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1. INTRODUCTION

The vocalized form of human communication, known as speech, is defined as the movement of differ-
ent speech organs, to produce sounds. In other words, speech can be defined as a series of sounds arranged in
a sequence. A symbolic representation of information that needs to be transmitted between people or between
people and machines is sound. The speech signal, represented acoustically as fluctuations in air pressure, con-
vey information between individuals or between individuals and machines. Speech may take the form being
voiced, unvoiced, or silent, reflecting different approaches to vocalization and sound generation. A voiced
sound occurs when the speaker’s vocal cords vibrate during sound production, while an unvoiced sound is pro-
duced without vocal cord vibration and when nothing is coming out from mouth is considered as a silence part.
When a person speaks, their vocal cords vibrate, and the pitch is determined by how long it takes for the cords
to open and close, known as the pitch period. This periodicity defines the fundamental frequency, which is
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also represented as the pitch. In voiced sounds, the perceived pitch is determined by the apparent periodicity
of vocal cord vibrations. Essentially, “’pitch” in speech corresponds to the frequency of vocal cord vibrations
during voiced sounds [1]]. Pitch level correlates with the fundamental frequency: lower frequencies correspond
to lower pitches, while higher frequencies indicate higher pitches [2]]. Children and females capable of reaching
frequencies up to 500 Hz, while males typically have a lower fundamental frequency around 60 Hz [3].

Pitch, or fundamental frequency (Fp), is vital in speech production, reflecting the rate of vocal fold
vibration and influencing intonation and emotion perception. Accurate pitch estimation is essential across
multiple fields like speech processing and music, enabling tasks such as music analysis, speech prosody un-
derstanding, and telecommunications. Precision in pitch extraction significantly impacts the effectiveness of
applications like music synthesis, speech processing, and voice modulation [4]], [S].

Up till now, a variety of pitch recognition methods have been covered. Pitch detection algorithm
(PDA) is the term used to describe these techniques, which were founded on various mathematical principles
[6]. PDAs can be used in three different ways: in the frequency domain, in the time domain, or in combination
of the two [7]. Some pitch detection methods focus on identifying and timing specific features in the time
domain. Pitch estimators in the time domain usually have three parts: a basic estimator, a post processor for
error correction, and a preprocessor for signal simplification. Within this domain, various techniques, such as
autocorrelation function (ACF) [8]], average magnitude difference function (AMDF) [9], average squared mean
difference function (ASMDF) [[10]], weighted autocorrelation function (WAF) [[11]], and YIN [12].

The autocorrelation approach is the most often used method for figuring out a voice signal’s pitch
period. The correlation between the input signal and a time-delayed version of itself is indicated by the ACF.
AMDF, known for showcasing low points at integral multiples of the pitch period, is often utilized for pitch
estimation [13]. AMDF stands as an alternative approach to autocorrelation analysis, presenting a simplified
version compared to ACF.

With AMDEF, as opposed to ACF, the delayed speech is subtracted from the original to create a dif-
ference signal, and the absolute magnitude is then determined at each delay value. In the WAF method, the
periodicity property shared with ACF and AMDF is utilized. The WAF is characterized by employing the
ACEF as its numerator and the AMDF as its denominator. An algorithm called the YIN technique analyzes the
traditional ACF [14]).

In frequency domain techniques, various techniques have been developed to analyze the frequency do-
main cepstrum coefficients or spectrum of periodic signals in order to extract pitch. The cepstrum (CEP) [15]
method is one of the most well-known methods. This method, relies on spectral characteristics. CEP is able
to distinguish vocal tract features from periodic components. However, its performance is significantly com-
promised in a noisy environment, where the presence of noise has a pronounced impact on the log-amplitude
spectrum.

Enhancements to the cepstrum method are tackled in the modified cepstrum (MCEP) [16]. Features
from both windowless autocorrelation function (WLACF) and cepstral analysis are included in the cepstrum
technique known as WLACF-CEP. WLACF reduces noise in the speech signal without compromising its peri-
odicity. Pitch estimation filter with amplitude compression (PEFAC) utilizes summations of sub-harmonics in
the log frequency domain. To improve its resilience to noise, the PEFAC incorporates an amplitude compres-
sion technique [17].

Using both logarithmic and power functions, [18]] reduces the effect of formants and utilizes the Radon
transform to provide a novel method for estimating pitch in noisy speech conditions. It also incorporates the
Viterbi algorithm for pitch pattern refinement. Mnasri et al. [[19] based on establishing a pragmatic relationship
between the instantaneous frequency (F;) and the fundamental frequency (£p). It determines whether speech
areas are voiced or unvoiced and extracts the Fj contour by approximating it as a smoothed envelope of remain-
ing F; values. To estimate pitch by comparing the temporal accumulations of clean and noisy speech samples,
the topology-aware intra-operator parallelism strategy searching (TAPS) algorithm, as described in [20], trains
a set of peak spectrum exemplars. To understand how noise affects the locations and amplitudes within the
spectrum of clear speech, Chu and Alwan developed the statistical algorithm for FO estimation (SAFE) model
[21]. Pitch estimation is enhanced using self-supervised pitch estimation (SPICE), as stated in [22], by refining
the acquired data and training a constant Q transform of signals. To accommodate pitches with varying noise
levels, DeepFj [23] expands the network’s receptive range. It has been demonstrated that HarmoF|, outper-
forms DeepFj in pitch estimation by employing a range of dilated convolutions. On the other hand, BaNa [24]
opts for the initial five amplitude spectral peaks from the speech signal’s spectrum on average for both male
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and female speakers.

Existing methods often struggle with accuracy in noisy conditions, particularly when the signal-to-
noise ratio (SNR) is low. In a novel approach, the study explores using discrete cosine transform (DCT) [25]
instead of fast Fourier transform (FFT) [26], which proves effective in noisy signals but susceptible to vocal
tract effects, resulting in some inconsistencies. However, when DCT was applied directly in power spectrum,
detection accuracy decreased. To mitigate noise impact and improve accuracy, the study introduces a novel
method combining cumulative power spectrum (CPS) with DCT features.

Instead of the conventional power spectrum, the proposed technique employs CPS based on DCT.
CPS emphasizes the shorter sub-frames which is more effective to reduce the noise characteristics as well as
mitigate the effect of vocal tract. Therefore, the proposed approach outperforms traditional pitch extraction
methods in noisy speech signals by effectively suppressing noise components, demonstrating superior efficacy
in fundamental frequency extraction under noisy conditions.

2. PROPOSED METHOD
Assuming that y(n) represents a speech signal impacted by noise, as specified by (1),

y(n) = s(n) + w(n) (1
Where w(n) is additive noise and s(n) is a clean speech signal. The CPS approach’s block diagram is displayed

in Figure 1. The initial step involves dividing the noise corrupted speech signal y(n) into frames.

Periodogram

12
oy N EYY

¥(n) " yiln) Time ‘r’fz(“)\ py ll 2
Window Division | Ll M L

yr(n) 12

é M |-|

Figure 1. Block diagram of DCT based CPS

y

AW I 3 Peak
\/ ' oct Detection +FO

aN\e

In this approach, framing is accomplished by employing a rectangular window function. In our ex-
periments, the input signal needs to be partitioned into frames, each comprising 800 samples (equivalent to
50 [ms]). The signal framed as y f(n), where 0 < n < N — 1, is partitioned into three sub-frames using a time
division approach. These sub-frames are part as (2)-(4).

yra(n) =yp(n),0 <n< M -1 2
yra(n—D) =yp(n),D<n<D+M-1 3)
yra(n—2D) =ys(n),2D <n<2D+ M -1 4)

In this context, where M represents an integer indicating the sub-frame length and D denotes the frame shift in
samples, the goal is typically to set 2D + M — 1 to be equal to V. In section 3, the values for the lengths of M
and D are specified as 30 [ms] and 10 [ms], respectively. The signal y¢(n), where 0 < n < N — 1, undergoes
frequency domain transformation through Periodogram computation using DCT. We examine the y¢(n) based
power spectrum to obtain information about the basic frequencies regarding the DCT.

DCT is a Fourier-related transform that uses only real values, much similar to discrete Fourier trans-
form (DFT) [27]. The DCT was favored over the DFT in the transformation of actual signals, like an acoustic
signal. Different kinds of DCT and inverse discrete cosine transform (IDCT) pairings can be used for imple-
mentation purposes. The DFT changes a complicated signal within its intricate spectrum. On the other hand,
half of the data is redundant and half of the computation is wasted if the signal is real, as it is in the majority
of applications. DCT tends to concentrate signal energy in a smaller number of coefficients compared to DFT.
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The DFT provides a complex spectrum for a real signal, thereby wasting over half of the data. On the other
hand, the DCT eliminates the need to compute redundant data by producing a true spectrum of real signals.
DCT gathers most of the signal’s information and sends it to the signal’s lower-order coefficients, resulting
in a large reduction in processing costs [28]. DCT avoids superfluous data and computation by producing a
real spectrum of a real signal as a real transform. DCT has a further benefit in that it requires a straightfor-
ward phase unwrapping procedure because it is a real function. Furthermore, as DCT is derived from DFT,
all of DFT’s advantageous characteristics are retained, and a quick algorithm is available. Because DCT is a
fully real transform and doesn’t require complex variables or arithmetic, it is computationally more efficient
than DFT. Taking into account the benefits of DCT for actual signals, the DCT Y (k) of y;(n) is chosen and
derived as (5).

()5 3y (n) cos [ (2n —;\){(k - 1)] “

In (5), k represents the frequency bin index, and the coefficient ¢4 (k) can be found as follows:

Here, cq(k)= \/% for k=1, and c4(k) =\/% for 2 < k < N. Therefore, the Y (k) is obtained. The fundamen-
tal frequency and higher harmonics are represented as sharper, higher amplitude peaks in the DCT spectrum.
DCT’s downsampled or compressed spectra allow for the location of the higher harmonics at the fundamental
frequency. The resultant spectrum, identified as the power spectrum of y;(n), is denoted as PJ%’ (k), where k
corresponds to the frequency bin number associated with a discrete representation of w represented by wy,. For
each sub-frame yy,1(n), where j = 1,2,3 and 0 < n < M — 1, the power spectra are computed as Py, (k),

P}’,Q (k), and P]’:C 4(k). The accumulations of these three power spectra are performed for each frequency
bin as (6).

3
- Z Pt (k) ©
j=1

The obtained power spectrum undergoes an IDCT. By identifying the maximum location in the
resulting ACF, the fundamental frequency of ys(n) is detected. Figure 2 displays the output waveforms of
the noisy speech signal, the conventional ACF approach, DCT-based ACF, and DCT-based CPS.
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Figure 2. Validation of CPS-DCT using output waveform
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In Figure 2, the false peak represents the vocal tract effect, while the true peak indicates the fundamen-
tal frequency. The conventional ACF output waveform is notably impacted by the vocal tract effect, resulting
in a false peak close to the true peak. The adoption of DCT in place of FFT within ACF helps alleviate the
vocal tract effect. Whereas our proposed method plays a crucial role in achieving a smoother signal than the
DCT-based ACF. It not only significantly reduces the vocal tract effect but also provides a more seamless
waveform compared to other methods. The results from the autocorrelation method applied to a voiced frame
are illustrated in Figure 2. The waveform in the Figure 2 represents the effect of FFT and DCT in ACF of
the speech signal. These figures depict the outcome of speech delivered by a male speaker in the presence of
white noise. We have already explored that in the cross-correlation of noisy and clean speech, this component
becomes zero. Hence, clean speech is significantly emphasized, and the ACF proves to be very effective in
the case of a noisy signal. However, ACF is considerably influenced by the vocal tract effect, leading to some
unsmooth occurrences in the signal due to noise. The use of DCT-based ACF can mitigate the vocal tract effect,
yet some residual noise occurrences are still observable in the signal. Also when we used DCT in ACF, the
detection accuracy went down. In order to further diminish the impact of noise characteristics and acieve better
accuracy, we have introduced our proposed method that combines the feature of CPS with DCT. On the other
hand, Figure 3 represents the validation of our proposed idea by utilizing the harmonic characteristics. From
Figure 3, we have observed that DCT based CPS (proposed) is more effective against noise characteristics that
that of FFT and DCT based power spectrum. In the case of FFT based power spectrum, we have investigated
that harmonics are highly affected by noise which is in marked by circle.
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Figure 3. Validation of CPS-DCT using harmonic characteristics

3.  RESULTS AND DISCUSSION

In this section, we assess the effectiveness of the CPS in identifying the fundamental frequency in the
presence of noisy speech. Our assessment involves conducting experiments on speech signals to examine the
performance of the cumulation-based approach. Ultimately, we present a comparative analysis of the outcomes
achieved with our proposed method against those obtained from conventional pitch detection methods.

3.1. Experimental conditions

The proposed pitch detection method is implemented using speech signals obtained from the KEELE
database [29] and the NTT database [30]]. This database contains speech recordings from ten speakers, evenly
divided between five males and five females. The collective duration of speech signals extracted from the
KEELE database, encompassing the speeches of all ten speakers, amounts to around 5.5 [m]. These speech
signals were sampled at a frequency of 16 [k H z]. Eight utterances by Japanese speakers, each lasting ten sec-
onds and with a 3.4 [k H z] band limitation and 10 [k H z] sampling rate, are available in the NTT database. This
research introduces a novel idea that proves to be more suitable for speech processing applications, particularly
in the accurate retrieval of pitch from speech signals under noisy conditions. To simulate noisy speech sam-
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ples, we blend clean speech recordings with noise collected from environments with high levels of background
sound. To create the appropriate noisy voice samples, our method combines several forms of noise with the
original speech signals. Four distinct noise categories, each with different SNR levels, were introduced into
the initial signals to evaluate the algorithms’ robustness to noise. These noise categories include white noise,
babble noise, train noise, high frequency (HF)-channel noise, all obtained from the NOISEX-92 [31], sampled
at a frequency of 20 [kHz]. The noises were adjusted to a 16 [k H z] sample frequency in order to match the
KEELE database’s signal properties and 10 [kH z] sample frequency in order to match the NTT database’s
signal properties. The SNR, or signal-to-noise ratio was systematically varied at levels of (0, 5, 10, 15 and
20 [dB]) for the assessment. The remaining experimental parameters for extracting the fundamental frequency
were as follows:

— Frame length without PEFAC and BaNa, the frame length is 50 [ms].
— The frame shift is 10 [ms].
Window type: rectangular, with the exception of BaNa and PEFAC.

DCT (IDCT) points: 2048 points (KEELE) and 1024 points (NTT) when BaNa and PEFAC are not
present.

3.2. Evaluation criteria

Pitch estimation error is determined by measuring the difference between the reference and estimated
fundamental frequencies. The accuracy of basic frequency detection is assessed, following Rabiner’s rule [31]],
utilizes the fundamental frequency detection error e(l).

e(l) = Fest(l> - Ftrue(l) (7

Where [ is frame number, F,s (1) is estimated fundamental frequency at the /-th frame from a noisy spoken
signal, and Fy..(l) is true fundamental frequency at the [-th frame.

If the absolute value of e(4) exceeds 10% , (i.e. |e(i)| > 10% ) of Fyye(4), it falls under the category
of gross pitch error (GPE), and the overall proportion of this error is computed for each uttered frame in the
speech data. The error was designated as the fine pitch error (FPE) if |e(:)| < 10% from the ground truth
first harmonic frequency. We specifically identified and evaluated the voiced portions in sentences concerning
the fundamental frequency. Our analysis utilized a search range from f,,;, = 50[Hz] to fmar = 400[H 2],
corresponding to the fundamental frequency range commonly observed in most people.

3.3. Results and performance comparison

In this section, we conduct a comparative analysis between our proposed method and conventional
approaches, such as PEFAC, BaNa, and YIN, using distinct utterances from the KEELE and NTT databases.
We evaluate performance under four types of noise: white noise, babble noise, HF channel noise, and train
noise. Parameters like frame length, window function, and the number of DFT (IDFT) points specific to
PEFAC and BaNa were adjusted, while other parameters remained consistent across methods. The Hamming
window function was applied uniformly in PEFAC and BaNa. For BaNa, the frame duration was set to 60 [ms],
and 216 points were used for DFT (IDFT) points. The source code of BaNa, tailored for this environment, was
implemented (as described in [32]). PEFAC utilized a Hamming window function with a duration of 90 [ms]
for both the window function and frame length. The source code used 2'3 as the value for the DFT (IDFT)
points. The implementation of PEFAC in this environment is well-suited for BaNa (as indicated in [[17], [33])).
Performance evaluation was conducted using the GPE and the FPE. The average GPE and FPE results obtained
from the experimental outcomes of the proposed method, PEFAC, BaNa, YIN, were considered for utterances
from both female and male speakers at various SNRs (0, 5, 10, 15 and 20 [dB]).

Tables 1-8 present a comparison of GPE for the KEELE database and NTT database, respectively
under various noise conditions, including white noise, babble noise, HF channel noise, and train noise. On the
other hand, Tables 9-16 present a comparison of FPE for the KEELE database and NTT database, respectively
under the above noise conditions. The GPE and FPE values of our proposed method are contrasted with those
of PEFAC, BaNa, and YIN.
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Table 1. Average GPE rate (%) for KEELE
database for white noise

Table 2. Average GPE rate (%) for KEELE
database for babble noise

SNR [dB]  Proposed PEFAC BaNa YIN

SNR[dB] Proposed PEFAC BaNa YIN

0 20.58 37.15 22,61  31.37
5 15.96 34.38 19.58  21.59
10 13.86 33.01 17.80  16.57
15 13.12 32.50 16.97 14.29
20 12.90 31.98 16.59  12.87

0 35.18 49.01 40.54  36.89
5 22.88 41.86 29.48  23.68
10 16.57 37.41 22.84 16.64
15 13.09 34.98 19.69  13.16
20 11.87 33.39 17.70  12.14

Table 3. Average GPE rate (%) for KEELE
database for train noise

Table 4. Average GPE rate (%) for KEELE
database for HF-channel noise

SNR [dB]  Proposed PEFAC BaNa YIN

SNR [dB]  Proposed PEFAC BaNa YIN

0 33.44 43.17 29.08  34.38 0 24.70 40.13 22.64 31.55
5 22.81 38.99 23.11 2276 5 17.64 36.86 19.82  21.01
10 16.98 35.59 20.04 16.36 10 14.79 34.37 1790  16.06
15 14.50 33.40 18.31 13.42 15 13.45 32.98 17.31  13.76
20 13.49 32.25 17.36  12.16 20 13.04 32.11 16.57 1279

Table 5. Average GPE rate (%) for NTT
database for white noise

Table 6. Average GPE rate (%) for NTT
database for babble noise

SNR [dB]  Proposed PEFAC BaNa YIN

SNR [dB] Proposed PEFAC BaNa YIN

0 4.71 17.47 8.00 14.20
5 1.90 12.89 5.52 4.70
10 1.38 11.34 3.98 2.08
15 1.36 11.93 3.26 1.55
20 1.38 13.21 3.30 1.46

0 28.26 39.86 27.71  31.75
5 10.01 24.75 12.60 1231
10 2.80 16.11 5.20 3.20
15 1.58 12.45 4.08 1.52
20 1.44 11.69 4.02 1.41

Table 7. Average GPE rate (%) for NTT
database for train noise

Table 8. Average GPE rate (%) for NTT
database for HF-channel noise

SNR [dB]  Proposed = PEFAC  BaNa YIN

SNR [dB]  Proposed PEFAC BaNa YIN

0 14.98 25.28 1091  20.32
5 4.66 16.3657  5.72 6.76
10 1.92 12.28 4.28 2.34
15 1.38 10.21 3.44 1.61
20 1.36 9.29 3.47 1.33

0 5.73 18.91 5.97 14.32
5 2.34 13.13 4.52 4.84
10 1.62 11.00 441 2.02
15 1.49 10.72 4.29 1.48
20 1.45 10.06 4.13 1.39

Table 9. Average FPE rate (Hz) for KEELE
database for white noise

Table 10. Average FPE rate (Hz) for KEELE
database for babble noise

SNR [dB] Proposed PEFAC BaNa YIN

SNR [dB] Proposed PEFAC BaNa YIN

0 4.42 5.45 523 454
5 4.14 5.36 522 397
10 4.03 5.32 5.19  3.60
15 3.99 5.26 5.14 346
20 3.97 5.25 5.08 344

0 4.54 5.62 529 412
5 4.28 5.49 5.18 379
10 4.10 5.38 5.11 3.59
15 4.01 5.30 5.09 350
20 3.98 5.24 5.08  3.50

Table 11. Average FPE rate (Hz) for KEELE
database for train noise
SNR [dB] Proposed PEFAC BaNa YIN

0 4.48 5.51 530  3.96
5 4.24 5.40 5.15 3.68
10 4.06 5.33 5.11 3.53
15 3.98 5.31 5.05 3.45
20 3.95 5.27 5.03 3.44

Table 12. Average FPE rate (Hz) for KEELE
database for HF channel noise
SNR [dB] Proposed PEFAC BaNa YIN

0 4.62 5.51 524 421
5 4.30 5.38 5.21 3.80
10 4.10 5.33 5.21 3.56
15 3.99 5.30 514 348
20 3.97 5.29 5.11 3.43
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Table 13. Average FPE rate (Hz) for NTT Table 14. Average FPE rate (Hz) for NTT
database for white noise database for babble noise
SNR [dB]  Proposed PEFAC BaNa YIN SNR [dB]  Proposed PEFAC BaNa YIN
0 3.01 3.42 2.39 3.82 0 2.26 3.88 2.69 3.09
5 2.69 3.34 2.20 2.59 5 2.40 3.52 2.25 2.42
10 2.53 3.25 2.09 2.16 10 2.50 3.31 2.03 2.15
15 2.49 3.20 2.00 2.03 15 2.50 3.21 1.93 2.02
20 2.49 3.15 1.95 1.99 20 2.48 3.16 1.84 1.99
Table 15. Average FPE rate (Hz) for NTT Table 16. Average FPE rate (Hz) for NTT
database for train noise database for HF channel noise
SNR [dB] Proposed PEFAC BaNa YIN SNR [dB] Proposed PEFAC BaNa YIN
0 2.84 3.61 2.51 3.25 0 3.13 3.55 2.34 3.85
5 2.70 3.44 2.19 2.44 5 2.69 3.40 2.19 2.70
10 2.56 3.25 2.05 2.44 10 2.54 3.28 2.09 2.18
15 2.51 3.15 1.94 2.02 15 2.50 3.17 2.01 2.02
20 2.49 3.13 1.87 1.99 20 2.48 3.11 1.93 1.99

In the case of KEELE database, the proposed approach consistently exhibits the lowest average GPE
rate compared to other techniques across almost all SNRs in all noise cases except low SNR (0 [dB]) at train
and HF channel noise cases. At SNR (0 [dB)) in train and HF channel noise cases, BaNa provides the slightly
lower gross pitch error rate due to processing strategy according to the noise characteristics. On the other
hand, in the case of NTT database, the proposed method shows the almost similar properties with the KEELE
database.

In the case of FPE of Tables 9-12 in KEELE database, the proposed method provides the lower FPE
(Hz) than that of the PEFAC and BaNa at almost all SNRs in all noise cases except the YIN method. The
proposed method is highly competitive with the YIN method except white noise case. In the case of NTT
database, the FPE (Hz) of the proposed method is lower than that of PEFAC and YIN method and highly
competitive with BaNa except babble noise. In babble noise, proposed method shows the superior performance
compared with the other methods.

4. CONCLUSION

Accurately estimating perfect pitch poses a challenge in speech analysis, especially in noisy envi-
ronments. In this study, we introduce an improved method that excels in isolating noise from the waveform,
particularly in babble noise scenarios, outperforming other techniques. This method exhibits a lower average
GPE rate compared to alternative approaches, and it achieves this without any complicated post-processing.
Additionally, it efficiently mitigates the impact of vocal tract effects by equalizing unnecessary ripples in the
waveform. According to their noise type and SNRs, our research so demonstrates that it is more robust than
other traditional methods without requiring any complex post-processing. In the future, research might fo-
cus on creating a new pitch extraction technique that is more effective in speech processing applications and
incredibly resilient to extremely low SNR instances across a range of real-world noise scenarios.
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