
International Journal of Advances in Applied Sciences (IJAAS)

Vol. 14, No. 3, September 2025, pp. 724~739

ISSN: 2252-8814, DOI: 10.11591/ijaas.v14.i3.pp724-739  724

Journal homepage: http://ijaas.iaescore.com

Autonomous navigation system for a rover with robotic arm

using convolutional neural networks

Aziz El Mrabet1, Hicham Hihi1, Mohammed Khalil Laghraib1, Mbarek Chahboun1,

Aymane Amalaoui2
1Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah University,

Fez, Morocco
2Laboratory of Innovative Technologies, National School of Applied Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Article Info ABSTRACT

Article history:

Received Oct 22, 2024

Revised May 21, 2025

Accepted Jun 8, 2025

 The aim of this project is to design and develop an autonomous rover

equipped with a KUKA robotic arm. This mobile vehicle will be able to

move autonomously thanks to the use of machine learning techniques. It will

also be able to detect and retrieve objects using the KUKA arm. The rover

will feature Mecanum wheels for improved maneuverability and will be

controlled by a Raspberry Pi 3 board, with machine learning algorithms

implemented using TensorFlow and Python. The development process will

follow the V-methodology. The use of such an autonomous rover and its

manipulative capabilities opens the way to many practical applications,

including sampling in dangerous or difficult-to-access environments, search

and rescue operations in the event of natural disasters or industrial accidents,

and inspection and maintenance of industrial or construction sites. The rover

could also be used for educational purposes, enabling students to explore the

concepts of robotics and artificial intelligence.

Keywords:

Convolutional neural networks

MATLAB

Python

Raspberry Pi 3

Robot arm

V-shaped
This is an open access article under the CC BY-SA license.

Corresponding Author:

Aziz El Mrabet

Laboratory of Engineering, Systems and Applications, National School of Applied Sciences

Sidi Mohamed Ben Abdellah University

Fez, Morocco

Email: aziz.elmrabet@usmba.ac.ma

1. INTRODUCTION

The rapid advancement of robotics has led to the development of autonomous systems capable of

performing intricate tasks with minimal human intervention. A significant breakthrough in this field is the

integration of robotic arms with mobile platforms, which enhances their versatility and enables operation in

diverse environments. Such systems have found applications in search and rescue, industrial automation, and

agricultural robotics, among others. However, despite notable progress in the development of mobile robots

and robotic arms, most existing solutions tend to focus on either mobility or manipulation, limiting their

ability to perform a broad range of tasks autonomously. For instance, systems designed for autonomous space

rendezvous often prioritize navigation using active sensors like light detection and ranging (LiDAR),

relegating visual sensors such as cameras to secondary roles [1], [2]. These systems are typically highly

specialized and tailored to specific environments, which restricts their broader applicability.

Recent advancements in machine learning and sensor technologies have enabled significant

improvements in autonomous navigation and object manipulation [3]. Nevertheless, many of these systems

rely on specialized hardware or lack the flexibility required for diverse real-world applications. While studies

have demonstrated the effectiveness of machine learning algorithms in robotic systems for tasks such as

sorting and object classification [4], the integration of these algorithms with mobile platforms and robotic

https://creativecommons.org/licenses/by-sa/4.0/

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

725

arms remains underexplored. Furthermore, the development of autonomous rovers equipped with Mecanum

wheels enabling omnidirectional movement has provided superior maneuverability compared to traditional

wheel configurations [5]. This capability is critical for navigating complex environments, traversing

obstacles, and reaching target locations with precision.

The integration of a KUKA robotic arm further enhances the rover's object detection and

manipulation capabilities, enabling it to retrieve objects, perform inspections, and execute highly precise

tasks. The combination of robotic arms with mobile platforms has been explored in numerous studies,

demonstrating their potential across industries such as agriculture and manufacturing [6]–[9]. Advanced

machine learning techniques, including deep learning and multitask convolutional neural networks (MCNN),

have further improved the adaptability and accuracy of these systems. For example, the YOLO-MCNN

model has proven effective in completing multiple tasks, such as target detection, pose estimation, and

obstacle segmentation, which are essential for autonomous operations [7], [10]. These advancements reduce

the need for manual intervention and enhance operational efficiency.

This paper presents a structured and validated approach to the development of an autonomous rover

system, employing the V-methodology a proven process for mission-critical projects requiring high

reliability and performance. The rover's design incorporates a Raspberry Pi 3 platform, which processes real-

time data from sensors and cameras to guide the vehicle through its environment. Additionally, the study

explores the integration of machine learning algorithms, particularly convolutional neural networks (CNNs),

which are central to the rover's capabilities. The modular design of the system, developed using Catia V5, is

discussed alongside the application of advanced algorithms and the integration of a KUKA robotic arm with

the mobile platform. The paper also highlights the importance of secure communication protocols, such as

open platform communications unified architecture (OPC UA), and advanced data management techniques in

ensuring the reliability and safety of the autonomous system. By providing a comprehensive overview of the

development process and design considerations, this paper aims to contribute to the broader field of

autonomous robotics. The following sections delve into the system's design, the methodology employed, and

the evaluation of its performance, while also discussing implications for future research.

2. METHOD

The development of this robot followed a structured and systematic approach based on the

V-methodology. The V-shaped development model is an iterative, incremental approach for software projects

that have well-defined requirements but need flexibility. This development cycle follows a V-shape with

sequential and parallel steps, including requirements analysis, design, implementation, testing, and

validation. This model is particularly well-suited to mission-critical projects; each phase was meticulously

executed to ensure the system's reliability, functionality, and reproducibility.

2.1. Requirements analysis

A comprehensive analysis of both functional and non-functional requirements was conducted to

define the scope and objectives of the project. The functional requirements focus on the rover's core

capabilities, which include autonomous navigation using machine learning techniques, omnidirectional

movement enabled by Mecanum wheels, obstacle detection and avoidance using ultrasonic sensors, and

object detection and retrieval facilitated by a KUKA arm and a camera-based vision system. These

capabilities ensure the rover can operate effectively in dynamic environments, locate target objects, and

interact with its surroundings.

In addition to functional requirements, the system was designed to meet several non-functional

requirements, such as performance, reliability, and usability. The rover must operate without failure for

extended periods, recover from errors autonomously, and provide clear status updates to non-technical users.

Hardware specifications include the use of a Raspberry Pi 3 as the central processing unit, Mecanum wheels

for enhanced maneuverability, a KUKA arm for object retrieval, and a camera for object detection and

recognition. On the software side, the system leverages TensorFlow and Python for machine learning and

control algorithms. Finally, the design adheres to specific budget, size, and weight constraints to ensure

practicality and feasibility.

2.2. System architecture

The system architecture is modular, with each module performing a specific function and

communicating asynchronously via dedicated topics. This design ensures flexibility, scalability, and ease of

maintenance. The camera module captures images using the rover's onboard camera and publishes them to

the "image_topic" for use by other modules. The object detection module subscribes to this topic and

analyzes the pictures with a CNN based on the residual networks (ResNets)-50 architecture. This module

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 3, September 2025: 724-739

726

detects and identifies objects within the images, publishing the results (e.g., object coordinates and type) to

the "object_detection_topic".

The KUKA arm control module subscribes to the "object_detection_topic" to receive object

coordinates and calculates the arm movements required to grasp the detected objects using inverse

kinematics. It then publishes arm movement commands to the "arm_control_topic". The wheel control

module subscribes to this topic and adjusts the rover's Mecanum wheels to position the rover for object

retrieval, publishing wheel movement commands to the "wheels_control_topic". Finally, the ultrasonic

sensor module measures distances to surrounding objects and publishes this data to the system, enabling

obstacle avoidance and navigation.

2.3. Implementation details

The implementation phase involved integrating hardware components and developing software

algorithms to bring the system to life. The Raspberry Pi 3 was set up to connect with the Mecanum wheels,

KUKA arm, camera, and ultrasonic sensors, functioning as the central hub for data processing and control.

The control algorithms were executed in Python, utilizing TensorFlow for CNN-based object detection. The

ResNet-50 model was chosen for its balance of accuracy and computational efficiency, and it was fine-tuned

for our specific object detection task using a dataset of labeled images.

A publish-subscribe model facilitated communication between modules. This model allows

asynchronous and independent operation while ensuring seamless data exchange. This approach enables each

module to function autonomously while remaining synchronized with the overall system.

2.4. Verification and validation

Each module was rigorously tested in isolation and as part of the integrated system to ensure it met

the specified requirements. The object detection algorithm was validated using a dataset of labeled images.

The rover's navigation and object retrieval capabilities were tested in a controlled environment, confirming

that all functional and non-functional requirements were met. These tests demonstrated the system's ability to

autonomously navigate, detect and avoid obstacles, locate target objects, and retrieve them using KUKA arm.

3. OBJECT DETECTION ALGORITHM

This study focuses on the implementation of machine learning and deep learning methodologies to

design an object detection framework. As a branch of artificial intelligence, machine learning allows

computational systems to autonomously improve performance through data-driven learning autonomously,

bypassing the need for direct programming. Such techniques are applied extensively in domains ranging from

voice and facial recognition to target identification systems. Machine learning strategies are typically

categorized into three primary types: supervised learning for labeled data analysis, unsupervised learning for

pattern discovery in unlabeled datasets, and reinforcement learning for decision-making optimization through

iterative feedback.

Deep learning, on the other hand, is a branch of machine learning that exploits artificial neural

networks to solve complex problems. As illustrated in Figure 1, deep neural networks, such as CNNs, are

particularly well-suited to computer vision and image classification tasks. In our object detection system, we

have used a pre-entrained CNN.

Figure 1. Deep neural network architecture

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

727

3.1. Presentation of the neural network convolution algorithm and the ResNet-50 model

CNNs represent a class of deep learning models commonly used for image classification. As shown

in Figure 2, they exploit convolution operations to extract relevant features from images, thereby reducing

the complexity of the model in terms of parameters to be learned. These convolutional networks are generally

composed of convolution, pooling, and fully connected layers, enabling classification to be performed. The

network is trained by iteratively adjusting the weights of the various layers, based on the training data. CNN

has proven its worth in many computer vision applications [11], [12].

Figure 2. Edge detection process

The ResNet architecture was selected for this project. ResNet is a deep convolutional network that

uses residual connections, making it easy to train very deep models. The network is built from stacked

residual convolution blocks. In addition, transfer learning is often employed with ResNet, enabling pre-

trained convolution layers to be exploited for image feature extraction.

Early approaches to image processing were based on the use of filters to extract features such as

object contours. From a mathematical point of view, this involves the application of convolution operations,

which consist of sums of elementary products over image blocks. Convolution can be defined on a 2D matrix

and can be extended to volumes [13]. The image is then represented as a tensor, with dimensions for height,

width, and number of channels [14], [15].

3.1.1. Padding and stride in convolutions

Padding and stride are key operations for dealing with the loss of information at the edges of the

image when applying convolutions. Padding consists of adding zeros around the image to take into account

pixels located on the edges, while stride controls the size of the output by adjusting the distance traveled by

the filter during convolution. The following section explores these concepts in detail [16], [17].

Padding: when a convolution is applied with a vertical edge filter, pixels in the image's corners are

used less than those in the center, leading to a loss of edge information. To solve this problem, it is common

to add a frame around the image. As illustrated in Figure 3, this padding usually involves adding zeros

around the original image so that pixels at the edges can be taken into account during convolution. The dpi

parameter corresponds to the number of elements added to each side of the image.

Figure 3. Padding in CNNs

Stride: the stride corresponds to the speed at which the filter moves over the image during

convolution. The size of the output decreases with a larger stride, while a smaller stride keeps it larger. This

distance is represented by the s parameter. For example, a stride of 1 indicates that the filter moves one pixel

at a time, while a stride of 2 indicates that it moves two pixels at each step. As shown in Figure 4, these

concepts are illustrated in the following images, showing an example of padding with 𝑝 = 1 and a

convolutional product with 𝑠 = 1.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 3, September 2025: 724-739

728

Figure 4. Convolution operation

A rigorous definition of the convolution operation requires clarity on two critical components:

padding and stride. Padding, parameterized by p, preserves spatial edge information by appending zeros

around the input matrix. Meanwhile, stride (s) governs the displacement interval of the filter during

convolution, directly influencing output dimensionality. The convolutional output is computed as a 2D

matrix, where each entry corresponds to the summation of element-wise products between the filter’s 3D

tensor and an overlapping sub-cube of the input tensor. For an image with dimensions [𝑛ℎ, 𝑛𝑤, 𝑛𝑐]
(𝑛ℎ: the size of the height, 𝑛𝑤: the size of the widh, and 𝑛𝑐: the number of channels). In the case of an

RGB image, for example, 𝑛𝐶 = 3 we have red, green, and blue. By convention, we consider that the K filter

is gridded and has an odd dimension noted f, which allows each pixel to be centered in the filter and therefore

to take into account all the elements surrounding it, so that we apply a filter of dimension [𝑓, 𝑓, 𝑛𝐶].

The convolutional product between the image and the filter is a 2D matrix, each element of which is the sum of

the multiplication per element of the cube (filter) and the sub-cube of the given image, as illustrated in Figure 5.

Figure 5. The cube (filter) and the sub-cube of the given image

Mathematically, the dimensionality of the convolution operation between an input image I and filter

K is defined as in (1).

dim(𝑐𝑜𝑛𝑣(𝐼, 𝐾)) = {
([
𝑛𝐻+2𝑝−𝑓

𝑠
+ 1] , [

𝑛𝑤+2𝑝−𝑓

𝑠
+ 1]) ; 𝑠 > 0

(𝑛ℎ + 2𝑝 − 𝑓, 𝑛𝑤 + 2𝑝 − 𝑓) ; 𝑠 = 0
 (1)

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

729

Where ⌊𝑥⌋ is the floor function of 𝑥. Common convolution variants include:

‒ Valid convolution: 𝑝 = 0

‒ Same convolution: output size=input size→ 𝑝 =
𝑓−1

2

‒ 1×1 convolution: Employs a unit-sized filter (𝑓 = 1), often used to reduce channel depth (𝑛𝐶) while

retaining spatial resolution (𝑛𝐻 , 𝑛𝑊).
In the illustrative example, Figure 5, filter values are manually initialized for clarity. However, in practical

CNNs, the 𝑓 × 𝑓 × 𝑛𝐶 filter parameters are optimized automatically via backpropagation during training.

3.1.2. Pooling

Pooling layers downsample spatial dimensions (𝑛𝐻, 𝑛𝑊) while preserving channel depth (𝑛𝐶).

This operation applies a fixed-aggregation function (non-trainable) to localized regions of the input tensor,

traversed by a filter of size 𝑓 × 𝑓 with stride 𝑠. The output dimensions are governed by (2).

dim(𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑖𝑚𝑎𝑔𝑒)) = {
([
𝑛𝐻+2𝑝−𝑓

𝑠
+ 1] , [

𝑛𝑤+2𝑝−𝑓

𝑠
+ 1] , 𝑛𝐶) ; 𝑠 > 0

(𝑛ℎ + 2𝑝 − 𝑓, 𝑛𝑤 + 2𝑝 − 𝑓, 𝑛𝐶) ; 𝑠 = 0
 (2)

Standard practice employs square filters (𝑓 × 𝑓), typically with 𝑓 = 2 and 𝑠 = 2 to halve the spatial

resolution while avoiding overlap. Common pooling functions include:

‒ Average pooling: computes the mean of values within the filter’s receptive field.

‒ Max pooling: extracts the maximum value from the filter’s window.

Unlike convolutional layers, pooling utilizes predefined operations (no learnable parameters), prioritizing

computational efficiency and translational invariance in deep networks.

3.1.3. Building a convolutional neural network layer by layer

A CNN is constructed by stacking layers, each performing specific operations like convolution,

activation, pooling, and fully connected layers. For example, in the 3rd layer:

Input: at−1with size (𝑛𝐻
(𝑙−1), 𝑛𝑊

[𝑙−1], 𝑛𝐶
[𝑙−1]), 𝑎[0] being the image in the input

Padding: 𝑝[𝑙]
Stride: 𝑠[𝑙]

Number of filters: 𝑛𝐶
[𝑙]

where each 𝐾𝑛 has the dimension: (𝑓[𝑙], 𝑓[𝑙], 𝑛𝐶
[𝑙−1])

Bias of the 𝑛𝑡ℎconvolution 𝑏𝑛
[𝑙]

Activation function: 𝜓[𝑙]]

Output: 𝑎[𝑙] with size (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙])

and:

∀𝑛𝜖[1,2, … , 𝑛𝐶
[𝑙]
] 𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾𝑛)

𝑥,𝑦
= 𝜓[𝑙] (∑ ∑ ∑ 𝐾𝑖,𝑗,𝑘

(𝑛)
𝑎𝑥+𝑖−1,𝑦+𝑗−1,𝑘 + 𝑏𝑛

[𝑙]𝑛𝐶
[𝑙−1]

𝑘=1

𝑛𝑊
[𝑙−1]

𝑘=1

𝑛𝐻
[𝑙−1]

𝑖=1
) (3)

dim(𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾(1))) = (𝑛𝐻
[𝑙]
, 𝑛𝑊
[𝑙]
)]]

thus:

𝑎[𝑙] = [𝜓[𝑙] (𝑐𝑜𝑛𝑣(𝑎[𝑙−1] , 𝐾(1))) , 𝜓[𝑙] (𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾(1))) , … , 𝜓[𝑙] (𝑐𝑜𝑛𝑣 (𝑎[𝑙−1], 𝐾(𝑛𝐶
[𝑙]
)))] (4)

dim(𝑎[𝑙]) = (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙])

with:

𝑛𝐻
𝑊

[𝑙]
=

{

⌊

𝑛𝐻
𝑊

[𝑙−1]+𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙]
+ 1⌋ ; 𝑠 > 0

𝑛𝐻
𝑊

[𝑙−1]
+ 2𝑝[𝑙] − 𝑓[𝑙] ; 𝑠 = 0

 (5)

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 3, September 2025: 724-739

730

where 𝑛𝐶
[𝑙] = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠. The learned parameters at the 𝑙𝑡ℎ layer are:

‒ Filters with (𝑓[𝑙] × 𝑓[𝑙] × 𝑛𝐶
[𝑙−1]) × 𝑛𝐶

[𝑙]
 parameters.

‒ bias with (1 × 1 × 1) × 𝑛𝐶
[𝑙] parameters (broadcasting).

Pooling layers, as shown in Figure 6, hierarchically abstract spatial features by subsampling inputs

while maintaining channel consistency (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙−1], 𝑛𝐶
[𝑙−1]

). The layer’s operation is formalized as follows:

Input: 𝑎[𝑙] (activation from layer 𝑙 − 1) with dimensions (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙−1], 𝑛𝐶
[𝑙−1]), and 𝑎[0] denotes the raw input

image.

Parameters: Filter size 𝑓[𝑙], stride 𝑠[𝑙], and padding 𝑝[𝑙] (rarely applied in pooling).

Pooling function: 𝜙[𝑙] (aggregation operation, e.g., max or average).

Output: 𝑎[𝑙] with dimensions (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙] = 𝑛𝐶

[𝑙−1])

The output activation at position (𝑥, 𝑦, 𝑧) in layer ll is computed as:

𝑎𝑥,𝑦,𝑧
[𝑙] = 𝑝𝑜𝑜𝑙(𝑎[𝑙−1])

𝑥,𝑦,𝑧
= 𝜙[𝑙] ((𝑎𝑥+𝑖−1,𝑦+𝑗−1,𝑧)(𝑖,𝑗)∈[1,2,…,𝑓[𝑙]) (6)

dim(𝑎[𝑙]) = (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙])

with:

𝑛𝐻
𝑊

[𝑙] =

{

⌊

𝑛𝐻
𝑊

[𝑙−1]+𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙]
+ 1⌋ ; 𝑠 > 0

𝑛𝐻
𝑊

[𝑙−1] + 2𝑝[𝑙] − 𝑓[𝑙] ; 𝑠 = 0

 (7)

𝑛𝐶
[𝑙] = 𝑛𝐶

[𝑙−1]

Figure 6. The pooling layers

CNNs are hierarchically structured architectures in Figure 7 that iteratively apply convolutional

layers, nonlinear activation functions, and pooling operations. This sequence convolution

→activation→pooling is repeated across successive layers to progressively extract higher-order spatial and

semantic features from input images. The extracted feature maps are then flattened and fed into fully

connected (dense) layers, augmented with additional activations, to perform classification or regression tasks.

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

731

Figure 7. The sequential steps involved in a CNN

A hallmark of CNNs is their ability to systematically reduce spatial resolution while increasing

channel depth (CNN) as the network deepens, balancing computational efficiency with representational

capacity. This three-dimensional transformation from raw pixel data to abstract feature hierarchies is

visualized in Figure 8. This figure illustrates the architectural evolution of tensors across layers.

Figure 8. Structure of a CNN

3.1.4. ResNet

ResNets enhance traditional CNN architectures by integrating skip connections that bypass

intermediate layers, as shown in Figure 9. These connections mitigate performance degradation in very deep

networks by enabling the propagation of unaltered gradients and features. Without skip connections, the

behavior of a residual block is governed by standard linear and nonlinear transformations as in (8) and (9).

𝑧𝑗
[𝑖]
= ∑ 𝑤𝑗,𝑙

[𝑖]
𝑎𝑙
[𝑖−1]

+ 𝑏𝑗
[𝑖]𝑛𝑖−1

𝑙=1 (8)

⟶ 𝑎𝑗
[𝑖] = 𝜓[𝑖](𝑧𝑗

[𝑖]) (9)

By initializing weights 𝑤[𝑖] and biases 𝑏[𝑖] to zero and selecting an identity activation 𝜓[𝑖], the

residual block simplifies to 𝑎[𝑖] = 𝑎[𝑖−2], preserving network performance even if added layers contribute

minimally. To ensure dimensional compatibility between 𝑎[𝑖−2], and 𝑎[𝑖], same convolutions (matching

spatial dimensions) are typically applied. When mismatches occur, a learnable projection tensor 𝑊𝑠 adjusts

the skip connection:

⟶ 𝑎𝑗
[𝑖] = 𝜓[𝑖](𝑧𝑗

[𝑖] + 𝑎𝑗
[𝑖−2]) (10)

where 𝑊𝑠 might be a fixed tensor or a learned one, and dim(𝑊𝑠) = [𝑛
[𝑖], 𝑛[𝑖−2]].

Inception networks introduce a paradigm shift by deploying modules that perform multiple

operations in parallel within a single layer, as shown in Figure 10. Specifically, each Inception module

applies convolutional, pooling, and fully connected operations simultaneously, allowing the network to

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 3, September 2025: 724-739

732

capture features at various spatial scales. This architecture eliminates the need for manual selection of layer

types and enhances model efficiency and representational richness.

Figure 9. Feedforward neural network architecture

Figure 10. The result of all the operations

3.2. Robot module

3.2.1. Robot Mecanum

Wheeled mobile robots resembling machines are becoming increasingly prevalent and are widely

utilized in industrial settings for automated transportation or logistical purposes, such as the conveyance of

goods, parts, and even people. When dealing with expensive and sensitive loads, the mobile robot must be

reliable and safe while providing efficient movement. A machine equipped with wheels can maneuver

around, leading to more efficient usage. A mobile robot capable of serving multiple stations within a

production line can enhance product capacity and quality [18], [19].

In this research, an omnidirectional robot is employed, which has the ability to move in any

direction. It is a holonomic robot with four specialized wheels, namely the Mecanum wheel system, each

driven by a separate stepper motor. For such a robot, the number of controlled degrees of freedom is equal to

the total number of degrees of freedom of the robot [20], [21]. It can move in any direction on a planar
surface due to its freely rotating rollers placed on the wheel surface at a 45-degree angle. Figure 11 depicts a

mobile robot model with a Mecanum wheel, with a coordinate system attached at the center of the wheel hub,

where the unit axis is denoted. The robot's position and orientation are represented as. The robot's linear

velocity is and its angular velocity is, while is the angular velocity of the i-th wheel and represents the linear

wheel velocity. The angle between the free-sliding roller axis and the wheel hub axis can be either positive or

negative, depending on whether the wheel is left or right [22]–[24].

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

733

Figure 11. The direction of mobile robot motion is based on the Mecanum's various velocities of the wheels

The direction of the mobile robot's motion based on the Mecanum wheel motion is shown in

Figure 11. The following forward kinematic equation describes the relationship between the mobile robot's

velocity and the velocity of each wheel as in (12).

[

𝑣𝑥𝑟
𝑣𝑦𝑟
𝑤𝑟
] =

1

4𝑟𝑚

[

1 1 1 1
−1 1 −1 1
1 1 1 1

−
1

𝑎+𝑏

1

𝑎+𝑏

1

𝑎+𝑏
−

1

𝑎+𝑏]

[

𝑤𝑚1
𝑤𝑚2
𝑤𝑚3
𝑤𝑚4

] (12)

Where 𝑟𝑚 is the radius of the Mecanum wheel, and a and b describe the length and width of the mobile robot.

3.2.2. KUKA arm control

Denavit-Hartenberg (DH) parameters are a commonly used method for describing the kinematics of

manipulator arms in robots [25], [26]. They provide a systematic way of representing the relationships

between the various links of an articulated manipulator arm. The DH parameter method relies on four main

parameters for each joint of a manipulator arm: the angle of rotation about the common z-axis (𝜃), the link

length (𝑑), the distance along the x-axis between the common z-axes (𝑎), and the angle of inclination to the

common x-axis (𝛼). The homogeneous transformation matrix DH parameters for the KUKA arm are obtained

according to this approach by the following relationship and Table 1. Figure 12 shows the KUKA arm robot.

𝐴𝑖 = 𝑅𝑜𝑡𝑧𝑖𝜃𝑖𝑇𝑟𝑎𝑛𝑠𝑧𝑖𝑑𝑖𝑇𝑟𝑎𝑛𝑠𝑥𝑖𝑎𝑖𝑅𝑜𝑡𝑥𝑖𝛼𝑖 (13)

𝐴𝑖 =

[

𝐶𝜃𝑖
𝑆𝜃𝑖
0
0

−𝑆𝜃𝑖𝐶𝛼𝑖
𝐶𝜃𝑖𝐶𝛼𝑖
𝑆𝛼𝑖
0

𝑆𝜃𝑖𝑆𝛼𝑖
−𝐶𝜃𝑖𝑆𝛼𝑖
𝐶𝛼𝑖
0

𝑎𝑖𝐶𝜃𝑖
𝑎𝑖𝐶𝜃𝑖
𝑑𝑖
1

]

 (14)

Table 1. DH parameters for the KUKA arm
Joint i θ𝑖(𝑑𝑒𝑔) 𝑑𝑖(𝑚𝑚) 𝑎𝑖 𝛼𝑖(deg)

1 𝜃1 889 0 90

2 𝜃2 0 2340 0

3 𝜃3 0 0 90

4 𝜃4 1440 0 -90

5 𝜃5 40 0 -90

The robot model was imported from SolidWorks using an XML file and then integrated into

MATLAB/Simulink. Specifically, we used the “smimport” command, which is part of the Simscape

Multibody toolbox, to convert the XML file into a Simulink model containing the 3D mechanical

components. After import, inputs were configured to control each joint angle, and outputs were set to read the

measured values. To achieve precise motion control, we implemented a feedback loop using a proportional-

integral-derivative (PID) controller to minimize deviations between the commanded and measured joint

angles. Each joint in the model is therefore associated with both a control input and a corresponding

measurement output.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 3, September 2025: 724-739

734

Figure 12. KUKA arm

As shown in Figure 13, we transform this representation into a single block (sub-system). The input

from the robot's control blocks is connected to a Simulink block that performs the robot's inverse kinematics.

This inverse kinematics block uses a position vector (x, y, and z) as input to determine the joint angles

required to achieve the desired position and orientation of the end effector. Using this approach, we can

precisely control the robot's motion by specifying the desired position coordinates in three-dimensional

space. The PID corrector allows me to adjust the joint angles in real time to reduce deviations between

commanded and measured values, ensuring more precise and reliable robot motion as shown in Figure 14.

Figure 13. The sub-system module of the arm in Simulink

Figure 14. The complete arm model is in Simulink

This control method, based on inverse kinematics and the PID corrector, offers great flexibility in

achieving precise robot movements in response to specific end-effector positions and orientations. As shown

in Figure 15, the simulation results. For example, x, y, and z values in the control vector are selected and

entered. Simulink plays a crucial role in the simulation of intelligent robots by providing an advanced

modeling and simulation environment, enabling multi-domain modeling, realistic simulation, control design

and motion planning, integration with other tools, and model validation. It facilitates the development,

optimization, and performance verification of robots before their actual implementation. This helps to speed

up the design process and improve the reliability and performance of intelligent robots.

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

735

Figure 15. Simulation of the arm in Simulink

4. RESULTS AND DISCUSSION

To evaluate the performance of our machine learning model, we visualized in Figure 16 the results

by plotting loss in Figure 16(a) and accuracy in Figure 16(b) curves using a custom function,

plot_loss_curves. This function takes as input the history of the trained model, specifically the loss and

accuracy values across all epochs, and generates separate plots for the training and validation datasets. In

these two graphs, we can see that our machine learning model demonstrated excellent performance,

achieving perfect accuracy (1.0) on both the training and validation datasets. This indicates that the model

successfully generalized to new data without overfitting, a critical consideration in machine learning.

Additionally, our findings align with previous studies that emphasize the importance of monitoring loss and

accuracy curves to detect overfitting [27]. However, unlike some studies that report a trade-off between

accuracy and computational complexity [28], [29], our model achieved high accuracy without requiring

excessive computational resources. This may be attributed to the efficient architecture of the CNN and the

high-quality training data used in this study.

(a)

(b)

Figure 16. Result of the custom function plot_loss_curves of (a) loss curve and (b) accuracy curve

The performance of our CNN-based object detection system is consistent with recent advancements

in deep learning for robotics [30], [31]. For instance, the use of TensorFlow for implementing the CNN

aligns with best practices in the field, as highlighted by [32]. However, our approach differs in its integration

of real-time ultrasonic sensors for environmental awareness, which enhances the robot's ability to navigate

dynamic environments a feature not extensively explored in prior work. Future work should validate these

findings on larger and more diverse datasets to ensure generalizability. Second, the 3D-printed Mecanum

wheels, while effective, may have durability issues in harsh environments. Testing the wheels under more

extreme conditions would provide valuable insights into their long-term performance.

The assembly of the robot involved integrating several critical components, listed in Table 2. The

stepper motors (Model: PSM57HS2A54-2P) and servo motors (Models: MG996R and 9G) were essential for

driving the Mecanum wheels and operating the KUKA robotic arm, respectively. The camera module

(Camera V2 for Raspberry Pi, 8 MP) plays a pivotal role in the robot's vision system, capturing images for

object detection.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 3, September 2025: 724-739

736

Table 2. Equipment of the robot
Item Model number Quantity

Step motor PSM57HS2A54-2P 4

Servo motor MG996R 4

Servo motor micro 9g 3

Camera Camera V2 for Raspberry Pi 8 MP 1

Obstacle detector HC-SR04 3
Raspberry Raspberry Pi 3 board 1

Battery External battery 20000 mAh PD 3.0/QC 4.0 1

Figure 17 illustrates the 3D-printed Mecanum wheels, which were crucial for achieving the desired

mobility. The wheels' ability to move in any direction without changing orientation allows the robot to

navigate tight spaces and adjust its position with precision. This capability is key for tasks like object

retrieval in cluttered environments. Figure 18 shows the completed robot.

Figure 17. Mecanum wheel printed with a 3D printer

Figure 18. The completed robot

The robot's object detection system is powered by a CNN implemented using TensorFlow. The

camera captures images and publishes them on the "image_topic," where the CNN processes the images to

detect objects. Upon detecting an object, the system publishes the detection information, including the

coordinates of the detected objects, on the "object_detection_topic." The KUKA robotic arm, equipped with

six servo motors, uses this detection data to execute the necessary movements to grasp the object. The

precision of the CNN in detecting objects and the accuracy of the servo motors in positioning the arm are

critical for successful object retrieval. The integration of these systems ensures that the robot can

autonomously detect and manipulate objects in real-time.

To enhance the robot's environmental awareness, three ultrasonic sensors (HC-SR04) were mounted

on the robot one at the front and two on the sides. These sensors continuously measure the distance between

the rover and surrounding objects, publishing this data to the "ultrasonic_sensor_module." The real-time

distance measurements allow the robot to avoid collisions and navigate safely in dynamic environments. The

integration of these sensors with the robot’s control system enables the rover to autonomously make

decisions about its path, ensuring safe operation even in complex and unpredictable environments.

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

737

5. CONCLUSION

In this study, we developed and validated an autonomous rover system equipped with a KUKA

robotic arm, using extensive simulations to assess its performance in navigation and object manipulation

tasks. These simulations proved essential for testing the system in a risk-free virtual environment, allowing

us to refine the architecture, control strategies, and perception algorithms before transitioning to physical

deployment. The results confirmed the feasibility and reliability of our approach, demonstrating the rover’s

ability to navigate complex terrains autonomously and perform precise object detection, localization, and

grasping operations using the robotic arm. This work lays a strong foundation for real-world implementation,

where the system can be adapted to various application domains such as search and rescue missions,

industrial automation, and planetary exploration. In future work, we aim to integrate advanced learning

methods such as reinforcement learning to improve decision-making in dynamic environments, and to

conduct real-world experiments to evaluate the system's robustness under diverse operational conditions.

Overall, our findings highlight the potential of simulation-driven development in robotics and pave the way

toward the deployment of versatile, intelligent, and autonomous robotic platforms.

FUNDING INFORMATION

Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Aziz El Mrabet ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hicham Hihi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mohammed Khalil

Laghraib

 ✓ ✓ ✓ ✓ ✓

Mbarek Chahboun ✓ ✓ ✓ ✓

Aymane Amalaoui ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are available on request from the corresponding

author, [AEM]. The data, which contain information that could compromise the privacy of research

participants, are not publicly available due to certain restrictions.

REFERENCES
[1] D. Rondao, L. He, and N. Aouf, “AI-based monocular pose estimation for autonomous space refuelling,” Acta Astronautica,

vol. 220, pp. 126–140, 2024, doi: 10.1016/j.actaastro.2024.04.003.

[2] Z. Li et al., “A YOLO-GGCNN based grasping framework for mobile robots in unknown environments,” Expert Systems with
Applications, vol. 225, 2023, doi: 10.1016/j.eswa.2023.119993.

[3] J. Liang, W. Luo, and Y. Qin, “Path planning of multi-axis robotic arm based on improved RRT*,” Computers, Materials and

Continua, vol. 81, no. 1, pp. 1009–1027, 2024, doi: 10.32604/cmc.2024.055883.

[4] D. K. Nkemelu, D. Omeiza, and N. Lubalo, “Deep convolutional neural network for plant seedlings classification,” arXiv-

Computer Science, pp. 1–5, 2018.
[5] M. Hasan, N. Vasker, and M. S. H. Khan, “Real-time sorting of broiler chicken meat with robotic arm: XAI-enhanced deep

learning and LIME framework for freshness detection,” Journal of Agriculture and Food Research, vol. 18, 2024,

doi: 10.1016/j.jafr.2024.101372.

[6] M. Hasan, N. Vasker, M. M. Hossain, M. I. Bhuiyan, J. Biswas, and M. R. Ahmmad Rashid, “Framework for fish freshness

detection and rotten fish removal in Bangladesh using mask R–CNN method with robotic arm and fisheye analysis,” Journal of
Agriculture and Food Research, vol. 16, 2024, doi: 10.1016/j.jafr.2024.101139.

  ISSN: 2252-8814

Int J Adv Appl Sci, Vol. 14, No. 3, September 2025: 724-739

738

[7] X. Du et al., “Comprehensive visual information acquisition for tomato picking robot based on multitask convolutional neural
network,” Biosystems Engineering, vol. 238, pp. 51–61, 2024, doi: 10.1016/j.biosystemseng.2023.12.017.

[8] D. Leite, A. Brito, and G. Faccioli, “Advancements and outlooks in utilizing convolutional neural networks for plant disease

severity assessment: a comprehensive review,” Smart Agricultural Technology, vol. 9, 2024, doi: 10.1016/j.atech.2024.100573.

[9] B. Gülmez, “Advancements in maize disease detection: a comprehensive review of convolutional neural networks,” Computers in

Biology and Medicine, vol. 183, 2024, doi: 10.1016/j.compbiomed.2024.109222.
[10] C. Chen, N. A. Mat Isa, and X. Liu, “A review of convolutional neural network based methods for medical image classification,”

Computers in Biology and Medicine, vol. 185, 2025, doi: 10.1016/j.compbiomed.2024.109507.

[11] R. Chundi et al., “Exploring diabetes through the lens of AI and computer vision: methods and future prospects,” Computers in

Biology and Medicine, vol. 185, 2025, doi: 10.1016/j.compbiomed.2024.109537.

[12] E. Trucco and A. Verri, Introductory techniques for 3-D computer vision. Upper Saddle River, New Jersey: Prentice Hall, 1998.
[13] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge, United Kingdom: Cambridge University

Press, 2004.

[14] C. Wang, N. Komodakis, H. Ishikawa, O. Veksler, and E. Boros, “Inference and learning of graphical models: theory and

applications in computer vision and image analysis,” Computer Vision and Image Understanding, vol. 143, pp. 52–53, 2016,

doi: 10.1016/j.cviu.2016.01.001.
[15] Y. Haruna, S. Qin, A. H. Adama Chukkol, A. A. Yusuf, I. Bello, and A. Lawan, “Exploring the synergies of hybrid convolutional

neural network and vision transformer architectures for computer vision: a survey,” Engineering Applications of Artificial

Intelligence, vol. 144, 2025, doi: 10.1016/j.engappai.2025.110057.

[16] Z. Hou, H. Wang, Y. Yue, M. Xiong, and C. Che, “A novel method for cause portrait of aviation unsafe events based on

hierarchical multi-task convolutional neural network,” Expert Systems with Applications, vol. 270, 2025,
doi: 10.1016/j.eswa.2025.126466.

[17] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” Journal of

Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00444-8.

[18] R. R. Murphy, Introduction to AI robotics. Cambridge, United Kingdom: MIT Press, 2019.

[19] B. Siciliano and O. Khatib, Springer handbook of robotics. Berlin, Heidelberg: Springer, 2008.
[20] Y. Uchida, T. Saito, and T. Hatakeyama, “Development of a multi-purpose module system using Mecanum wheel module,”

International Journal of Applied Electromagnetics and Mechanics, vol. 59, no. 3, pp. 967–975, 2019, doi: 10.3233/JAE-171096.

[21] J. B. Song and K. S. Byun, “Design and control of a four-wheeled omnidirectional mobile robot with steerable omnidirectional

wheels,” Journal of Robotic Systems, vol. 21, no. 4, pp. 193–208, 2004, doi: 10.1002/rob.20009.
[22] M. U. Shafiq et al., “Real-time navigation of mecanum wheel-based mobile robot in a dynamic environment,” Heliyon, vol. 10,

no. 5, 2024, doi: 10.1016/j.heliyon.2024.e26829.

[23] R. Carbonell, Á. Cuenca, J. Salt, E. Aranda-Escolástico, and V. Casanova, “Remote path-following control for a holonomic

Mecanum-wheeled robot in a resource-efficient networked control system,” ISA Transactions, vol. 151, pp. 377–390, 2024,

doi: 10.1016/j.isatra.2024.05.041.
[24] P. N. Dao and M. H. Phung, “Nonlinear robust integral based actor–critic reinforcement learning control for a perturbed three-

wheeled mobile robot with Mecanum wheels,” Computers and Electrical Engineering, vol. 121, 2025,

doi: 10.1016/j.compeleceng.2024.109870.

[25] J. J. Craig, Introduction to robotics: mechanics and control. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2005.

[26] S. Zenhari, H.-C. Möhring, and A. V. Torbati, “Comprehensive analysis of kinematic models based on the DH method and screw
theory for a five-axis machine tool,” Procedia CIRP, vol. 130, no. 27, pp. 1745–1751, 2024, doi: 10.1016/j.procir.2024.10.310.

[27] J. Zhao, J. Yin, Y. Shi, L. Qiao, and G. Ma, “User entertainment experience analysis of artificial intelligence entertainment robots

based on convolutional neural networks in park plant landscape design,” Entertainment Computing, vol. 52, 2025,

doi: 10.1016/j.entcom.2024.100817.

[28] J. Singh et al., “Real-time convolutional neural networks for emotion and gender classification,” Procedia Computer Science,
vol. 235, pp. 1429–1435, 2024, doi: 10.1016/j.procs.2024.04.134.

[29] A. A. K. Farizhandi and M. Mamivand, “Processing time, temperature, and initial chemical composition prediction from materials

microstructure by deep network for multiple inputs and fused data,” Materials and Design, vol. 219, 2022,

doi: 10.1016/j.matdes.2022.110799.

[30] J. V. Kumar and V. K. Elumalai, “A proximal policy optimization based deep reinforcement learning framework for tracking
control of a flexible robotic manipulator,” Results in Engineering, vol. 25, 2025, doi: 10.1016/j.rineng.2025.104178.

[31] W. Xia, Y. Lu, W. Xu, and X. Xu, “Deep reinforcement learning based proactive dynamic obstacle avoidance for safe human-

robot collaboration,” Manufacturing Letters, vol. 41, pp. 1246–1256, 2024, doi: 10.1016/j.mfglet.2024.09.151.

[32] F. Fan et al., “Spatiotemporal path tracking via deep reinforcement learning of robot for manufacturing internal logistics,” Journal

of Manufacturing Systems, vol. 69, pp. 150–169, 2023, doi: 10.1016/j.jmsy.2023.06.011.

BIOGRAPHIES OF AUTHORS

Aziz El Mrabet received the engineering degree in Mechanical Engineering and

Automated Systems from Université Sidi Mohamed Ben Abdellah, National School of

Applied Science, Fez, in 2022. He is actively pursuing a Ph.D. in the Laboratory of

Engineering, Systems, and Applications at the National School of Applied Sciences, Sidi

Mohamed Ben Abdellah University, Fez, Morocco. His research focuses on intelligent system

control, robotics, and the use of artificial intelligence. He can be contacted at email:

aziz.elmrabet@usmba.ac.ma.

https://orcid.org/0009-0000-0605-1691
https://www.webofscience.com/wos/author/record/HNB-9347-2023

Int J Adv Appl Sci ISSN: 2252-8814 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet)

739

Hicham Hihi is a full Professor at the National School of Applied Sciences and at

the Laboratory of Engineering, Systems and Applications in Sidi Mohamed ben Abdellah

University of Fez, Morocco. He received the Ph.D. degree in 2008 from the Ecole Centrale

Lille (France) in Control Engineering, and the HDR degree in 2016 from the Cadi Ayyad

University of Marrakech, Morocco. From 2015 to 2018, he was Director of the Electrical

Engineering Department at ENSA in Marrakech at Cadi Ayyad University. Also, he has been

the President of the International Conference on Monitoring Industrial Systems since 2011.

From 2015 to 2019, he was President of the Association of Research and Industrial Innovation

(Rinnovaindus) and vice-president since 2019. His research interests include: i) modeling and

simulation of physical systems by using bond graphs, discrete-event and hybrid systems, with

mechatronic applications, and ii) the advanced management of energy of electrical systems

and vehicles. He is the author and co-author of more than 100 scientific publications (journals,

newspapers, and international and national conferences). Since 2020, he has been responsible

for the research team: "Renewable energy and control systems", and since 2023, he has been

the deputy director of the Laboratory of Engineering, Systems and Applications at the ENSA

of Fez. He is also a responsible member of several projects. He can be contacted at email:

hicham.hihi@usmba.ac.ma.

Mohammed Khalil Laghraib received the engineering degree in Mechanical

Engineering and Automated Systems from Université Sidi Mohamed Ben Abdellah, National

School of Applied Science, Fez, Morocco, in 2022, and master 2 EEEA in information

processing and instrumentation for engineers from University Jean Monnet Saint-Etienne,

France, in 2023. He is actively pursuing a Ph.D. in the Laboratory of Engineering, Systems,

and Applications at the National School of Applied Sciences, Sidi Mohamed Ben Abdellah

University, Fez, Morocco. His research focuses on planning and supervision of an autonomous

vehicle operating in an uncertain environment. He can be contacted at email:

Mohammedkhalil.laghraib@gmail.com.

Mbarek Chahboun obtained his master’s degree in Electronic and Embedded

Systems from Université Moulay Ismail, Morocco, in 2020. Currently, he is pursuing his

Ph.D. in Electrical and Power Engineering at the Systems and Applications Engineering

Laboratory, National School of Applied Sciences at Sidi Mohamed Ben Abdellah University,

Fez, Morocco. His research interests include adaptive control, nonlinear control, with

applications to power conversion and renewable energy systems, while sharing his expertise

through his articles. He can be contacted at email: mbarek.chahboun@usmba.ac.ma.

Aymane Amalaoui received his engineering degree in Mechanical Engineering

and Automated Systems from the National School of Applied Sciences, Sidi Mohamed Ben

Abdellah University, Fez, Morocco, in 2023. He is currently pursuing a Ph.D. at the

Innovative Technologies Laboratory within the same institution. His research focuses on smart

city systems and the application of artificial intelligence in promoting sustainable development

in Morocco. He can be contacted at email: aymane.amalaoui@usmba.ac.ma.

https://orcid.org/0009-0000-4691-0446
https://orcid.org/0009-0005-9108-8240
https://www.webofscience.com/wos/author/record/LPP-6417-2024
https://orcid.org/0009-0009-3010-1930
https://scholar.google.com/citations?user=3zhBrx0AAAAJ&hl=en&oi=sra
https://orcid.org/0009-0008-9924-5003

