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 Skin cancer is a prevalent and deadly cancer, and early detection is crucial 

for improving treatment success. Intelligent technologies are currently being 

used to classify skin lesions. The fundamental goal of this experimental 

research is to investigate biomedical skin cancer datasets to develop an 

effective approach for determining whether a cancer is malignant or benign. 

Well-known deep learning classification models (convolutional neural 

network (CNN) (sequential), ResNet50, InceptionV3, and Xception) are 

employed to train and categorize the dataset images. Two large and balanced 

datasets are collected and employed in this research. One is used to compare 

the performance of the employed model algorithms. Next, the selected 

model(s) are again trained on the second dataset for validation and 

generalization purposes. It turns out that the performance of the Xception 

model is superior and can be generalized. The performance results obtained 

from various simulations are tabulated and graphed. Comparative results are 

also presented. 
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1. INTRODUCTION 

Skin cancer is the formation of abnormal cells in the tissues of the skin. New skin cells grow to 

replace the aging and dying ones. When this process malfunctions, as it does after being exposed to the sun's 

ultraviolet (UV) radiation, cells proliferate more quickly. Symptoms include new bumps or spots on the skin, 

as well as alterations in the size, form, or color of skin growths. These cells might not spread or cause harm 

to the body if they are not malignant. They could also be malignant. The UV radiation from tanning beds and 

sunlamps can also raise the risk of skin cancer. 

There are three classifications for skin cancer. Squamous cell carcinoma grows in squamous cells in 

the skin's outer layer; basal cell carcinoma originates in basal cells in the lower epidermis (the skin's outer 

layer); and melanoma originates from melanocyte cells, which produce melanin. Melanin is a brown pigment 

that gives color to the skin and protects it from some of the sun's harmful UV rays. This is the worst form of 

skin cancer, and it is the main cause of skin cancer mortality because it can easily spread to other body parts. 

Despite the introduction of multiple campaigns and initiatives aimed at prevention, the mortality rate 

due to skin cancer is rising. The key preventive strategies that received the greatest media attention included 

education campaigns, risk modeling to identify people who are more likely to get melanoma, and 

encouraging the use of sunscreen. The secondary preventive strategies that were most frequently noted 

included visual diagnosis in population-based screening, smartphones, new technology, and imaging devices 

https://creativecommons.org/licenses/by-sa/4.0/
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for early skin cancer detection. Primary prevention education initiatives aimed at improving sun protection 

habits are shown to be the most effective measures. 

Early detection of most skin cancers leads to effective treatment. However, diagnosis and treatment 

pose significant health risks, affecting patient outcomes and healthcare costs. Suspicious lesions found during 

physical exams typically require a skin biopsy. If the pathologist confirms cutaneous cancer through tissue 

examination, further action is usually necessary. The dermatologist then identifies the type of skin lesion, 

assesses if it indicates skin cancer, and explores possible treatment options. 

Scientific and technological developments are changing how medical professionals perceive, identify, 

and manage skin malignancies. Emerging technologies, from whole-body scanning to genomic testing, are 

assisting dermatologists in making better judgments to enhance patient outcomes and health outcomes. At the 

center of everything is data. Physicians are getting more access to big data, which is accurate and can be used to 

improve patient management and skin cancer diagnosis. The ultimate goal is to assist patients in leading longer 

and healthier lives.  

Diagnosing skin cancer is challenging for dermatologists because it requires invasive procedures like 

biopsies and histological analysis, which are time-consuming, stressful, and can cause mental health issues. 

Current methods for predicting recovery combine population-based data with clinical and test results but remain 

invasive. Treating melanoma is particularly difficult due to the aggressiveness and recurrence of cancer cells, as 

well as the toxicity and side effects of repeated conventional treatments. While less invasive options like topical 

chemotherapies exist, their use has been limited by issues with microneedle size and rapid polymer dissolution. 

A wearable patch [1] offers a potential new approach to treatment. 

For the best results, prompt identification and classification are necessary. Enhancing or supplementing 

image recognition with artificial intelligence seems to be a workable way to early detection of various cancer 

types [2], [3]. Machine learning (ML) and hybrid techniques may also be utilized for identification and 

classification, even though deep learning (DL) algorithms are frequently used [4]. These methods have 

demonstrated remarkable classifier performance, with encouraging early detection results. This research 

explores the application of well-established DL algorithms for early classification of skin cancer cells and 

evaluates the generalization performance of the most effective algorithm over multiple datasets. Searching for 

"skin cancer detection" on Google yielded 129,000,000 studies, including publications, resources, support 

centers, and foundations. This demonstrates the wealth of general information on research publications, grants, 

institutes, and support services related to preventive measures, among other things. A selection of well-known 

research publications is shown as follows. 

In the literature review from 2017 to 2021, Haggenmüller et al. [5] analyzed 19 studies on artificial 

intelligence (AI)-based skin cancer classification. Of these, 11 used convolutional neural network (CNN)-based 

methods for dermoscopic images, six focused on clinical images, and two employed digitalized 

histopathological images. CNN-based classifiers generally outperformed or matched clinicians but were tested 

in simulated environments with limited image diversity. Additionally, the test sets lacked a full representation of 

patient demographics and melanoma subtypes. CNN models were found to have superior accuracy compared to 

other ML algorithms, achieving over 90% accuracy in some cases [6]. Medical professionals could use these 

models to aid in early skin disease detection. A survey [7] provided an overview of DL models and datasets for 

skin cancer classification, while a similar study [8] compared the efficiency of various supervised learning 

methods such as linear regression, random forests, and support vector machines. 

Mokoatle et al. [9] use raw deoxyribonucleic acid (DNA) sequences from matched tumor/normal pairs 

as input to the technique, which is subsequently processed by sentence transformers to provide DNA 

representations. Such representations are classified through a series of machine-learning methods to improve 

cancer detection. Another study by Koh et al. [10] addresses the challenges and potential of AI and ML in 

cancer imaging, including the use of freely available resources for algorithm development to improve 

collaboration and openness across centers, as well as the formation of the ecosystem required to encourage 

artificial intelligence and ML adoption in the field of cancer imaging. Magdy et al. [11] suggested two 

approaches for detecting and classifying benign and malignant cancers in dermoscopic imagery. The first 

method employs a k-nearest neighbor, which utilizes pre-trained deep networks as feature extractors. AlexNet 

with Grey Wolf optimizer is the second. In categorizing skin cancer images, the results are compared to ML and 

DL techniques. From the International Skin Imaging Collaboration (ISIC) archive dataset with four thousand 

images, the experiments are trained and tested. The results demonstrated that the proposed methods exceeded 

the other examined techniques. 

Riaz et al. [12] propose a collaborative learning system based on CNN and local binary patterns 

(LBP), followed by the conjunction of all retrieved features using CNN and LBP architecture. To handle 

multiclass skin-related challenges, the suggested system is trained and tested using a commonly utilized 

accessible public dataset for skin cancer diagnosis. The architectures and their fusion are compared in terms of 

results, which demonstrate the fusion architecture's robustness, with 98.6% accuracy and 97.32% validation 
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accuracy. Kadampur and Riyaee [13] discuss how a model-based architecture in the cloud employing learning 

algorithms is utilized to build models that help detect skin cancer. The learning models created are assessed on 

common datasets, and the area under the curve is measured at 99.77%. 

Moataz et al. [14] enhance the Xception model for skin lesion classification by adding layers after the 

basic ones and re-tuning it using the human against the machine with 10000 training images (HAM10000) 

dataset. The modified model shows improved dependability and efficiency compared to earlier models.  

Ma et al. [15] in their research, a skin cancer classification model is developed using feature fusion and random 

forests. It pre-trains the EfficientNetV2 model and fine-tunes it on the HAM10000 dataset. Enhanced bilinear 

pooling is introduced to capture feature interactions across layers, leading to high performance with an accuracy 

of 94.96%, precision of 93.16%, recall of 93.70%, and an F1-score of 93.24%. The study of Mridha et al. [16] 

focuses on building trustworthy models for skin cancer classification, with an emphasis on model 

interpretability and a comprehensive smart healthcare system. The model, evaluated using six classifiers, 

achieved a classification accuracy of 82% through optimization and activation functions. 

In the research of Huang et al. [17], the performance of two models, a hyperspectral narrowband image 

(HSI) model, and a red, green, blue (RGB) classification model, was evaluated using a confusion matrix and 

metrics such as recall, precision, accuracy, specificity, and F1-score. The HSI model outperformed the RGB 

model by learning features better, resulting in a 7.5% improvement in recall rates (HSI: 0.792, RGB: 0.722). 

And Tajerian, et al. [18], pre-processing techniques like resizing, data augmentation, and labeling were applied 

to enhance the dataset. Transfer learning was then used to create a model with EfficientNet-B1, a global pooling 

layer, and a softmax layer with 7 nodes. This approach showed promise for diagnosing skin lesions, achieving 

an F1 score of 0.93 on melanocytic nevi lesions. 

Based on the literature review, it is found that most of the approaches are tested on a single limited 

dataset, thus the results may not be generalized. This research study aims to propose a DL-based skin cancer 

detection approach that is applied to two publicly found datasets with images of skin cancer lesions to improve 

the confidence of the physician/dermatologist in detecting cancer in the early stage. The paper is structured as 

follows. In the next section, the proposed approach is represented, where details of the architecture and 

methodology are discussed. This section also presents models under investigation, datasets, and evaluation 

metrics. Section 3 presents experimental results and comparisons done with works found in the literature. In 

section 4, conclusions are discussed. 

 

 

2. PROPOSED METHODOLOGY 

The training process of deep networks to recognize patterns in data and make decisions or 

predictions based on detected patterns is central to ML. The DL models are statistical and allow investigators 

to evaluate the performance of the model after learning from available data. As labeled datasets are now 

easily accessible in the public domain, several learning models have been published in the literature with 

claimed accuracy related to skin cancer detection reaching 90% on selected datasets. With the availability of 

high-power computational machines, it seems easy to validate the claimed accuracy on a given dataset. But 

the issues faced are many. The foremost is the training of complex models on large datasets. This takes a lot 

of time, as most of the time the resources are shared amongst users. Next, sometimes it is not possible to find 

models that are tested on more than one dataset. 

In this research, the methodology is to investigate a set of learning models (like CNN sequential, 

InceptionV3, ResNet50, and Xception), which are selected based on their performance on skin cancer 

detection. To save training time, their performance is calculated based on phases to optimize the 

computational cost versus selected models. In the first phase, a balanced dataset (dataset 1) is employed to 

train learning models for performance. Next, the trained models are cross-validated and tested based on 

performance metrics. Some of the learning models in this phase are dropped due to poor performance, and 

the rest move on to the next phase. In the second phase, a subset of a large dataset (dataset 2) is used to assess 

the generalized performance of the selected models. The better-performing models in this phase enter the last 

stage, where their generalized performance is investigated on the full dataset (dataset 2). The methodology is 

depicted in Figure 1. 

The loaded dataset 1 needs to be preprocessed and labeled before being supplied to algorithms for 

model building. It was made sure that the dataset chosen for the model was balanced for accurate prediction. 

In the first phase, four algorithms frequently reported in the literature for skin cancer classification are to be 

trained, cross-validated, and tested before being declared suitable for further investigation on generalization. 

The criterion chosen for the performance measure was classification accuracy. In the next phase, the chosen 

model(s) are selected for generalization, i.e., they are trained on a balanced subset of a larger dataset (dataset 

2). The performance measures include computing the confusion matrix for validating accuracy measured in 

phase 1. The selected model(s) in this phase are trained and tested on full dataset 2 and compared with 

approaches found in the literature. In the following, the selected models and datasets are discussed briefly. 
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Figure 1. Proposed methodology 

 

 

2.1.  Deep neural network models 

CNN, a form of deep neural network, uses a grid-like architecture to process data and analyze it for 

early detection of disease for patient care, and community services. With the growth in medical data, collecting 

medical records is increasingly convenient and useful. However, the accuracy of prediction depends upon the 

quality of the medical data. Simple patterns (lines and curves) are detected initially by assigning priorities to 

various object features, followed by more intricate feature patterns. CNN is intended to learn the feature 

hierarchies via a learning algorithm by utilizing several convolution and pooling layers, which are followed by a 

fully connected layer [19]. The simple form of CNN is known as traditional or sequential CNN. 

The study of Szegedy et al. [20] discusses enhancements to deep convolutional networks through the 

inception architecture, specifically InceptionV2, and V3, which improve accuracy and reduce computational 

complexity without compromising generalization. These upgrades make the networks both deeper and wider by 

stacking multiple inception layers. The key innovation in inception models is the inception block, which 

concatenates the outputs of various filters applied to the same input tensor. InceptionV3 also incorporates 1×1 

convolutions to divide the input into multiple 3D spaces before applying standard convolutions. InceptionV3 

includes all improvements from V2, along with the root mean squared propagation (RMSProp) optimizer and 

techniques like factorized 7×7 convolutions, batch normalization (BatchNorm), and label smoothing. 

ResNet50 is a deep CNN architecture with up to 152 layers, utilizing heavy BatchNorm to improve 

weight values. The term "Residual" refers to the use of residual blocks in the network, which include skip 

connections, allowing the network to learn residual functions. These connections enable not only the linking of 

consecutive layers but also the bypassing of certain layers, helping to address the vanishing gradient problem by 

directly conveying information from earlier layers to later ones. Trained on image datasets like ImageNet, 

ResNet50 has strong feature extraction capabilities and can be fine-tuned for specific visual identification tasks 

[21]. 

Xception is a deep neural network pre-trained on over a million images from the ImageNet repository 

[22]. It builds upon the principles of inception, using depth-wise separable convolutions to improve efficiency. 

Xception extends the InceptionV3 architecture by replacing the spatial dimensions of convolutional filters (1×1, 

3×3, 5×5) with a single 3×3 dimension, followed by a 1×1 convolution to control computational cost and 

improve learning efficiency. This design results in better performance than InceptionV3 with the same number 

of parameters. Xception outperforms InceptionV3 not only on the ImageNet dataset but also on larger datasets 

containing 350 million images and 17,000 classes [22]. 

 

2.2.  Datasets and evaluation metrics 

DL architectures require powerful machines and large datasets to perform effectively, but the smaller 

size and limited diversity of dermatoscopic images can hinder their performance in diagnosing pigmented skin 

lesions. To address these challenges, a two-phase approach was adopted for comparing DL architectures on a 

personal computer. In the first phase, a smaller dataset is used to train and test various DL architectures, 

shortlisting the best-performing ones for the next phase. This dataset consists of 2,637 images (1,440 benign and 
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1,197 malignant) with a testing set of 660 balanced images (360 benign and 300 malignant). The second phase 

[23] involves evaluating the selected models on a larger dataset to assess their generalized performance. 

The HAM10000 dataset is a collection of 10015 dermatoscopic images from different populations 

stored by different modalities and collected over 20 years. This imagery [24], freely available for building and 

validating DL algorithms for categorizing skin lesions, represents all important diagnostic categories of 

pigmented lesions. In this dataset, the use of histopathology confirmed the presence of more than 50% of 

lesions; in the remaining cases, follow-up investigation, expert consensus, or in-vivo confocal microscopy 

confirmed the lesion. To calculate performance parameters, several values need to be measured, which are 

calculated from the confusion matrix. The confusion matrix includes true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN) measurements. These measurements determine precision, recall, 

accuracy, and F1-score [4]. In the next section, the results are shown based on the training and testing of these 

models on two datasets. Preliminary testing results of this work are reported in [25]. 

 

 

3. EXPERIMENTAL RESULTS 

Preprocessing clinical images is a crucial stage in ML applications in healthcare for many reasons. 

The primary goals of picture preprocessing are to improve image quality, and clarity, and remove unwanted 

effects or background noise. Preprocessing in the context of skin cancer classification essentially consists of 

multiple procedures aimed at preparing and improving the quality of medical images and associated data for 

subsequent analysis and diagnosis. After loading images from dataset 1, two steps were performed: i) 

standard scaler processing removed the mean and scaled each feature or variable to unit variance and ii) each 

image was normalized from 0 to 1. After preprocessing, the resulting images were labeled. 

 

3.1.  Simulation 1 

Four models, i.e., sequential CNN, ResNet50, InceptionV3, and Xception, were employed on the 

first public dataset that contained 3297 skin cancer images. These images were divided into two sets: training 

and testing, with a ratio of approximately 80:20. The CNN model was trained for fifty epochs with a learning 

rate of 0.00001. The training and validation were performed threefold, and the model performance turned out 

to be moderate with an average accuracy of 74.63%. The ResNet50 model was also trained for fifty epochs 

with a learning rate of 0.00001. The training and validation accuracy improved compared to CNN and were 

recorded at 96.92 and 80.5%, respectively. The InceptionV3 and Xception models were applied as well to the 

same dataset for ten epochs, and the resulting training accuracy was scored at 93.45 and 97.84%, 

respectively, and the testing accuracy was at 86.7 and 86.9%. For comparison purposes, the results are 

displayed in Table 1. For visual inspection, Figure 2 shows the training and validation accuracies of each of 

the three models i.e. CNN (Figure 1(a)), ResNet50 (Figure 1(b)), and Xception (Figure 1(c)), and illustrates 

how the final accuracy value is achieved. It is clear from this simulation that the performance of the 

InceptionV3 and Xception models is superior to those of the CNN and ResNet50 models. 

 

3.2.  Simulation 2 

To generalize the performance of InceptionV3 and Xception models, dataset 2 (HAM10000) was 

employed. To avoid CPU crashes due to heavy computations on both the InceptionV3 and Xception models, 

a balanced subset (3250 images) of the HAM1000 dataset was chosen to train the InceptionV3 and Xception 

models, and a balanced set of 1000 images was employed for testing both models. The models carried the 

same parameters, and the resulting training accuracy turned out to be 94.51 and 97.85% for the InceptionV3 

and Xception models, respectively, and testing accuracy of 86.9 and 89.4% for the InceptionV3 and Xception 

models. The results are shown in Table 2. The results suggest that the Xception model's performance is 

superior to the InceptionV3 model for skin cancer classification. The resulting confusion matrix shows values 

of 89.4, 97.1, 81.2, and 88.4% for accuracy, precision, recall, and F1-score, respectively.  

 

3.3.  Simulation 3 

To investigate further, the whole HAM10000 dataset was employed to assess the generalized 

accuracy performance of the Xception 3 model with the same parameters. The resulting accuracy of the 

Xception model for skin cancer classification turned out to be 98 and 92.3% for training and testing, 

respectively. The resulting accuracy graph is shown in Figure 3; Figure 3(a) shows accuracy on the 

HAM10000 subset and Figure 3(b) shows accuracy on the full dataset. For comparison purposes, the accuracy 

based on testing 1000 images (from simulation 2) was also computed and is also plotted in Figure 3. Both 

graphs suggest that increasing the dataset improved model accuracy, and reaffirmed the superior generalized 

performance of the Xception model. Further, the results of this research were compared with recent literature 

on skin cancer classification employing different datasets, and are displayed in Table 3. The comparative 

results show the better performance of the Xception model over multiple datasets. 
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(a) 

 
(b) 

 

 
(c) 

 

Figure 2. Training accuracy of (a) CNN sequential, (b) ResNet50, and (c) Xception 

 

 

 
(a) 

 
(b) 

 

Figure 3. Accuracy on (a) HAM10000 subset and (b) full dataset 

 

 

Table 1. Accuracy of models on the first dataset 
Model Training Testing 

CNN 78.5% 69.53% 

ResNet50 96.92% 82.88% 
InceptionV3 93.45% 86.7% 

Xception 97.84% 86.9% 
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Table 2. Model accuracy on a subset of the 

HAM10000 dataset 
Model Training Testing 

InceptionV3 94.51% 86.9% 

Xception 97.85% 89.4% 
 

Table 3. Comparison of models based on accuracy 
Source Dataset used Accuracy Whether generalized? 

Mridha et al. [16] HAM10000 82.0% No 
Huang et al. [17] ISIC 79.2% No 
Tajerian et al. [18] HAM10000 84.3% No 
Ali et al. [26] HAM10000 91.93% No 
Proposed HAM10000 92.93% Yes 

 

 

 

4. CONCLUSION 

This research evaluated multiple DL models on a balanced dataset, with the top-performing model 

further trained on a larger dataset to assess generalization. To improve computational efficiency, a subset of 

this larger dataset was used for evaluation, excluding less effective models. The Xception model excelled, 

achieving 99% accuracy in training and 93% in testing. Despite using only a few training epochs, the model’s 

performance could potentially be improved with hyperparameter tuning. Comparisons suggest this model 

outperforms other recent studies. The results of this model are likely to enhance standardization and 

regularization activities. Standardization in skin cancer detection is guided by dermatology and medical 

imaging initiatives. Key efforts include developing protocols, guidelines, and benchmarks to advance 

technology. The ISIC organization contributes by offering a database of clinical and dermoscopic images and 

organizing research challenges. Regulatory bodies like the European Medicines Agency and the Food and 

Drug Administration (FDA) establish standards for medical devices and testing to ensure compliance and 

effectiveness. 
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