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 Acute myocardial infarction (AMI) carries a significant risk, emphasizing 

the critical need for precise diagnosis and prompt treatment of the 

responsible lesion. Consequently, we devised a neural network algorithm in 

this investigation to identify myocardial infarction (MI) from 

electrocardiograms (ECGs) autonomously. An ECG is a standard diagnostic 

tool for identifying acute MI due to its affordability, safety, and rapid 

reporting. Manual analysis of ECG results by cardiologists is both time-

consuming and prone to errors. This paper proposes a deep learning 

algorithm that can capture and automatically classify multiple features of an 

ECG signal. We propose a hybrid convolutional neural network (CNN) and 

long short-term memory (LSTM) for automatically diagnosing MI. To 

generate the hybrid CNN-LSTM model, we proposed 39 models with 

hyperparameter tuning. As a result, the best model is model 35, with 86.86% 

accuracy, 75.28% sensitivity and specificity, and 83.56% precision. The 

algorithm based on a hybrid CNN-LSTM demonstrates notable efficacy in 

autonomously diagnosing AMI and determining the location of MI from 

ECGs. 
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1. INTRODUCTION  

Myocardial infarction (MI), commonly known as a heart attack, happens when the flow of oxygen-

rich blood to a section of the heart is reduced, causing damage or death to that part of the heart [1]–[3]. This 

condition is predominantly caused by coronary artery disease, also referred to as coronary heart disease. The 

primary risk factors for this disease include an unhealthy diet, lack of physical activity, tobacco use, and 

excessive alcohol consumption. To detect MI tests such as the electrocardiogram (ECG) and cardiac enzyme 

tests are used. However, cardiac enzymes can only be detected several hours after the attack and may provide 

inaccurate results if tested too soon. Conversely, ECG offers quicker results, facilitating early intervention 

before further tests are conducted [4]–[6]. 

An ECG is a device that measures the heart's electrical activity. Cardiologists can identify 

abnormalities in certain areas of the heart by analyzing the electrical activity through the heart muscle [3]. 

The P wave is generated by the sinoatrial node, the heart's pacemaker, and indicates atrial depolarization or 

contraction. The QRS complex represents the atrioventricular node and shows ventricular depolarization or 

contraction, while the T wave indicates ventricular relaxation or repolarization [7], [8]. During an MI, the 
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ECG may show a prolonged ST interval, ST-segment elevation or depression, and changes in the T wave 

shapes. The ST segment begins at the J point, which follows the S wave, and ends at the onset of the T wave 

[9], [10]. 

Manual analysis of ECG results by cardiologists is both time-consuming and prone to errors. Many 

attempts have recently been made to use machine learning models to automatically detect MI from ECG 

signals [11]. Despite their strong performance in MI prediction, these machine learning techniques 

necessitate handcrafted feature extraction, which is extremely engineering-intensive and significantly relies 

on human knowledge for manual parameter tweaking. An ECG signal's numerous characteristics can be 

automatically classified by a deep learning algorithm. Classifying multilead or single-lead ECG data to 

automatically diagnose problems like atrial fibrillation, hypertrophic cardiomyopathy, anemia, and other 

ailments is one use of deep learning in the medical domain [12], [13]. In order to automatically diagnose MI, 

the goal of this study was to create a hybrid convolutional neural network (CNN), long short-term memory 

(LSTM), and assess the model's performance. In order to find regional patterns within the convolution 

window, CNNs can extract local features from the ECG signal series. Through weight-sharing, the CNN 

convolution layer makes it possible to extract and learn low-level hierarchical and invariant characteristics 

from unprocessed data [14], [15]. We also suggest the LSTM architecture as a classifier. By using 

multiplicative gates to keep a steady error flow through the internal states of memory cells, LSTM, a kind of 

recurrent network, solves the gradient issue that arises in recurrent neural networks (RNNs). Long-term 

dependencies in ECG sequences have been successfully captured by LSTM [16], [17]. 

 

 

2. RESEARCH METHOD 

2.1.  Data preparation 

The PTB-XL database, the biggest publicly available electrocardiography dataset to date, was just 

made available for use in this investigation [18]. With a total of 18,885 different patients' 10-second, 12-lead 

ECGs are included in the database, for a total of 21,837 entries. Of these records, 5,486 belong to MI patients 

and 9,528 belong to healthy controls (HC). MI records contained eight sub-MI, i.e., acute left MI (ALMI), 

acute MI (AMI), anteroseptal MI (ASMI), impending left MI (ILMI), impending MI/inferior MI (IMI), 

isolated posterior left MI (IPLMI), isolated posterior MI (IPMI), and left MI (LMI). The records are offered 

in two formats with varying sampling frequencies: 500 and 100 Hz. The 500 Hz files are downsampled, and 

the records are kept in waveform database (WFDB) format with a resolution of 1 µV/LSB. Table 1 contains a 

list of all the records that were experimented with. Figure 1 presents the sample records of HC (Figure 1(a)) 

and MI (Figure 1(b)).  
 

 

Table 1. The experimented records of the PTB-XL database 
Class Records 

HC 9,528 

MI ALMI 163 
AMI 290 

ASMI 1,883 

ILMI 393 
IMI 2,329 

IPLMI 50 

IPMI 30 
LMI 132 

Total 14,798 
 

 

 
(a) 

 

 
(b) 

 

Figure 1. The sample records of (a) HC and (b) MI 
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2.2.  Electrocardiogram pre-processing 

ECG signals can become corrupted during acquisition due to various artifacts and interferences such 

as muscle contraction, baseline drift, electrode contact noise, and power line interference [19]–[21]. Because 

it can split an ECG signal into several frequency bands and effectively represent non-stationary signals, the 

discrete wavelet transform (DWT) is frequently used for preprocessing ECG signals (noise removal)  

[19]–[21]. The discrete input signal is passed through a number of low-pass and high-pass filters in order for 

the DWT to function. With wavelet coefficients dictating the number of decomposition levels for a series of 

signal processing procedures, it analyzes signals at various resolution levels. The signal-to-noise ratio (SNR), 

which offers details on signal quality, is used to gauge how effective denoising is. The SNR results are 

displayed in Table 2. According to the results, bior1.3 has the greatest SNR rating, measuring 12.962 dB. 

This study has balanced the amplitude range for computational efficiency after removing ECG 

noise. Using one of the processing subpackages that includes WFDB signal-processing tools for reading, 

writing, and processing WFDB signals and annotations, we applied a normalization bound. By setting the 

lower limit to zero and the upper limit to one, the values of the signal data were modified to fall inside a 

predetermined range. The signal length of an ECG signal is 1,000 nodes. The ECG signals have been divided 

into 400 nodes in order to determine fix length as shown in Figure 2. 

 

 

Table 2. The results of averaged SNR 
Wavelet function SNR value (averaged) 

sym5 11.312 
sym6 11.185 

sym7 12.710 

sym8 11.552 
db2 10.560 

db4 11.635 

db5 12.911 
db6 11.786 

db7 11.662 

bior1.3 12.962 
bior6.8 11.644 

haar 11.662 

 

 

 
 

Figure 2. The segmented ECG signals into 400 nodes 

 

 

2.3.  A hybrid convolutional neural network and long short-term memory 

A one-dimensional (1D)-CNN is a type of CNN specifically designed to process one-dimensional 

data, such as time series or sequences [22]–[24]. Unlike the more common two-dimensional (2D)-CNNs used 

for images, 1D-CNNs are particularly effective for tasks involving sequential data. In 1D-CNNs, filters slide 

over the input data in one dimension, typically along the time axis. These filters detect patterns such as trends 

or periodicity in the data. Similar to 2D-CNNs, pooling layers in 1D-CNNs reduces the dimensionality of the 

feature maps, retaining the most important features while reducing computational complexity. Max pooling 

and average pooling are common pooling techniques. Convolutional layers are followed by non-linear 

activation functions, such as rectified linear units (ReLU), which add non-linearity and allow the network to 

recognize intricate patterns [25], [26]. 1D-CNNs are strong instruments for identifying significant patterns in 
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sequential data, allowing for precise and effective analysis and forecasting. The completely connected layers 

have been swapped out for LSTM in this investigation. One kind of RNN architecture called LSTM is 

especially well-suited for processing and forecasting data that is sequential, like ECG signals. LSTMs are 

extremely successful for time-series analysis because, in contrast to conventional RNNs, they are made to 

capture long-term dependencies and solve the vanishing gradient problem [2], [27]. To generate the hybrid 

CNN-LSTM model, we proposed 39 models with hyperparameter tuning. We are concerned with batch size 

(8, 16, and 32), learning rate (0.001-0.00001), and epochs (50, 100, 200, 300, and 400). Table 3 lists the 

hyperparameter tuning model of MI classification with hybrid CNN-LSTM. 

 

 

Table 3. The hyperparameter tuning of MI classification with hybrid CNN-LSTM 
Model Batch size Learning rate Epoch 

1 8 0.001 50 

2 8 0.001 100 
3 8 0.001 200 

4 8 0.001 300 

5 8 0.001 400 
6 16 0.001 100 

7 16 0.001 200 

8 16 0.001 300 
9 16 0.001 400 

10 32 0.001 100 
11 32 0.001 200 

12 32 0.001 300 

13 32 0.001 400 
14 8 0.0001 50 

15 8 0.0001 100 

16 8 0.0001 200 
17 8 0.0001 300 

18 8 0.0001 400 

19 16 0.0001 100 
20 16 0.0001 200 

21 16 0.0001 300 

22 16 0.0001 400 
23 32 0.0001 100 

24 32 0.0001 200 

25 32 0.0001 300 
26 32 0.0001 400 

27 8 0.00001 50 

28 8 0.00001 100 
29 8 0.00001 200 

30 8 0.00001 300 

31 8 0.00001 400 
32 16 0.00001 100 

33 16 0.00001 200 

34 16 0.00001 300 
35 16 0.00001 400 

36 32 0.00001 100 

37 32 0.00001 200 
38 32 0.00001 300 

39 32 0.00001 400 

 

 

2.4.  Performance evaluation 

Performance evaluation quantitatively measures how effectively a trained model meets specific 

evaluation metrics in machine learning. This data helps decide whether the model is ready for further testing, 

wider deployment, or requires additional training. Model performance evaluation involves monitoring to 

gauge the model's effectiveness at its designated task. There are various methods to conduct model 

evaluation during this monitoring process. Classification metrics are typically applied to the discrete values 

produced by a model after it has classified all the given data. To clearly present the raw data required for 

calculating these metrics, a confusion matrix can be created for the model. This matrix not only shows how 

often the model's predictions were correct but also specifies the ways in which they were correct or incorrect. 

These variables are typically denoted as true negative (TN), false positive (FP), true positive (TP), and false 

negative (FN) (refer to (1)-(4)). From the data in a confusion matrix, several commonly useful classification 

metrics can be calculated,  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖
𝑙
𝑖=1 +∑ 𝑇𝑁𝑖

𝑙
𝑖=1

∑ 𝑇𝑃𝑖
𝑙
𝑖=1 +∑ 𝑇𝑁𝑖

𝑙
𝑖=1 +∑ 𝐹𝑃𝑖

𝑙
𝑖=1 +∑ 𝐹𝑁𝑖

𝑙
𝑖=1

 (1) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ 𝑇𝑃𝑖
𝑙
𝑖=1 +∑ 𝐹𝑁𝑖

𝑙
𝑖=1

 (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
∑ 𝑇𝑁𝑖
𝑙
𝑖=1

∑ 𝑇𝑁𝑖
𝑙
𝑖=1 +∑ 𝐹𝑃𝑖

𝑙
𝑖=1

 (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ 𝑇𝑃𝑖
𝑙
𝑖=1 +∑ 𝐹𝑃𝑖

𝑙
𝑖=1

 (4) 

 

where 𝑙 is the total number of class-𝑖. 
 

 

3. RESULTS AND DISCUSSION 

In this study, the model was generated by splitting 80% of the data for training and the remaining set 

for validation. There were 11,838 segmented-rhythm used for the training set and 2,959 segmented-rhythm 

for the validation set. The experiments are conducted with Intel(R) Core(TM) I7-10700K CPU @ 3.80 GHz 

(16 CPUs) ~3.8 GHz and two NVIDIA GeForce RTX 2070 SUPER 24 GB GPU (8 GB Dedicated, 16 GB 

Shared). We have used Python language programming with Visual Studio Code version 1.86.1 on Windows 

10 Pro 64 Bit. The libraries are NumPy, Pandas, Matplotlib, Seaborn, WFDB, PyWavelets, SciPy, and 

TensorFlow. The performance results of 39 CNN-LSTM models can be presented in Table 4. Table 4 shows 

the varying results in accuracy, sensitivity, specificity, and precision. Among 39 CNN-LSTM models, the 

best model is model 35, with 86.86% accuracy, 75.28% sensitivity and specificity, and 83.56% precision. 

There are extremely imbalanced records in HC and sub-MI classification. 

 

 

Table 4. The performance results of 39 CNN-LSTM models 
Model Results (%) 

Accuracy (ACC) Sensitivity (SEN) Specificity (SPE) Precision (PRE) 

1 78.11 50.00 50.00 78.11 
2 78.11 50.00 50.00 78.11 

3 78.11 50.00 50.00 78.11 

4 78.11 50.00 50.00 78.11 
5 78.11 50.00 50.00 78.11 

6 78.11 50.00 50.00 78.11 

7 78.11 50.00 50.00 78.11 
8 78.11 50.00 50.00 78.11 

9 78.11 50.00 50.00 78.11 

10 78.11 50.00 50.00 78.11 
11 78.11 50.00 50.00 78.11 

12 78.11 50.00 50.00 78.11 
13 78.11 50.00 50.00 78.11 

14 81.00 98.92 57.98 81.29 

15 50.00 80.90 82.33 80.90 
16 84.41 76.37 76.37 77.29 

17 84.36 76.71 76.71 77.18 

18 84.02 76.15 76.15 76.66 
19 86.78 77.52 77.52 81.80 

20 85.39 76.53 76.53 79.09 

21 86.54 76.62 76.62 81.67 
22 84.75 76.83 76.83 77.82 

23 86.35 77.01 77.01 81.02 

24 85.10 76.85 76.85 78.45 
25 85.14 75.73 75.73 78.83 

26 83.95 75.27 75.27 76.66 

27 78.69 53.74 53.74 68.79 
28 80.78 59.12 59.12 76.21 

29 86.00 72.98 72.98 82.80 

30 86.52 76.34 76.34 81.78 
31 86.37 74.97 74.97 82.29 

32 78.77 52.58 52.58 72.84 

33 79.49 55.46 55.46 73.20 
34 84.92 72.45 72.45 79.77 

35 86.86 75.28 75.28 83.56 

36 78.69 52.19 52.19 73.19 
37 78.81 52.91 52.91 72.16 

38 79.94 57.23 57.23 73.58 

39 79.14 54.97 54.97 71.01 
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A confusion matrix (CM) is a tool used in machine learning and statistics to evaluate the 

performance of a classification algorithm [28], [29]. It provides a summary of the prediction results on a 

classification problem, showing the number of correct and incorrect predictions broken down by each class. 

This allows for a detailed analysis of how well the classifier is performing. A CM for a binary classification 

problem is typically a 2×2 table, but it can be extended to an N×N table for multi-class classification 

problems. As presented in Figure 3, there are 205 and 531 misclassified as HC and MI. This is because there 

are sub-MI as represented as MI. The heart receives nourishment from several arteries, making it possible for 

MI to happen in various regions. If the blood supply to any of these areas is interrupted, the electrical activity 

of the muscle fibers in that region begins to alter. The specific alterations observed in ECG recordings vary 

based on the electrodes utilized. 

 

 

 
 

Figure 3. The heatmap CM of HC and MI classification 

 

 

4. CONCLUSION 

MI is an injury to the heart muscle brought on by a thrombus obstructing the coronary arteries, 

which stops blood flow. If this condition is not treated quickly to reopen the coronary artery via percutaneous 

or surgical procedures, it may result in irreversible damage, including myocardial tissue death. Therefore, in 

order to avoid complications like cardiac failure, arrhythmia, and death, early detection and diagnosis are 

essential. ECG is commonly used to diagnose acute MI, although it is sensitive to inter-observer variability 

and requires expert interpretation. Manually analyzing ECG data by a cardiologist takes a lot of time and is 

error-prone. A deep learning method that can automatically recognize and categorize a variety of ECG signal 

properties is proposed in this study. A hybrid CNN-LSTM based on a deep learning algorithm was proposed 

in this paper. To generate the hybrid CNN-LSTM model, we proposed 39 models with hyperparameter 

tuning. As a result, the best model is model 35 has 86.86% accuracy, 75.28% sensitivity and specificity, and 

83.56% precision. The algorithm based on a hybrid CNN-LSTM demonstrates notable efficacy in 

autonomously diagnosing AMI and determining the location of MI from ECGs. 
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