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 This study investigates energy efficiency challenges during laboratory 

activities. Inefficient energy use in the practicum phase remains a critical 

issue, prompting the exploration of innovative forecasting models. This 

research employs artificial neural network (ANN) models integrated with 

principal component analysis (PCA) to predict energy consumption and 

optimize usage. The findings reveal that PCA components, including 

eigenvalues, eigenvectors, and matrix covariance values, significantly 

influence the ANN model's performance in forecasting energy production. 

The ANN training achieved a high correlation coefficient (R=1) with a mean 

squared error (MSE) of 0.045931 after 200,000 epochs, demonstrating the 

model's robustness. While testing results showed a moderate correlation 

(R=0.46169), the models demonstrated potential for refinement and 

scalability. This integration of ANN and PCA models provides a reliable 

framework for accurately forecasting energy usage, offering an effective 

strategy to enhance energy efficiency in laboratory settings. By optimizing 

energy consumption, this approach has the potential to reduce operational 

costs and environmental impact. The strong performance metrics highlight 

the practical utility of these models in educational contexts, contributing to 

sustainable energy management and better resource allocation. Furthermore, 

the reduction in energy-related environmental impacts underscores the 

broader applicability of these models for fostering sustainable development 

in similar contexts. 
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1. INTRODUCTION  

According to International Energy Agency (IEA) predictions for the period 2006-2030, the majority 

of global energy demand, accounting for 87%, is derived from non-Organization for Economic Co-operation 

and Development (OECD) nations [1], [2]. China is expected to experience the highest rise in energy demand 

compared to other areas [3]–[12]. India has recently experienced a significant increase in energy 
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consumption, which is one rung lower than that of China [13]–[23]. In Indonesia, there have been multiple 

initiatives aimed at conserving indoor energy use. Additionally, the university has also implemented 

numerous measures to achieve efficient and consistent energy usage. The utilization of energy in order to 

attain energy efficiency necessitates the implementation of a smart room equipped with diverse input sensors 

that impact indoor energy usage [24], [25]. Energy consumption refers to the quantity of energy that a 

building needs to provide at any particular moment. The overconsumption of electrical energy has the 

potential to exacerbate energy wastage and have adverse effects on the environment [26], [27]. The 

anticipation of building energy consumption is a significant methodology in the realm of energy 

conservation, yielding advantages for both individuals and society by facilitating more prudent construction 

of new structures. Accurate forecasting of energy usage in buildings is crucial for enhancing energy 

efficiency, to attain energy conservation, and minimize ecological consequences [28]–[32]. 

The mismanagement of energy use has the potential to negatively affect the efficiency of energy 

usage, resulting in the wastage of power [33]. The present study aimed to construct a prediction model for 

energy consumption in the Laboratory of Electrical and Power Engineering (LEPE) at Universitas Sultan 

Ageng Tirtayasa. The environment has a considerable impact on energy consumption in colleges [34], [35]. 

Guang Dong University has done research that demonstrates the substantial energy savings achieved via the 

development of a conservation-oriented campus. Measuring indices of energy use has shown to be 

challenging in this study [36], [37]. University buildings in China implement specific energy efficiency 

measures tailored to local requirements, taking into account elements such as the presence of several 

campuses and climate conditions, which pose challenges in achieving energy efficiency in the buildings [38]. 

Efficient energy consumption in a building was achieved by aggregating historical data on daily electricity 

use in two buildings. This aggregation was performed using normalized data from six input variables [39]. 

The analysis of three campus buildings in Tianjin indicates that the average electricity usage per inhabitant 

fluctuates based on the building's purpose and the method of controlling electrical equipment [40]. Statistical 

regression methods are employed to comprehend the correlation between individual variables and energy 

consumption [41]. Previous research methods have demonstrated the applicability of enhanced modeling in 

other types of buildings, provided that it incorporates an energy consumption monitoring platform, rather 

than being restricted to campus buildings [42]. 

The behavior of room users is one of the input characteristics in a building that influences energy 

use; this behavior has a significant impact on how the space is used and complicates the calculation of the 

required energy consumption [43]. While features are directly used as input in the prediction step of earlier 

energy consumption prediction models [44]–[49], in this study, feature selection was done prior to the 

prediction stage. The goal of feature selection is to identify a few characteristics that have the biggest impact 

on energy usage [50]. It is anticipated that the selection of features will lead to a more accurate and efficient 

prediction stage. The aim of the feature selection approach is to reduce the set by eliminating certain features 

that are deemed unnecessary for text sentiment classification. This will enhance classification accuracy and 

shorten the training time of machine learning models [51]. To get a trustworthy transformation, attribute 

selection has the drawback of requiring training on a big data set [52]. Feature selection is one method for 

getting around the excessive dimensions of features. Reducing vector dimensions has been accomplished by 

using information gain [53], one of the feature selection methods [54]. 

Dimension reduction is an additional strategy that can be employed to address the issue of high 

feature dimensions, alongside feature selection techniques. The dimension reduction technique aims to 

acquire novel data representations that are effectively reduced in size [55]. The dimensional reduction linear 

model comprises the singular value decomposition (SVD) model and the PCA model [56]. Nevertheless, the 

linear model of dimensional reduction has a drawback in that it generates a linear combination of all features, 

which can be influenced by noise and diminish the performance of the classification model. Additionally, the 

linear model of dimensional reduction encounters challenges when dealing with non-linear data [57]. The 

present study employed the PCA model for feature selection, and the artificial neural network (ANN) model 

for the prediction stage. The data utilized for energy consumption prediction encompassed various 

parameters, namely temperature sensor DHT22, temperature sensor BMP180, pressure, humidity, voltage, 

current, power, altitude, and light intensity. Concurrently, the prediction model produces energy consumption 

as its output. 

 

 

2. METHOD 

Figure 1 depicts the flowchart of an energy consumption prediction model that employs PCA as a 

feature selection technique. Based on the analysis of historical data utilized as inputs for PCA models, it is 

evident that the input variables initially comprised 9 sensors. However, in order to streamline the data and 

enhance its display efficiency, the ANN model was employed, resulting in a reduced set of 4 input variables. 

Additionally, the PCA model serves the function of transforming the initially correlated data into 
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uncorrelated data. Consequently, the data will be more visually presented and the subsequent stage of the 

ANN model will be completed more quickly [29]. The initial step in getting the covariance matrix needed to 

calculate the values of eigenvectors and eigenvalues in PCA is normalization [58]. The assignment of 

eigenvectors and eigenvalues can provide insight into the extent to which input variables influence PC 

variables. 

 

 

 
 

Figure 1. Flowchart of the PCA and ANN-based method for energy consumption prediction 

 

 

According to the data presented in Figure 1, it is evident that the data collected is real-time data 

obtained from the LEPE. The design employs a total of 9 sensors that are interconnected with the device 

utilized for data retrieval. Sensor 1 comprises data pertaining to pressure, whereas sensor 2 and sensor 7 

encompass data pertaining to temperature. Sensor 3 is associated with the data pertaining to the electrical 

current within the circuit. Sensor 4 is a voltage-connected data sensor. The data retrieval of sensor 8 pertains 

to the altitude distance, as it is directly associated with the forecast of energy consumption. 

 

2.1. Feature selection using principal component analysis 

The study employed PCA to enhance computation precision and decrease training time [59]. PCA 

was employed to reduce and transform the data utilized in this study. This involved excluding irrelevant data 

throughout the PCA process, computing the covariance matrix of the data, and identifying eigenvectors and 

eigenvalues. The process began with calculating the covariance matrix to capture the relationships and 

variance among all features in the dataset. Eigenvectors and eigenvalues were subsequently derived to 

identify the principal components that account for maximum variance within the data. These principal 

components were then utilized to transform the original dataset into a reduced feature space while preserving 

its most critical informational content. This methodological approach enhanced computational efficiency by 

reducing the overall feature set and mitigated the risk of overfitting, thereby improving the model's 

generalizability. The process of selecting features using the PCA approach involves the following steps: 

i) The computation of the covariance matrix involves the subtraction of the mean value of feature data 

characteristics. 

ii) The eigenvectors and eigenvalues of the covariance matrix are computed. The process involves 

selecting m-number eigenvalues from the list of eigenvectors and subsequently assigning these 

eigenvectors as 𝑣1, . . . . , 𝑣𝑚. 

iii) Calculating the contribution of each feature with the (1). 
 

𝑐𝑗 = ∑ |𝑣𝑝𝑗|
𝑚
𝑝=1  (1) 

 

iv) Choosing the largest number of 𝑐𝑗 values according to the number of features you want to maintain, so 

you get the jth feature which is a significant feature. 

Several carefully selected features, derived from the preprocessing and dimensionality reduction 

stages, were subsequently utilized as input variables for the energy consumption prediction phase. This step 

aimed to ensure that the most relevant and significant features contributed to the predictive modeling process, 

thereby enhancing the accuracy and reliability of the results. Two distinct predictive algorithms were utilized 

for this purpose, including the ANN algorithm, a recognized method noted for its strong ability to model 

complex nonlinear relationships. The study utilized these algorithms to produce accurate and dependable 



Int J Adv Appl Sci  ISSN: 2252-8814  

 

Enhancing artificial neural network performance for energy efficiency in laboratories … (Desmira) 

313 

predictions of energy consumption, highlighting the effectiveness of feature selection and algorithmic 

adaptability in tackling complex forecasting issues. 

 

2.2. Energy consumption prediction using artificial neural network and principal component analysis 

algorithms 

Pressure, temperature sensor DHT22, current, voltage, power, light intensity, temperature sensor 

BMP180, altitude, and humidity all influence the estimation of electrical energy requirements in the LEPE. 

The laboratory collected an average of 67 days of data using a single layer of hidden network in order to 

reduce the computational time required for prediction using ANN [60]. The ANN technique is used as a 

computational tool using a feedforward network type to estimate the energy consumption of the two 

laboratories at the Faculty of Electrical Engineering (FKE), Universiti Teknologi MARA (UiTM) Malaysia. 

The results indicate that the ANN is effectively trained to forecast energy usage [33]. A study conducted by 

[61], indicates that both the improved particle swarm optimization (iPSO)-ANN and a hybrid genetic 

algorithm (GA)-ANN surpass the conventional ANN in terms of prediction accuracy. Additionally, the 

improved particle swarm optimization (iPSO)-ANN model most significantly reduces computational time, 

establishing it as a feasible choice for real-time energy forecasting. Boujoudar et al. [62] is currently engaged 

in the integration of ANN to estimate the state of charge (SOC) of batteries and to manage bidirectional 

converters. The performance and robustness of the suggested control strategy are elucidated by the 

simulation results obtained in the MATLAB/Simulink environment. In order to enhance the efficacy of the 

ANN in forecasting the demand for electrical energy within a laboratory setting, it is imperative to consider 

the impact of eigenvectors and eigenvalues of the principal component of each input variable on the 

reduction and transformation processes. 

 

2.3. Artificial neural network and principal component analysis prediction performance test 

To assess and evaluate the precision of data collected in real-time in the LEPE, one can compare the 

actual data or original data using the ANN approach. The mean square error (MSE) formula was employed to 

compare actual measurement data with predicted data generated by the ANN model. The MSE is employed 

to assess the precision of forecasting outcomes in relation to the initial dataset of laboratory measurements. 

The range of forecasting results and MSE values is from 0 to infinity, with 0 representing the optimal value 

[63]. The MSE can be computed using the (2). 

 

𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

𝑛
 (2) 

 

 

3. RESULTS AND DISCUSSION 

The present study employed the PCA model for feature selection, and the ANN model for the 

prediction stage. The data utilized for energy consumption prediction encompassed various parameters, 

namely temperature sensor DHT22, temperature sensor BMP180, pressure, humidity, voltage, current, 

power, altitude, and light intensity. Concurrently, the prediction model produces energy consumption as its 

output. The network was trained using MATLAB 2019a. The algorithms underwent testing in order to 

ascertain the most optimal algorithm for application. The Levenberg-Marquardt method [64]–[66] was 

evaluated for its ability to create output in accordance with the intended iteration target. The algorithm was 

found to be the fastest in terms of training results and testing correlation coefficient R=1, indicating that the 

average error in the training data from each test is close to zero. The binary sigmoid and identity activation 

functions were selected based on the highest performance in all experiments. When the iteration objective is 

met, the training on data is terminated after 1,000 iterations, with an epoch of 200,000. The training data 

utilized variable input derived from sensor data, which underwent feature selection using the PCA model. 

Table 1 demonstrates that the eigenvector and eigenvalue aligned with (1) following the grouping of the data 

and the acquisition of PCA results presented in Table 1. 

The data in Table 1 indicates that the dimension reduction process, particularly the selection of 

principal components (PC1 to PC9), yields eigenvectors and eigenvalues that outperform those chosen for the 

ANN model. Table 1 shows that the eigenvalues for PC1 to PC4 surpass the threshold value of 1, indicating 

that these components significantly contribute to the variance in the dataset. This finding underscores the 

efficacy of the PCA method in isolating the most informative components while minimizing noise and 

redundancy. In the next phase, the values corresponding to PC1 and PC4, recognized as the most significant 

principal components, will be utilized as inputs for the ANN model [67]–[69]. This selection seeks to utilize 

the essential features for forecasting energy consumption in the LEPE. 
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Table 1. The performance of PCA transformation results 
No Principle component analysis (PCA) Reduction PCA = 𝑐𝑗 = ∑ |𝑣𝑝𝑗|

𝑚
𝑝=1  

1 PCA 1 3.2 

2 PCA 2 1.7 
3 PCA 3 1.5 

4 PCA 4 1.1 

5 PCA 5 0.7 
6 PCA 6 0.5 

7 PCA 7 0.2 

8 PCA 8 0.05 
9 PCA 9 0.03 

 

 

𝑣𝑎𝑟(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑎𝑡𝑚)) =  
∑ (𝑥1−𝑥)⃑⃑⃑⃑ 𝑛

𝑖=1

𝑛=1
 (3) 

 

𝑣𝑎𝑟(𝑇𝑒𝑚𝑝 ℃) =  
∑ (𝑦1−𝑦)⃑⃑⃑⃑ 𝑛

𝑖=1

𝑛=1
 (4) 

 

Variants of each data were obtained using (2) and (3) to determine eigenvectors and eigenvalues. In 

epoch 1,000, the MSE training [70] achieved a value of 0.045931. The test yielded a correlation coefficient 

R=0.35136, with 9 input variables and one output. The ANN structure employed the gaussmf input 

membership function. Figure 2 displays a dataset consisting of 50 training data points, which resulted in a 

correlation coefficient of R=1 after 2,000 epochs. Figures 2(a) and 2(b) show PCA and ANN data training 

with R=1 and dataset index, while Figure 2(c) displays the best training performance. Gradient, validation 

check, and learning rate can be seen in Figure 2(d) and the training state plot in Figure 2(e). 

Figure 2 demonstrates that the ANN model achieves a high level of accuracy in both the distribution 

of real data and predicted data. The correlation coefficient R is 1, and the MSE is 0.045931, indicating that 

the model has met its aim after 1,000 iterations. A learning rate of 2.3732e-05 was observed. The duration 

required to reach the designated objective was 6.29 minutes. In each epoch, the gradient value was recorded 

as 2.0265, the validation check was set to 0, and the learning rate was maintained at 2.3732e-05. 

Similar to the data training phase, the testing phase employed ANN [59], [61], [68], [71] set with 

both binary and identity sigmoid activation functions to guarantee the best performance in modeling 

nonlinear interactions within the data. This phase sought to confirm the model's generalizability and its 

capacity to reliably forecast energy consumption using previously unexamined test data. The testing 

procedure produced an MSE score of 0.045931, signifying little error and high predicted accuracy. Figure 3 

presents a comprehensive comparison between the anticipated energy values from the ANN model and the 

actual energy usage data. This image underscores the model's capacity to accurately replicate real-world 

energy computations, demonstrating its durability and the efficacy of the ANN design in identifying the 

fundamental patterns within the data. The correlation between training and testing results highlights the 

dependability and relevance of the ANN model in real-world energy forecasting contexts. 

The comparison of actual energy data with testing data using ANN and PCA models in the LEPE, as 

depicted in Table 2 and Figure 3, demonstrates a comparable level of resemblance. The ANN+PCA model 

accurately predicts the real energy use in the LEPE for training data ranging from 1 to 50. A disparity was 

seen in the 41st dataset, where the measured energy was 192.017959 Wh, however, the energy measurement 

obtained by the utilization of the ANN+PCA model was 191.9991 Wh. The test utilized an actual energy 

difference of 348.7287 Wh for the 50th data, whereas the ANN+PCA model utilized 235.3984 Wh. Figure 4 

shows testing prediction energy (actual) vs. ANN+PCA, specifically Figure 4(a) shows the testing and output 

data, and Figure 4(b) shows the testing dataset index. 

A total of 17 and 50 training data sets were carefully chosen for the testing phase to guarantee a 

broad representation of the dataset. The selection of test data conformed to the criteria outlined in Table 3, 

guaranteeing consistency and alignment with the experimental design. The test results, shown in Figure 5, 

demonstrate significant differences between the anticipated test data points and the actual target test data 

points when using the ANN model. The scatter plot clearly illustrates this discrepancy, showing that the 

model's predictions diverge markedly from the target values. The test produced a correlation coefficient (R) 

of 0.46169, indicating a reasonable but inadequate connection between the anticipated and actual results. 

This outcome highlights the difficulties encountered by the ANN model in precisely representing the 

connections within the test dataset, which may be attributable to constraints in model complexity, data 

unpredictability, or the need for further optimization of input features and hyperparameters. Additional study 

and enhancement of the ANN model may be necessary to augment its predicted accuracy and resilience. 
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(a) (b) 

 

  
(c) (d) 

 

 
(e) 

 

Figure 2. PCA and ANN data training of (a) training R=1, (b) output and target, (c) best training 

performance, (d) gradient, validation check, and learning rate, and (e) training state plot 

 
 

 

Training: 

 

 

 

Training 
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Table 2. Training data 
No Day/Date Pressure (atm) Energy (actual) (Wh) Prediction ANN+PCA (Wh) 

1 Mon, 6-1-20 0.9928 135.111837 135.1109 
2 Tue, 7-1-20 0.992116327 99.6604082 99.6609 

3 Wed, 8-1-20 0.991714286 119.275102 119.2747 

4 Thu, 9-1-20 0.992320408 312.561633 313.6165 
5 Fri,10-1-20 0.991587755 132.153469 132.1516 

6 Mon, 13-1-20 0.991695918 237.80898 237.8186 

7 Tue,14-1-20 0.992167347 138.8847 136.7702 
8 Wed, 15-1-20 0.99155102 261.102041 261.0997 

9 Thu, 16-1-20 0.990463265 195.777959 195.7711 

10 Fri, 17-1-20 0.991891837 233.271837 233.2715 
…. …. …. …. …. 

…. …. …. …. …. 

50 Wed, 18-3-20 0.992332653 349.33551 235.3984 

 
 

 
 

Figure 3. Training prediction energy (actual) vs. ANN+PCA 
 

 

  
(a) (b) 

 

Figure 4. Testing prediction energy (actual) vs. ANN+PCA of (a) testing and output and (b) testing dataset 

index 
 

 

Table 3. ANN+PCA testing 
No Day, Date Pressure (atm) Energy (actual) (Wh) Prediction ANN+PCA (Wh) 

1 Mon, 6-1-20 0.9928 135.111837 135.1109 

2 Tue, 7-1-20 0.992116327 99.6604082 99.6609 

3 Wed, 8-1-20 0.991714286 119.275102 119.2747 
4 Thu, 9-1-20 0.992320408 312.561633 313.6165 

5 Fri,10-1-20 0.991587755 132.153469 132.1516 

6 Mon, 13-1-20 0.991695918 237.80898 237.8186 
7 Tue,14-1-20 0.992167347 138.8847 136.7702 

8 Wed, 15-1-20 0.99155102 261.102041 261.0997 

…. …. …. …. …. 

67 Fri, 10-4-20 0.993185714 391.766531 260.263 

 

Testing: 

 

Testing 
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Figure 5. Prediction energy actual vs. ANN+PCA 

 

 

From Figure 5, it can be seen that the difference between actual energy data and data from 

ANN+PCA indicates a considerable difference in 17 test data against the output target based on conventional 

calculations. For training data from 1 to 50, the predictions of actual energy usage in the LEPE were almost 

the same as prediction data with ANN+PCA models. Meanwhile, the test data from data 51 to 67 showed that 

the data changes were quite significant in test data 62, which resulted in -156.541002 Wh, and significant in 

test data 65, which showed 24.47521633 Wh. 

 

 

4. CONCLUSION 

Based on the findings of the research conducted at the LEPE, the comparison between the real data 

and the predicted data using the ANN model, with feature selection employing PCA, yielded highly 

favorable results. The correlation coefficient during training was R=1, however, during testing, the 

correlation coefficient was R=0.4883 with an MSE of 0.045931 in epoch 1,000. Based on the findings of a 

three-month research study, it was observed that the actual data and traditional calculation data closely 

aligned with the data generated through the application of the ANN model using PCA feature selection. 

Hence, the ANN model, employing PCA for feature selection, is highly effective in forecasting energy 

requirements in a laboratory setting, while also considering the comfort of students during their practicum in 

the room. 
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