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 Predicting the location of earthquake epicenters is a critical aspect of 

earthquake forecasting, as it complements efforts to determine the time and 

magnitude of seismic events. This research addresses the challenge posed by 

the uncertainty in epicenter locations, particularly along the extensive plate 

faults of Indo-Australia and Eurasia. In these regions, effective earthquake 

prediction is compromised without accurate epicenter information, impeding 

mitigation strategies and complicating disaster impact estimation. The 

primary objective of this study is to devise an algorithm for forecasting 

earthquake epicenter locations by harnessing variations in radon gas 

concentrations on southern Java Island, Indonesia, as a predictive precursor. 

Using a supervised machine learning approach, this study integrates radon 

gas concentration data to predict the distance between a radon gas 

telemonitoring station and the impending earthquake epicenter. Three 

distinct machine learning algorithms were evaluated using data from six 

Java-Bali radon gas telemonitoring stations within an early warning system. 

The random forest algorithm emerged as the most effective, yielding an 

average root mean square error of 453.10 kilometers. The findings of this 

research significantly contribute to earthquake risk mitigation efforts. This 

work enhances our capability to anticipate seismic events, and more 

effective disaster preparedness and response strategies in earthquake-prone 

regions. 
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1. INTRODUCTION 

Earthquakes are among the most deadly and dangerous natural disasters, mainly caused by tectonic 

activity between the earth's plates. Despite many efforts to understand and predict earthquakes, accurate 

prediction remains a significant challenge in geophysical science. The lack of references, methods, models, 

calculations, indicators, and information needed for earthquake prediction is a significant obstacle to 

overcoming this complex phenomenon [1], [2]. One approach in efforts to predict earthquakes is to look for 

indicators or precursors that can provide initial clues that an earthquake will occur. Some known indicators 

include natural events, atmospheric conditions, groundwater fluctuations, gas emissions in the soil, and 

animal responses. Among these precursors, fluctuations in radon gas emissions in soil have attracted 

attention, and several studies have linked them to potential as an earthquake indicator. For example, radon 

https://creativecommons.org/licenses/by-sa/4.0/
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gas precursors have been observed as earthquake precursors by Urumu Tsunogai and colleagues in the Kobe, 

Japan, earthquake in 1995 [3]–[10]. 

The radon gas monitoring can potentially observe the environment as a precursor to earthquakes. 

This method can be simulated in the laboratory or carried out long-term with direct observation through 

various devices and sensors [6]–[8], [11]–[16]. The early warning system engineering physics research team 

at Universitas Gadjah Mada has researched using multi-device observation stations spread around 

Yogyakarta, Indonesia. The radon gas data collected from these stations is vital for developing an earthquake 

early warning system. However, radon gas data has unique and different properties between observation 

stations, which demands reliable methods to produce accurate predictions [2]. 

Machine learning methods are one promising solution to overcoming the complex earthquake 

prediction problem. Although earthquake prediction with a high level of accuracy is still a challenge, several 

studies have succeeded in predicting the time of earthquake occurrence by taking radon gas concentration 

data for the next few days as input [3], [10], [17]–[20]. However, few studies can still predict earthquakes' 

location based on radon gas precursors. Several studies have tried to predict the location of earthquakes by 

utilizing historical data on earthquake events, taking depth and magnitude as the main features [21]. 

Research by Pratama et al. [3], one of the earthquake early warning system research teams has 

developed a statistical method for predicting the time an earthquake will occur. This method can produce an 

accuracy of 75% in setting an earthquake alarm 1 to 4 days after the alarm is active [2]. In this research, the 

main objective is to complement the Pratama et al. approach by predicting the location of the earthquake 

epicenter [3]. Predicting the location of the epicenter has a central role in early warning of earthquakes, 

especially in earthquake-prone areas such as the meeting of the Indo-Australian and Eurasian plates. Radon 

gas concentration data and machine learning methods are critical elements in predicting the location of the 

earthquake epicenter proposed in this research. Hopefully, this research can contribute to reducing the impact 

of natural disasters caused by earthquakes. 

 

 

2. RESEARCH METHOD 

In the method section, this research will outline the basic concepts of three ensemble learning 

techniques essential in machine learning: gradient boosting, AdaBoost, and random forest. The sequence of 

this research is data collection, dataset pre-processing, machine learning modeling, and model selection based 

on the best root mean square error (RMSE). Distance results from the model with the lowest RMSE will be 

used as the prediction. The research method diagram can be seen in Figure 1. 

 

 

 
 

Figure 1. Block diagram of research methods 

 

 

2.1.  Data collection 

The research employed a comprehensive data collection strategy incorporating primary and 

secondary sources. Primary data, crucial to the study, consisted of daily average radon gas measurements 

obtained from six telemonitoring stations: Pacitan, Bantul, Prambanan, Maguwo, Serang, and Bali. This 

dataset comprised 14 data points, specifically the daily average radon gas concentration (Bq/m3), offering a 

robust depiction of the variances in radon gas levels throughout the designated period. Complementing the 

primary data, secondary data was sourced from the Potsdam Geofon site, providing essential information 

about the coordinates of earthquake epicenters. These coordinates underwent conversion using the Haversine 

formula to derive distance values between the earthquake epicenter and each telemonitoring station. The 

combination of primary and secondary data is the basic training material for the supervised machine learning 

process. This machine learning approach aimed to predict the distance from each telemonitoring station to the 

impending earthquake epicenter, enhancing the precision and efficacy of earthquake epicenter location 

forecasting. The 224 data collection period for radon gas and earthquakes starts from January 20, 2022 to 

April 30, 2023. 
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2.2.  Data pre-processing 

Data pre-processing for primary and secondary data is carried out before entering the machine 

learning process. The data will be cleaned from null, empty data, missing values, and outliers that can 

influence prediction results. Removing outliers where data points far from most other data are identified and 

removed. Outliers were removed based on the z-score value, with 5% of the z-score as outliers from the 

entire average radon gas concentration data per telemetry station. Therefore, a 95% z-score of the whole data 

from each station will be used. The data preprocessing process resulted in features in the form of a clean 

dataset. The dataset is divided into two parts: features (X), the primary data variables used as features to 

predict the target variable, and target (y), which is the distance of the target to predict. The dataset is further 

divided into two subsets: a training set and a testing set. The training set (80%) while the testing set (20%). 

This split ensures that the model is trained on one data set and tested on another set it has not seen before. 

The machine learning modeling process can be carried out with the training and test data. The data 

processing steps are presented in Figure 2. 

 

 

 
 

Figure 2. Data acquisition and pre-processing 

 

 

2.3.  Machine learning 

The main difference between gradient boosting, AdaBoost, and random forest is how they combine 

weak models. Gradient boosting focuses on gradually reducing prediction errors by improving previous 

models, AdaBoost gives more weight to misclassified samples, while random forest combines predictions 

from many decision trees in parallel. The appropriate technique selection depends on the problem to be 

solved and the data characteristics used. In this research, we will compare the performance of these three 

techniques in the context to see the strengths and weaknesses of each model [16], [22]–[26]. 

 

2.4.  Method implementation 

2.4.1. Algorithm training 

After the data pre-processing stage, the data will be separated into two subsets, namely train data 

and validation data, through the data separation stage. Train data is used to train the model, while validation 

data is used to measure the model's performance during training and help in parameter tuning. The final stage 

in the training process is machine learning training, where the selected algorithm will be applied to the train 

data and adjusted to the patterns in the data. This process will be repeated and adjusted with various 

parameters until the model achieves performance that meets the research demands. Going through this series 

of stages carefully ensures that the resulting machine-learning model can provide accurate and useful 

predictions. 

 

2.4.2. Gradient boosting implementation 

Gradient boosting implementation consists of several crucial stages. The first stage is selecting the 

base model to be used. It used a decision tree (decision trees) as a base model known as gradient boosting 

with decision trees or gradient boosted trees (GBT). The second step is the initialization of the GBT model. 
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Initially, this model will have equal weights for all training data. Then, it will run iterations to produce 

several decision trees. Each iteration trains a decision tree using the gradient of the loss function against the 

previous prediction. This will give greater weight to data that earlier models had difficulty explaining. 

Furthermore, each newly added decision tree will have its weight in the ensemble model. It is combining 

predictions from all decision trees possible to produce a final prediction. It will also pay attention to essential 

parameters such as learning rate and tree depth to control model complexity [25], [27], [28]. 

 

2.4.3. AdaBoost implementation 

In the implementation phase of AdaBoost, the steps in implementing this technique are followed 

carefully. The weak model is chosen as the base model, with a decision tree that has limited depth as the 

choice, which will be adapted adaptively during the training process. Next, weight initialization is carried out 

for each training data sample, emphasizing misclassified samples at each iteration. The weights for each 

sample are initially set uniformly. Iterations are carried out, where the base model is trained on the training 

data with weights adjusted adaptively. Samples misclassified in the previous iteration will be given greater 

weight in the next iteration. This iteration continues until the specified number of iterations is reached or a 

sufficient accuracy level is achieved. Finally, predictions from all base models are combined using weights 

appropriate to each model. The final result of this ensemble is an AdaBoost model that has been trained to 

predict the distance to the epicenter of an earthquake from telemonitoring station data [22], [29], [30]. 

 

2.4.4. Random forest implementation 

In the random forest implementation phase, the steps are carefully guided to produce a reliable 

ensemble model. First, choose the number of decision trees that will form the ensemble and other parameters, 

such as the number of random features used in each tree. The second step is to create a random data sample 

set with replacement from the training dataset for each tree. This ensures variation in the data used to train 

each tree, helping to avoid overfitting. Each decision tree is trained on a dataset that has been created. 

Separation criteria such as Gini impurity or entropy to build an optimal decision tree at each iteration [16], 

[26], [31], [32]. During testing, it uses validation data sets to measure the performance of each tree 

separately. Finally, the predictions from each tree will be combined via majority vote (classification) or 

average (regression) to produce a final ensemble prediction. 

 

 

3. RESULTS AND DISCUSSION 

One of the important metrics used in the evaluation process is RMSE. During the evaluation, all 

models were trained on the validation dataset and measured the RMSE of each model. To choose the best 

algorithm for implementing epicenter distance prediction, the model with the smallest RMSE is selected, 

namely the model with the highest accuracy level in predicting this distance. Choosing the best algorithm is 

essential in ensuring that the epicenter distance prediction to be implemented has a high level of accuracy and 

is reliable. Thus, the machine learning model evaluation results are the basis for selecting a model that will be 

used for distance prediction in the context of radon gas telemonitoring stations. 

Following the training phase utilizing gradient boosting, AdaBoost, and random forest machine 

learning models, the dataset was split into 80% (179 data) for training data and 20% (45 data) for testing data 

to assess the models' predictive capabilities. All three models demonstrated proficiency in predicting the 

distance between the earthquake epicenter and the telemetry station. The prediction performance indicators 

were evaluated based on the outcomes of distance prediction tests conducted with the trained machine 

learning models. The AdaBoost model consistently yielded the most favorable RMSE results, signifying 

superior predictive accuracy. The detailed RMSE values for each radon gas telemonitoring station under each 

machine-learning algorithm are presented in Table 1. Additionally, the corresponding RMSE training results 

from each radon telemonitoring station are visually represented in Figure 3, providing a comprehensive 

overview of the model's performance across different stations. These findings contribute valuable insights 

into the comparative effectiveness of the machine learning algorithms in predicting earthquake epicenter 

distances, which is crucial for refining and optimizing future predictive models. Based on the prediction 

results obtained, it can be seen from Figure 3, that each station has a different best algorithm. The best 

algorithm at Pacitan station is AdaBoost; at Bantul station is random forest; at Prambanan station, it is 

AdaBoost; at Maguwo station is random forest; at Serang station, it is gradient boosting; and at Bali station, it 

is random forest. In general, average RMSE is used to find the best model; the Random Forest algorithm is 

the best algorithm for all radon gas telemetry stations, but need to pay attention again because each station 

has a different best algorithm, so random forest cannot be used as an absolute reference algorithm. 
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Table 1. RMSE predicted distance to the epicenter and radon gas telemonitoring station 

Station 
AdaBoost (AB)  Gradient Boosting (GB) Random Forest (RF) 

RMSE (km) RMSE (km) RMSE (km) 

Pacitan 470.79 499.61 484.22 

Bantul 536.13 555.00 498.30 

Prambanan 540.73 577.15 580.51 
Maguwo 610.56 697.87 590.58 

Serang 151.74 118.88 162.37 

Bali 739.17 787.81 402.62 
Average 508.19 539.39 453.10 

 

 

 
 

Figure 3. Graph of RMSE predictions from each station 

 

 

4. CONCLUSION 

Earthquakes remain a formidable challenge in geophysical science despite extensive research efforts 

to understand and predict them. from testing the algorithm for predicting the distance of the earthquake 

epicenter from 6 Java-Bali radon gas telemonitoring stations on an early warning system using three types of 

machine learning (gradient boosting, AdaBoost, and random forest). The optimal algorithm varied across 

different stations, indicating the importance of considering station-specific characteristics when 

implementing predictive models. It was concluded that the best algorithm was random forest with an average 

RMSE value of 453.10 kilometers. Overall, the findings contribute valuable insights into the potential of 

machine learning methods for enhancing earthquake prediction accuracy. By refining predictive models and 

considering station-specific factors, such as geological conditions and data variability, researchers can further 

advance early warning systems and mitigate the impact of seismic events on vulnerable communities. 
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