run for 80 epochs and took three hours for each model to learn. As

shown in Table 10, the validation accuracy was much improved compared to the previous experiments.

Table 10. Experiment 8 training results on three models
Model Training Accuracy Training Loss Validation Accuracy Validation Loss

Male 0.9875 0.0237 0.7000 7.4765

Female 0.9563 0.1721 0.8375 0.9622

Male and Female 0.9656 0.1016 0.6500 2.0234

4. RESULTS AND DISCUSSION

This study conducted a comprehensive series of eight experiments to optimize Betta fish species

classification through DL, yielding 14 distinct models. The primary objective was to develop a robust

classification system to classify Betta fish species. These experiments were executed with meticulous

attention to factors such as data augmentation, hyperparameter tuning, and the utilization of the MobileNet

model for its efficiency in large-scale image classification processing. The culmination of these efforts is

encapsulated in the comparison of the 14 models, detailed in Table 11. Within Table 11, the performance of

each model is scrutinized, and the findings reveal that the final three models from experiment 8 exhibit the

most promising results. The ensuing section delves into a detailed analysis of these outcomes, shedding light

on the key factors influencing the superior performance of the selected models.

The Betta fish classification model, employing MobileNet architecture, demonstrates exceptional

accuracy by utilizing max pooling, a pool size of 7, a dropout rate of 0.5, and a batch size of 2, coupled with

SGD optimizer and SoftMax as the activation function across 80 epochs. The validation accuracy for male

Betta fish reaches 0.7, while female Betta fish achieves an impressive 0.8375. However, combining both

male and female images results in a slightly lower accuracy of 0.65. Notably, the decision to employ separate

models for male and female classification proves advantageous, highlighting the substantial differences in

shape and color between male and female Betta fish that impact accurate classification. It underscores the

importance of tailored models for distinct genders to optimize classification performance.

Int J Adv Appl Sci ISSN: 2252-8814 

Betta fish species classification using light weight deep … (Danishah Hana Muhammad Muhaimin Lim)

35

Table 11. Summary of experimental results with various training models

Experiment Dataset
Accuracy Loss

Training Validation Training Validation

1 Original 0.9036 0.2786 0.3298 4.5028

Combined 0.9125 0.3357 0.3007 6.4944

2 Original 0.6464 0.2357 1.0404 4.5466
Combined 0.5875 0.3643 1.2169 3.8393

3 Combined (Max Pooling) 0.2000 0.2000 2.2227 2.2842

Combined (Average Pooling) 0.2736 0.2464 1.8567 2.2027
4 Combined (Max Pooling, Pool Size = 6) 0.4193 0.2429 1.5644 3.0617

Combined (Average Pooling, Pool Size = 6) 0.5157 0.2500 1.3223 5.5521

5 Combined (Dropout (0.2)) 0.4793 0.2429 1.4193 2.4662
Combined (Dropout (0.5)) 0.2000 0.2000 2.2227 2.2842

6 Combined (Batch Size = 2) 0.2000 0.2000 2.2227 2.2842

Combined (Batch Size = 5) 0.2507 0.2464 3.2279 4.4298
7 Combined (Epoch = 200) 0.9993 0.4464 0.0043 5.1301

8 Male 0.9875 0.7000 0.0237 7.4765

Female 0.9563 0.8375 0.1721 0.9622

Male and Female 0.9656 0.6500 0.1016 2.0234

4.1. Mobile application development

The mobile application development involves harnessing the capabilities of the trained models to

produce a user-friendly application tailored for Betta fish species classification on the Android platform.

Integrating an intuitive interface within the application enables users to seamlessly capture or upload images

for instantaneous species identification. This feature-rich application aims to provide users with a

straightforward and engaging experience, allowing them to actively participate in the real-time identification

of Betta fish species easily and accurately.

Figure 4 illustrates a sample interface of the Betta fish species classification mobile application.

Figure 4(a) illustrates the main page, which consists of two buttons, namely ‘Buka Kamera’ to capture the

image of the Betta fish using the mobile’s camera and ‘Buka Galeri’ to select a saved image stored in the

gallery to classify the species. Figure 4(b) will be displayed if a user clicks the ‘Buka Kamera’ button, while

Figure 4(c) will be shown if a user clicks the ‘Buka Galeri’ button. Users can also press the back arrow

button to navigate to the previous page. Figure 5 shows the result page, where the name of the Betta fish

species and its range of prices in Ringgit Malaysia (RM) are shown. The user can then repeat this process for

the next Betta fish image classification.

(a)

(b)

(c)

Figure 4. Sample interface of the mobile application of (a) main page, (b) page to capture the image after

clicking the ‘Buka Kamera’ button, and (c) page to select an image after clicking the ‘Buka Galeri’ button

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 1, March 2025: 28-38

36

Figure 5. Sample interface for the result page

5. CONCLUSION AND FUTURE WORK

In conclusion, this research successfully explores and implements the MobileNet architecture to

classify Betta fish species, addressing challenges faced by breeders and sellers in accurately identifying these

aquatic species. MobileNet, which uses depthwise separable convolutions, is an efficient solution for

deployment on resource-constrained devices. The crucial finding is that having separate models for male and

female classifications improves accuracy significantly, highlighting the nuanced differences in shape and

color between genders. This research not only contributes to the advancement of the Betta fish classification

technique but also provides a practical tool for industry stakeholders to enhance their decision-making

processes and reduce monetary losses associated with misclassification.

Concerning future work, several avenues exist for enhancing the Betta fish species classification

model based on MobileNet architecture. Expanding the dataset to include a broader spectrum of Betta fish

images with diverse colors, patterns, and tail shapes can contribute to the improvement of model

generalization and reduce the overfitting problem. Considering the potential benefits, utilizing pre-trained

models, and experimenting with advanced data augmentation techniques could further enhance the model's

robustness. Investigating ensemble learning approaches and integrating user feedback mechanisms in the

mobile application can contribute to continuous model improvement. Optimization for real-time deployment,

compatibility with various mobile devices, and collaboration with aquatic experts to incorporate domain

knowledge are crucial considerations. These future directions aim to refine the model’s accuracy, usability,

and adaptability to benefit Betta fish breeders and sellers.

ACKNOWLEDGMENTS

Thanks are due to the College of Computing, Informatics and Mathematics at Universiti Teknologi

MARA, Shah Alam, Selangor, Malaysia, for their support in facilitating this work.

REFERENCES
[1] A. Sinha and P. K. Pandey, Breeding and culture of freshwater ornamental fish. London: CRC Press, 2023. doi:

10.1201/9781003456858.
[2] K. Tantayakul and W. Panichpattanakul, “A comparative study of machine learning for IOS based on Siam Betta mobile

application,” in 2020 - 5th International Conference on Information Technology (InCIT), IEEE, Oct. 2020, pp. 104–109. doi:

10.1109/InCIT50588.2020.9310932.
[3] J. Wang, B. Cao, P. Yu, L. Sun, W. Bao, and X. Zhu, “Deep learning towards mobile applications,” in 2018 IEEE 38th

International Conference on Distributed Computing Systems (ICDCS), IEEE, Jul. 2018, pp. 1385–1393. doi:

10.1109/ICDCS.2018.00139.

Int J Adv Appl Sci ISSN: 2252-8814 

Betta fish species classification using light weight deep … (Danishah Hana Muhammad Muhaimin Lim)

37

[4] Bernama, “Fighting fish stall attracts large crowd,” New Straits Times. Accessed: Oct. 18, 2022. [Online]. Available:
https://www.nst.com.my/news/nation/2022/03/783570/fighting-fish-stall-attracts-large-crowd

[5] Y. Heningtyas, F. Rahmi, and K. Muludi, “Implementation of density-based clustering in betta fish image segmentation (in

Indonesian: Implementasi density-based clustering pada segmentasi citra betta fish),” J. Teknoinfo, vol. 16, no. 1, p. 8, Jan. 2022,
doi: 10.33365/jti.v16i1.1273.

[6] Z. Abidin, Rusliyawati, Permata, F. Ariany, I. Solehudin, and A. Junaidi, “Betta fish image identification using feature extraction

GLCM and k-nearest neighbour classification,” in 2022 International Conference on Information Technology Research and
Innovation (ICITRI), IEEE, Nov. 2022, pp. 156–161. doi: 10.1109/ICITRI56423.2022.9970209.

[7] L. Mookdarsanit and P. Mookdarsanit, “SiamFishNet: the deep investigation of siamese fighting fishes,” Int. J. Appl. Comput.

Technol. Inf. Syst., vol. 8, no. 2, 2019, [Online]. Available: http://203.158.98.12/actisjournal/index.php/IJACTIS/article/view/256
[8] S. Hidayat, A. Y. Rahman, and Istiadi, “Betta fish image classification using artificial neural networks with Gabor extraction

features,” in 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), IEEE, Jun.

2022, pp. 270–273. doi: 10.1109/CyberneticsCom55287.2022.9865509.
[9] D. M. Hibban and W. F. Al Maki, “Classification of ornamental betta fish using convolutional neural network method and grabcut

segmentation,” in 2021 International Conference on Data Science and Its Applications (ICoDSA), IEEE, Oct. 2021, pp. 102–109.

doi: 10.1109/ICoDSA53588.2021.9617213.
[10] O. Ukwandu, H. Hindy, and E. Ukwandu, “An evaluation of lightweight deep learning techniques in medical imaging for high

precision COVID-19 diagnostics,” Healthc. Anal., vol. 2, p. 100096, Nov. 2022, doi: 10.1016/j.health.2022.100096.

[11] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, “Advanced lightweight encryption algorithms for IoT devices: survey,
challenges and solutions,” J. Ambient Intell. Humaniz. Comput., vol. 15, no. 2, pp. 1625–1642, Feb. 2024, doi: 10.1007/s12652-

017-0494-4.

[12] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and F. Hussain, “Machine learning at the network edge: a
survey,” ACM Comput. Surv., vol. 54, no. 8, pp. 1–37, Nov. 2022, doi: 10.1145/3469029.

[13] K. Kim, S.-J. Jang, J. Park, E. Lee, and S.-S. Lee, “Lightweight and energy-efficient deep learning accelerator for real-time object

detection on edge devices,” Sensors, vol. 23, no. 3, p. 1185, Jan. 2023, doi: 10.3390/s23031185.
[14] A. Howard et al., “Searching for MobileNetv3,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE,

Oct. 2019, pp. 1314–1324. doi: 10.1109/ICCV.2019.00140.

[15] J. Yang, L. Zhang, X. Tang, and M. Han, “CodnNet: a lightweight CNN architecture for detection of COVID-19 infection,” Appl.
Soft Comput., vol. 130, p. 109656, Nov. 2022, doi: 10.1016/j.asoc.2022.109656.

[16] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling for convolutional neural networks,” in Proceedings of the 36 th

International Conference on Machine Learning, Long Beach, California: PMLR 97, May 2019. [Online]. Available:
http://arxiv.org/abs/1905.11946

[17] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet v2: practical guidelines for efficient CNN architecture design,” in Lecture

Notes in Computer Science, Computer V., Springer, Cham, 2018, pp. 122–138. doi: 10.1007/978-3-030-01264-9_8.
[18] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: an extremely efficient convolutional neural network for mobile devices,” in

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Jun. 2018, pp. 6848–6856. doi:

10.1109/CVPR.2018.00716.
[19] Y. Li et al., “MicroNet: improving image recognition with extremely low flops,” in 2021 IEEE/CVF International Conference on

Computer Vision (ICCV), IEEE, Oct. 2021, pp. 458–467. doi: 10.1109/ICCV48922.2021.00052.

[20] K. Dey, M. M. Hassan, M. M. Rana, and M. H. Hena, “Bangladeshi indigenous fish classification using convolutional neural
networks,” in 2021 International Conference on Information Technology (ICIT), IEEE, Jul. 2021, pp. 899–904. doi:

10.1109/ICIT52682.2021.9491681.

[21] U. Kulkarni, M. S.M., S. V. Gurlahosur, and G. Bhogar, “Quantization friendly MobileNet (qf-MobileNet) architecture for vision
based applications on embedded platforms,” Neural Networks, vol. 136, pp. 28–39, Apr. 2021, doi: 10.1016/j.neunet.2020.12.022.

[22] G. Lu, W. Zhang, and Z. Wang, “Optimizing depthwise separable convolution operations on GPUs,” IEEE Trans. Parallel

Distrib. Syst., vol. 33, no. 1, pp. 70–87, Jan. 2022, doi: 10.1109/TPDS.2021.3084813.
[23] K. Maharana, S. Mondal, and B. Nemade, “A review: data pre-processing and data augmentation techniques,” Glob. Transitions

Proc., vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.
[24] N. E. Khalifa, M. Loey, and S. Mirjalili, “A comprehensive survey of recent trends in deep learning for digital images

augmentation,” Artif. Intell. Rev., vol. 55, no. 3, pp. 2351–2377, Mar. 2022, doi: 10.1007/s10462-021-10066-4.

[25] S. Bouguezzi, H. Ben Fredj, T. Belabed, C. Valderrama, H. Faiedh, and C. Souani, “An efficient fpga-based convolutional neural
network for classification: ad-MobileNet,” Electronics, vol. 10, no. 18, p. 2272, Sep. 2021, doi: 10.3390/electronics10182272.

[26] K. KC, Z. Yin, M. Wu, and Z. Wu, “Depthwise separable convolution architectures for plant disease classification,” Comput.

Electron. Agric., vol. 165, p. 104948, Oct. 2019, doi: 10.1016/j.compag.2019.104948.

[27] W. Wang, Y. Hu, T. Zou, H. Liu, J. Wang, and X. Wang, “A new image classification approach via improved MobileNet models

with local receptive field expansion in shallow layers,” Comput. Intell. Neurosci., vol. 2020, pp. 1–10, Aug. 2020, doi:

10.1155/2020/8817849.
[28] A. G. Howard et al., “MobileNets: efficient convolutional neural networks for mobile vision applications,” arXiv, Apr. 2017,

[Online]. Available: http://arxiv.org/abs/1704.04861

[29] W. Wang, Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, “A novel image classification approach via dense-MobileNet models,”
Mob. Inf. Syst., vol. 2020, pp. 1–8, Jan. 2020, doi: 10.1155/2020/7602384.

[30] S. W. P. Listio, “Performance of deep learning inception model and MobileNet model on gender prediction through eye image,”

Sinkron, vol. 7, no. 4, pp. 2593–2601, Nov. 2022, doi: 10.33395/sinkron.v7i4.11887.
[31] S. Kaur, H. Aggarwal, and R. Rani, “Hyper-parameter optimization of deep learning model for prediction of Parkinson’s disease,”

Mach. Vis. Appl., vol. 31, no. 5, p. 32, Jul. 2020, doi: 10.1007/s00138-020-01078-1.

[32] Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, “Attack classification of an intrusion detection system using deep
learning and hyperparameter optimization,” J. Inf. Secur. Appl., vol. 58, p. 102804, May 2021, doi: 10.1016/j.jisa.2021.102804.

[33] C. Ha, V.-D. Tran, L. Ngo Van, and K. Than, “Eliminating overfitting of probabilistic topic models on short and noisy text: the

role of dropout,” Int. J. Approx. Reason., vol. 112, pp. 85–104, Sep. 2019, doi: 10.1016/j.ijar.2019.05.010.
[34] J. Zhang, Y. Sun, L. Guo, H. Gao, X. Hong, and H. Song, “A new bearing fault diagnosis method based on modified

convolutional neural networks,” Chinese J. Aeronaut., vol. 33, no. 2, pp. 439–447, Feb. 2020, doi: 10.1016/j.cja.2019.07.011.

[35] J. Hyun, H. Seong, and E. Kim, “Universal pooling – a new pooling method for convolutional neural networks,” Expert Syst.
Appl., vol. 180, p. 115084, Oct. 2021, doi: 10.1016/j.eswa.2021.115084.

[36] S. S. Husain and M. Bober, “REMAP: multi-layer entropy-guided pooling of dense CNN features for image retrieval,” IEEE

Trans. Image Process., vol. 28, no. 10, pp. 5201–5213, Oct. 2019, doi: 10.1109/TIP.2019.2917234.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 1, March 2025: 28-38

38

[37] S. Balachandran, “Machine learning - max and average pooling,” DEV Community. Accessed: Oct. 18, 2023. [Online]. Available:

https://dev.to/sandeepbalachandran/machine-learning-max-average-pooling-1366
[38] A. Zafar et al., “A comparison of pooling methods for convolutional neural networks,” Appl. Sci., vol. 12, no. 17, p. 8643, Aug.

2022, doi: 10.3390/app12178643.

[39] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl, “Measuring the effects of data parallelism on
neural network training,” J. Mach. Learn. Res., vol. 20, pp. 1–49, 2019.

[40] N. Akhtar and U. Ragavendran, “Interpretation of intelligence in CNN-pooling processes: a methodological survey,” Neural

Comput. Appl., vol. 32, no. 3, pp. 879–898, Feb. 2020, doi: 10.1007/s00521-019-04296-5.
[41] C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical study of their impact to deep learning,”

Multimed. Tools Appl., vol. 79, no. 19–20, pp. 12777–12815, May 2020, doi: 10.1007/s11042-019-08453-9.

BIOGRAPHIES OF AUTHORS

Danishah Hana Muhammad Muhaimin Lim received her Bachelor's degree in

Computer Science (Hons.) Multimedia Computing at Universiti Teknologi MARA, Shah

Alam, Selangor Malaysia. She has work experience as a Business Analyst at Sime Darby

Plantation Berhad and as a coordinator at Voxel Studio. Her research lines are in image

recognition and classification using deep learning. She can be contacted at email:

danishahhanaaa@gmail.com.

Norizan Mat Dia is an Associate Professor at the School of Computing Sciences,

College of Computing, Informatics, and Mathematics, Universiti Teknologi MARA, Shah

Alam, Selangor, Malaysia. She holds a Ph.D. in information sciences from the National

University of Malaysia. Her research focuses on gamification, game engines, real-time

feedback (algorithms), and machine learning. She can be contacted at:

norizan289@uitm.edu.my.

Zaidah Ibrahim is currently an Associate Professor at the School of Computing

Sciences, College of Computing, Informatics and Media, Universiti Teknologi MARA, Shah

Alam, Selangor, Malaysia. Her research areas are computer vision and deep learning. She can

be contacted at email: zaidah@tmsk.uitm.edu.my.

Zolidah Kasiran is a senior lecturer in the College of Computing, Informatics,

and Mathematics, Universiti Teknologi MARA, Shah Alam Selangor Malaysia. She has a PhD

in Information Technology from UiTM. Her research focuses on Computer Networks,

Cybersecurity, and Web applications. She can be contacted at email: zolid808@uitm.edu.my.

https://orcid.org/0009-0006-5061-8505
https://orcid.org/0000-0002-3785-948X
https://scholar.google.com.my/citations?user=bWIqy0QAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=36138815700
https://orcid.org/0009-0004-1640-1762
https://scholar.google.com.my/citations?user=GR9J0tIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=25824968100
https://orcid.org/0000-0001-5086-346X
https://scholar.google.com.my/citations?user=lcCO4-sAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=24450527700

