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 The aim of this project is to design and develop an autonomous rover 

equipped with a KUKA robotic arm. This mobile vehicle will be able to 

move autonomously thanks to the use of machine learning techniques. It will 

also be able to detect and retrieve objects using the KUKA arm. The rover 

will feature Mecanum wheels for improved maneuverability and will be 

controlled by a Raspberry Pi 3 board, with machine learning algorithms 

implemented using TensorFlow and Python. The development process will 

follow the V-methodology. The use of such an autonomous rover and its 

manipulative capabilities opens the way to many practical applications, 

including sampling in dangerous or difficult-to-access environments, search 

and rescue operations in the event of natural disasters or industrial accidents, 

and inspection and maintenance of industrial or construction sites. The rover 

could also be used for educational purposes, enabling students to explore the 

concepts of robotics and artificial intelligence. 
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1. INTRODUCTION 

The rapid advancement of robotics has led to the development of autonomous systems capable of 

performing intricate tasks with minimal human intervention. A significant breakthrough in this field is the 

integration of robotic arms with mobile platforms, which enhances their versatility and enables operation in 

diverse environments. Such systems have found applications in search and rescue, industrial automation, and 

agricultural robotics, among others. However, despite notable progress in the development of mobile robots 

and robotic arms, most existing solutions tend to focus on either mobility or manipulation, limiting their 

ability to perform a broad range of tasks autonomously. For instance, systems designed for autonomous space 

rendezvous often prioritize navigation using active sensors like light detection and ranging (LiDAR), 

relegating visual sensors such as cameras to secondary roles [1], [2]. These systems are typically highly 

specialized and tailored to specific environments, which restricts their broader applicability. 

Recent advancements in machine learning and sensor technologies have enabled significant 

improvements in autonomous navigation and object manipulation [3]. Nevertheless, many of these systems 

rely on specialized hardware or lack the flexibility required for diverse real-world applications. While studies 

have demonstrated the effectiveness of machine learning algorithms in robotic systems for tasks such as 

sorting and object classification [4], the integration of these algorithms with mobile platforms and robotic 
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arms remains underexplored. Furthermore, the development of autonomous rovers equipped with Mecanum 

wheels enabling omnidirectional movement has provided superior maneuverability compared to traditional 

wheel configurations [5]. This capability is critical for navigating complex environments, traversing 

obstacles, and reaching target locations with precision. 

The integration of a KUKA robotic arm further enhances the rover's object detection and 

manipulation capabilities, enabling it to retrieve objects, perform inspections, and execute highly precise 

tasks. The combination of robotic arms with mobile platforms has been explored in numerous studies, 

demonstrating their potential across industries such as agriculture and manufacturing [6]–[9]. Advanced 

machine learning techniques, including deep learning and multitask convolutional neural networks (MCNN), 

have further improved the adaptability and accuracy of these systems. For example, the YOLO-MCNN 

model has proven effective in completing multiple tasks, such as target detection, pose estimation, and 

obstacle segmentation, which are essential for autonomous operations [7], [10]. These advancements reduce 

the need for manual intervention and enhance operational efficiency. 

This paper presents a structured and validated approach to the development of an autonomous rover 

system, employing the V-methodology a proven process for mission-critical projects requiring high 

reliability and performance. The rover's design incorporates a Raspberry Pi 3 platform, which processes real-

time data from sensors and cameras to guide the vehicle through its environment. Additionally, the study 

explores the integration of machine learning algorithms, particularly convolutional neural networks (CNNs), 

which are central to the rover's capabilities. The modular design of the system, developed using Catia V5, is 

discussed alongside the application of advanced algorithms and the integration of a KUKA robotic arm with 

the mobile platform. The paper also highlights the importance of secure communication protocols, such as 

open platform communications unified architecture (OPC UA), and advanced data management techniques in 

ensuring the reliability and safety of the autonomous system. By providing a comprehensive overview of the 

development process and design considerations, this paper aims to contribute to the broader field of 

autonomous robotics. The following sections delve into the system's design, the methodology employed, and 

the evaluation of its performance, while also discussing implications for future research. 

 

 

2. METHOD 

The development of this robot followed a structured and systematic approach based on the  

V-methodology. The V-shaped development model is an iterative, incremental approach for software projects 

that have well-defined requirements but need flexibility. This development cycle follows a V-shape with 

sequential and parallel steps, including requirements analysis, design, implementation, testing, and 

validation. This model is particularly well-suited to mission-critical projects; each phase was meticulously 

executed to ensure the system's reliability, functionality, and reproducibility. 

 

2.1.  Requirements analysis 

A comprehensive analysis of both functional and non-functional requirements was conducted to 

define the scope and objectives of the project. The functional requirements focus on the rover's core 

capabilities, which include autonomous navigation using machine learning techniques, omnidirectional 

movement enabled by Mecanum wheels, obstacle detection and avoidance using ultrasonic sensors, and 

object detection and retrieval facilitated by a KUKA arm and a camera-based vision system. These 

capabilities ensure the rover can operate effectively in dynamic environments, locate target objects, and 

interact with its surroundings. 

In addition to functional requirements, the system was designed to meet several non-functional 

requirements, such as performance, reliability, and usability. The rover must operate without failure for 

extended periods, recover from errors autonomously, and provide clear status updates to non-technical users. 

Hardware specifications include the use of a Raspberry Pi 3 as the central processing unit, Mecanum wheels 

for enhanced maneuverability, a KUKA arm for object retrieval, and a camera for object detection and 

recognition. On the software side, the system leverages TensorFlow and Python for machine learning and 

control algorithms. Finally, the design adheres to specific budget, size, and weight constraints to ensure 

practicality and feasibility. 

 

2.2.  System architecture 

The system architecture is modular, with each module performing a specific function and 

communicating asynchronously via dedicated topics. This design ensures flexibility, scalability, and ease of 

maintenance. The camera module captures images using the rover's onboard camera and publishes them to 

the "image_topic" for use by other modules. The object detection module subscribes to this topic and 

analyzes the pictures with a CNN based on the residual networks (ResNets)-50 architecture. This module 
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detects and identifies objects within the images, publishing the results (e.g., object coordinates and type) to 

the "object_detection_topic". 

The KUKA arm control module subscribes to the "object_detection_topic" to receive object 

coordinates and calculates the arm movements required to grasp the detected objects using inverse 

kinematics. It then publishes arm movement commands to the "arm_control_topic". The wheel control 

module subscribes to this topic and adjusts the rover's Mecanum wheels to position the rover for object 

retrieval, publishing wheel movement commands to the "wheels_control_topic". Finally, the ultrasonic 

sensor module measures distances to surrounding objects and publishes this data to the system, enabling 

obstacle avoidance and navigation. 

 

2.3.  Implementation details 

The implementation phase involved integrating hardware components and developing software 

algorithms to bring the system to life. The Raspberry Pi 3 was set up to connect with the Mecanum wheels, 

KUKA arm, camera, and ultrasonic sensors, functioning as the central hub for data processing and control. 

The control algorithms were executed in Python, utilizing TensorFlow for CNN-based object detection. The 

ResNet-50 model was chosen for its balance of accuracy and computational efficiency, and it was fine-tuned 

for our specific object detection task using a dataset of labeled images. 

A publish-subscribe model facilitated communication between modules. This model allows 

asynchronous and independent operation while ensuring seamless data exchange. This approach enables each 

module to function autonomously while remaining synchronized with the overall system. 

 

2.4.  Verification and validation 

Each module was rigorously tested in isolation and as part of the integrated system to ensure it met 

the specified requirements. The object detection algorithm was validated using a dataset of labeled images. 

The rover's navigation and object retrieval capabilities were tested in a controlled environment, confirming 

that all functional and non-functional requirements were met. These tests demonstrated the system's ability to 

autonomously navigate, detect and avoid obstacles, locate target objects, and retrieve them using KUKA arm. 

 

 

3. OBJECT DETECTION ALGORITHM 

This study focuses on the implementation of machine learning and deep learning methodologies to 

design an object detection framework. As a branch of artificial intelligence, machine learning allows 

computational systems to autonomously improve performance through data-driven learning autonomously, 

bypassing the need for direct programming. Such techniques are applied extensively in domains ranging from 

voice and facial recognition to target identification systems. Machine learning strategies are typically 

categorized into three primary types: supervised learning for labeled data analysis, unsupervised learning for 

pattern discovery in unlabeled datasets, and reinforcement learning for decision-making optimization through 

iterative feedback. 

Deep learning, on the other hand, is a branch of machine learning that exploits artificial neural 

networks to solve complex problems. As illustrated in Figure 1, deep neural networks, such as CNNs, are 

particularly well-suited to computer vision and image classification tasks. In our object detection system, we 

have used a pre-entrained CNN. 

 

 

 
 

Figure 1. Deep neural network architecture 
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3.1.  Presentation of the neural network convolution algorithm and the ResNet-50 model 

CNNs represent a class of deep learning models commonly used for image classification. As shown 

in Figure 2, they exploit convolution operations to extract relevant features from images, thereby reducing 

the complexity of the model in terms of parameters to be learned. These convolutional networks are generally 

composed of convolution, pooling, and fully connected layers, enabling classification to be performed. The 

network is trained by iteratively adjusting the weights of the various layers, based on the training data. CNN 

has proven its worth in many computer vision applications [11], [12]. 

 

 

 
 

Figure 2. Edge detection process 

 

 

The ResNet architecture was selected for this project. ResNet is a deep convolutional network that 

uses residual connections, making it easy to train very deep models. The network is built from stacked 

residual convolution blocks. In addition, transfer learning is often employed with ResNet, enabling pre-

trained convolution layers to be exploited for image feature extraction. 

Early approaches to image processing were based on the use of filters to extract features such as 

object contours. From a mathematical point of view, this involves the application of convolution operations, 

which consist of sums of elementary products over image blocks. Convolution can be defined on a 2D matrix 

and can be extended to volumes [13]. The image is then represented as a tensor, with dimensions for height, 

width, and number of channels [14], [15]. 

 

3.1.1. Padding and stride in convolutions 

Padding and stride are key operations for dealing with the loss of information at the edges of the 

image when applying convolutions. Padding consists of adding zeros around the image to take into account 

pixels located on the edges, while stride controls the size of the output by adjusting the distance traveled by 

the filter during convolution. The following section explores these concepts in detail [16], [17]. 

Padding: when a convolution is applied with a vertical edge filter, pixels in the image's corners are 

used less than those in the center, leading to a loss of edge information. To solve this problem, it is common 

to add a frame around the image. As illustrated in Figure 3, this padding usually involves adding zeros 

around the original image so that pixels at the edges can be taken into account during convolution. The dpi 

parameter corresponds to the number of elements added to each side of the image. 

 

 

 
 

Figure 3. Padding in CNNs 

 

 

Stride: the stride corresponds to the speed at which the filter moves over the image during 

convolution. The size of the output decreases with a larger stride, while a smaller stride keeps it larger. This 

distance is represented by the s parameter. For example, a stride of 1 indicates that the filter moves one pixel 

at a time, while a stride of 2 indicates that it moves two pixels at each step. As shown in Figure 4, these 

concepts are illustrated in the following images, showing an example of padding with 𝑝 = 1 and a 

convolutional product with 𝑠 = 1. 
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Figure 4. Convolution operation 

 

 

A rigorous definition of the convolution operation requires clarity on two critical components: 

padding and stride. Padding, parameterized by p, preserves spatial edge information by appending zeros 

around the input matrix. Meanwhile, stride (s) governs the displacement interval of the filter during 

convolution, directly influencing output dimensionality. The convolutional output is computed as a 2D 

matrix, where each entry corresponds to the summation of element-wise products between the filter’s 3D 

tensor and an overlapping sub-cube of the input tensor. For an image with dimensions [𝑛ℎ, 𝑛𝑤, 𝑛𝑐] 
(𝑛ℎ: the size of the height, 𝑛𝑤: the size of the widh, and 𝑛𝑐: the number of channels). In the case of an 

RGB image, for example, 𝑛𝐶 = 3 we have red, green, and blue. By convention, we consider that the K filter 

is gridded and has an odd dimension noted f, which allows each pixel to be centered in the filter and therefore 

to take into account all the elements surrounding it, so that we apply a filter of dimension [𝑓, 𝑓, 𝑛𝐶].  

The convolutional product between the image and the filter is a 2D matrix, each element of which is the sum of 

the multiplication per element of the cube (filter) and the sub-cube of the given image, as illustrated in Figure 5. 

 

 

 
 

Figure 5. The cube (filter) and the sub-cube of the given image 

 

 

Mathematically, the dimensionality of the convolution operation between an input image I and filter 

K is defined as in (1). 

 

dim(𝑐𝑜𝑛𝑣(𝐼, 𝐾)) = {
([
𝑛𝐻+2𝑝−𝑓

𝑠
+ 1] , [

𝑛𝑤+2𝑝−𝑓

𝑠
+ 1]) ; 𝑠 > 0

(𝑛ℎ + 2𝑝 − 𝑓, 𝑛𝑤 + 2𝑝 − 𝑓) ; 𝑠 = 0
 (1) 
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Where ⌊𝑥⌋ is the floor function of 𝑥. Common convolution variants include: 

‒ Valid convolution: 𝑝 = 0 

‒ Same convolution: output size=input size→ 𝑝 =
𝑓−1

2
 

‒ 1×1 convolution: Employs a unit-sized filter (𝑓 = 1), often used to reduce channel depth (𝑛𝐶) while 

retaining spatial resolution (𝑛𝐻 , 𝑛𝑊). 
In the illustrative example, Figure 5, filter values are manually initialized for clarity. However, in practical 

CNNs, the 𝑓 × 𝑓 × 𝑛𝐶  filter parameters are optimized automatically via backpropagation during training. 

 

3.1.2. Pooling 

Pooling layers downsample spatial dimensions (𝑛𝐻, 𝑛𝑊) while preserving channel depth (𝑛𝐶).  

This operation applies a fixed-aggregation function (non-trainable) to localized regions of the input tensor, 

traversed by a filter of size 𝑓 × 𝑓 with stride 𝑠. The output dimensions are governed by (2). 

 

dim(𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑖𝑚𝑎𝑔𝑒)) = {
([
𝑛𝐻+2𝑝−𝑓

𝑠
+ 1] , [

𝑛𝑤+2𝑝−𝑓

𝑠
+ 1] , 𝑛𝐶) ; 𝑠 > 0

(𝑛ℎ + 2𝑝 − 𝑓, 𝑛𝑤 + 2𝑝 − 𝑓, 𝑛𝐶) ; 𝑠 = 0
 (2) 

 

Standard practice employs square filters (𝑓 × 𝑓), typically with 𝑓 = 2 and 𝑠 = 2 to halve the spatial 

resolution while avoiding overlap. Common pooling functions include: 

‒ Average pooling: computes the mean of values within the filter’s receptive field. 

‒ Max pooling: extracts the maximum value from the filter’s window. 

Unlike convolutional layers, pooling utilizes predefined operations (no learnable parameters), prioritizing 

computational efficiency and translational invariance in deep networks. 

 

3.1.3. Building a convolutional neural network layer by layer 

A CNN is constructed by stacking layers, each performing specific operations like convolution, 

activation, pooling, and fully connected layers. For example, in the 3rd layer: 

 

Input: at−1with size (𝑛𝐻
(𝑙−1), 𝑛𝑊

[𝑙−1], 𝑛𝐶
[𝑙−1]), 𝑎[0] being the image in the input  

Padding: 𝑝[𝑙] 
Stride:  𝑠[𝑙] 

Number of filters: 𝑛𝐶
[𝑙]

where each 𝐾𝑛 has the dimension: (𝑓[𝑙], 𝑓[𝑙], 𝑛𝐶
[𝑙−1]) 

Bias of the 𝑛𝑡ℎconvolution 𝑏𝑛
[𝑙]

 

Activation function: 𝜓[𝑙]] 

Output: 𝑎[𝑙] with size (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙]) 

 

and: 

 

∀𝑛𝜖[1,2, … , 𝑛𝐶
[𝑙]
] 𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾𝑛)

𝑥,𝑦
= 𝜓[𝑙] (∑ ∑ ∑ 𝐾𝑖,𝑗,𝑘

(𝑛)
𝑎𝑥+𝑖−1,𝑦+𝑗−1,𝑘 + 𝑏𝑛

[𝑙]𝑛𝐶
[𝑙−1]

𝑘=1

𝑛𝑊
[𝑙−1]

𝑘=1

𝑛𝐻
[𝑙−1]

𝑖=1
) (3) 

dim(𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾(1))) = (𝑛𝐻
[𝑙]
, 𝑛𝑊
[𝑙]
)] ] 

 

thus: 

 

𝑎[𝑙] = [𝜓[𝑙] (𝑐𝑜𝑛𝑣(𝑎[𝑙−1] , 𝐾(1))) , 𝜓[𝑙] (𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾(1))) , … , 𝜓[𝑙] (𝑐𝑜𝑛𝑣 (𝑎[𝑙−1], 𝐾(𝑛𝐶
[𝑙]
)))] (4) 

dim(𝑎[𝑙] ) = (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙]) 

 

with: 

 

𝑛𝐻
𝑊

[𝑙]
=

{
 
 

 
 
⌊

𝑛𝐻
𝑊

[𝑙−1]+𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙]
+ 1⌋ ; 𝑠 > 0

𝑛𝐻
𝑊

[𝑙−1]
+ 2𝑝[𝑙] − 𝑓[𝑙] ; 𝑠 = 0

  (5) 
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where 𝑛𝐶
[𝑙] = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠. The learned parameters at the 𝑙𝑡ℎ layer are: 

‒ Filters with (𝑓[𝑙] × 𝑓[𝑙] × 𝑛𝐶
[𝑙−1]) × 𝑛𝐶

[𝑙]
 parameters. 

‒ bias with (1 × 1 × 1) × 𝑛𝐶
[𝑙] parameters (broadcasting). 

Pooling layers, as shown in Figure 6, hierarchically abstract spatial features by subsampling inputs 

while maintaining channel consistency (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙−1], 𝑛𝐶
[𝑙−1]

). The layer’s operation is formalized as follows: 

 

Input: 𝑎[𝑙] (activation from layer 𝑙 − 1) with dimensions (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙−1], 𝑛𝐶
[𝑙−1]), and 𝑎[0] denotes the raw input 

image. 

Parameters: Filter size 𝑓[𝑙], stride 𝑠[𝑙], and padding 𝑝[𝑙] (rarely applied in pooling). 

Pooling function: 𝜙[𝑙] (aggregation operation, e.g., max or average). 

Output: 𝑎[𝑙] with dimensions (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙] = 𝑛𝐶

[𝑙−1]) 

 

The output activation at position (𝑥, 𝑦, 𝑧) in layer ll is computed as: 

 

𝑎𝑥,𝑦,𝑧
[𝑙] = 𝑝𝑜𝑜𝑙(𝑎[𝑙−1])

𝑥,𝑦,𝑧
= 𝜙[𝑙] ((𝑎𝑥+𝑖−1,𝑦+𝑗−1,𝑧)(𝑖,𝑗)∈[1,2,…,𝑓[𝑙]) (6) 

dim(𝑎[𝑙]) = (𝑛𝐻
[𝑙], 𝑛𝑊

[𝑙], 𝑛𝐶
[𝑙]) 

 

with: 

 

𝑛𝐻
𝑊

[𝑙] =

{
 
 

 
 
⌊

𝑛𝐻
𝑊

[𝑙−1]+𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙]
+ 1⌋ ; 𝑠 > 0

𝑛𝐻
𝑊

[𝑙−1] + 2𝑝[𝑙] − 𝑓[𝑙] ; 𝑠 = 0

  (7) 

𝑛𝐶
[𝑙] = 𝑛𝐶

[𝑙−1]
 

 

 

 
 

Figure 6. The pooling layers 

 

 

CNNs are hierarchically structured architectures in Figure 7 that iteratively apply convolutional 

layers, nonlinear activation functions, and pooling operations. This sequence convolution 

→activation→pooling is repeated across successive layers to progressively extract higher-order spatial and 

semantic features from input images. The extracted feature maps are then flattened and fed into fully 

connected (dense) layers, augmented with additional activations, to perform classification or regression tasks. 
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Figure 7. The sequential steps involved in a CNN 

 

 

A hallmark of CNNs is their ability to systematically reduce spatial resolution while increasing 

channel depth (CNN) as the network deepens, balancing computational efficiency with representational 

capacity. This three-dimensional transformation from raw pixel data to abstract feature hierarchies is 

visualized in Figure 8. This figure illustrates the architectural evolution of tensors across layers. 

 

 

 
 

Figure 8. Structure of a CNN 

 

 

3.1.4. ResNet 

ResNets enhance traditional CNN architectures by integrating skip connections that bypass 

intermediate layers, as shown in Figure 9. These connections mitigate performance degradation in very deep 

networks by enabling the propagation of unaltered gradients and features. Without skip connections, the 

behavior of a residual block is governed by standard linear and nonlinear transformations as in (8) and (9). 

 

𝑧𝑗
[𝑖]
= ∑ 𝑤𝑗,𝑙

[𝑖]
𝑎𝑙
[𝑖−1]

+ 𝑏𝑗
[𝑖]𝑛𝑖−1

𝑙=1  (8) 

 

⟶ 𝑎𝑗
[𝑖] = 𝜓[𝑖](𝑧𝑗

[𝑖]) (9) 

 

By initializing weights 𝑤[𝑖] and biases 𝑏[𝑖] to zero and selecting an identity activation 𝜓[𝑖], the 

residual block simplifies to 𝑎[𝑖] = 𝑎[𝑖−2], preserving network performance even if added layers contribute 

minimally. To ensure dimensional compatibility between 𝑎[𝑖−2], and 𝑎[𝑖], same convolutions (matching 

spatial dimensions) are typically applied. When mismatches occur, a learnable projection tensor 𝑊𝑠 adjusts 

the skip connection: 

 

⟶ 𝑎𝑗
[𝑖] = 𝜓[𝑖](𝑧𝑗

[𝑖] + 𝑎𝑗
[𝑖−2]) (10) 

 

where 𝑊𝑠 might be a fixed tensor or a learned one, and dim(𝑊𝑠) = [𝑛
[𝑖], 𝑛[𝑖−2]]. 

Inception networks introduce a paradigm shift by deploying modules that perform multiple 

operations in parallel within a single layer, as shown in Figure 10. Specifically, each Inception module 

applies convolutional, pooling, and fully connected operations simultaneously, allowing the network to 
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capture features at various spatial scales. This architecture eliminates the need for manual selection of layer 

types and enhances model efficiency and representational richness. 

 

 

 
 

Figure 9. Feedforward neural network architecture 

 

 

 
 

Figure 10. The result of all the operations 

 

 

3.2.  Robot module 

3.2.1. Robot Mecanum 

Wheeled mobile robots resembling machines are becoming increasingly prevalent and are widely 

utilized in industrial settings for automated transportation or logistical purposes, such as the conveyance of 

goods, parts, and even people. When dealing with expensive and sensitive loads, the mobile robot must be 

reliable and safe while providing efficient movement. A machine equipped with wheels can maneuver 

around, leading to more efficient usage. A mobile robot capable of serving multiple stations within a 

production line can enhance product capacity and quality [18], [19]. 

In this research, an omnidirectional robot is employed, which has the ability to move in any 

direction. It is a holonomic robot with four specialized wheels, namely the Mecanum wheel system, each 

driven by a separate stepper motor. For such a robot, the number of controlled degrees of freedom is equal to 

the total number of degrees of freedom of the robot [20], [21]. It can move in any direction on a planar 
surface due to its freely rotating rollers placed on the wheel surface at a 45-degree angle. Figure 11 depicts a 

mobile robot model with a Mecanum wheel, with a coordinate system attached at the center of the wheel hub, 

where the unit axis is denoted. The robot's position and orientation are represented as. The robot's linear 

velocity is and its angular velocity is, while is the angular velocity of the i-th wheel and represents the linear 

wheel velocity. The angle between the free-sliding roller axis and the wheel hub axis can be either positive or 

negative, depending on whether the wheel is left or right [22]–[24]. 
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Figure 11. The direction of mobile robot motion is based on the Mecanum's various velocities of the wheels 

 

 

The direction of the mobile robot's motion based on the Mecanum wheel motion is shown in  

Figure 11. The following forward kinematic equation describes the relationship between the mobile robot's 

velocity and the velocity of each wheel as in (12). 

 

[
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] (12) 

 

Where 𝑟𝑚 is the radius of the Mecanum wheel, and a and b describe the length and width of the mobile robot. 

 

3.2.2. KUKA arm control 

Denavit-Hartenberg (DH) parameters are a commonly used method for describing the kinematics of 

manipulator arms in robots [25], [26]. They provide a systematic way of representing the relationships 

between the various links of an articulated manipulator arm. The DH parameter method relies on four main 

parameters for each joint of a manipulator arm: the angle of rotation about the common z-axis (𝜃), the link 

length (𝑑), the distance along the x-axis between the common z-axes (𝑎), and the angle of inclination to the 

common x-axis (𝛼). The homogeneous transformation matrix DH parameters for the KUKA arm are obtained 

according to this approach by the following relationship and Table 1. Figure 12 shows the KUKA arm robot. 

 

𝐴𝑖 = 𝑅𝑜𝑡𝑧𝑖𝜃𝑖𝑇𝑟𝑎𝑛𝑠𝑧𝑖𝑑𝑖𝑇𝑟𝑎𝑛𝑠𝑥𝑖𝑎𝑖𝑅𝑜𝑡𝑥𝑖𝛼𝑖 (13) 
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 (14) 

 

 

Table 1. DH parameters for the KUKA arm 
Joint i θ𝑖(𝑑𝑒𝑔) 𝑑𝑖(𝑚𝑚) 𝑎𝑖 𝛼𝑖(deg) 

1 𝜃1   889 0 90 

2 𝜃2  0 2340 0 

3 𝜃3   0 0 90 

4 𝜃4 1440 0 -90 

5 𝜃5 40 0 -90 

 

 

The robot model was imported from SolidWorks using an XML file and then integrated into 

MATLAB/Simulink. Specifically, we used the “smimport” command, which is part of the Simscape 

Multibody toolbox, to convert the XML file into a Simulink model containing the 3D mechanical 

components. After import, inputs were configured to control each joint angle, and outputs were set to read the 

measured values. To achieve precise motion control, we implemented a feedback loop using a proportional-

integral-derivative (PID) controller to minimize deviations between the commanded and measured joint 

angles. Each joint in the model is therefore associated with both a control input and a corresponding 

measurement output. 
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Figure 12. KUKA arm 

 

 

As shown in Figure 13, we transform this representation into a single block (sub-system). The input 

from the robot's control blocks is connected to a Simulink block that performs the robot's inverse kinematics. 

This inverse kinematics block uses a position vector (x, y, and z) as input to determine the joint angles 

required to achieve the desired position and orientation of the end effector. Using this approach, we can 

precisely control the robot's motion by specifying the desired position coordinates in three-dimensional 

space. The PID corrector allows me to adjust the joint angles in real time to reduce deviations between 

commanded and measured values, ensuring more precise and reliable robot motion as shown in Figure 14. 
 

 

 
 

Figure 13. The sub-system module of the arm in Simulink 
 

 

 
 

Figure 14. The complete arm model is in Simulink 
 

 

This control method, based on inverse kinematics and the PID corrector, offers great flexibility in 

achieving precise robot movements in response to specific end-effector positions and orientations. As shown 

in Figure 15, the simulation results. For example, x, y, and z values in the control vector are selected and 

entered. Simulink plays a crucial role in the simulation of intelligent robots by providing an advanced 

modeling and simulation environment, enabling multi-domain modeling, realistic simulation, control design 

and motion planning, integration with other tools, and model validation. It facilitates the development, 

optimization, and performance verification of robots before their actual implementation. This helps to speed 

up the design process and improve the reliability and performance of intelligent robots. 
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Figure 15. Simulation of the arm in Simulink 

 

 

4. RESULTS AND DISCUSSION 

To evaluate the performance of our machine learning model, we visualized in Figure 16 the results 

by plotting loss in Figure 16(a) and accuracy in Figure 16(b) curves using a custom function, 

plot_loss_curves. This function takes as input the history of the trained model, specifically the loss and 

accuracy values across all epochs, and generates separate plots for the training and validation datasets. In 

these two graphs, we can see that our machine learning model demonstrated excellent performance, 

achieving perfect accuracy (1.0) on both the training and validation datasets. This indicates that the model 

successfully generalized to new data without overfitting, a critical consideration in machine learning. 

Additionally, our findings align with previous studies that emphasize the importance of monitoring loss and 

accuracy curves to detect overfitting [27]. However, unlike some studies that report a trade-off between 

accuracy and computational complexity [28], [29], our model achieved high accuracy without requiring 

excessive computational resources. This may be attributed to the efficient architecture of the CNN and the 

high-quality training data used in this study. 

 

 

 
(a) 

 
(b) 

 

Figure 16. Result of the custom function plot_loss_curves of (a) loss curve and (b) accuracy curve 

 

 

The performance of our CNN-based object detection system is consistent with recent advancements 

in deep learning for robotics [30], [31]. For instance, the use of TensorFlow for implementing the CNN 

aligns with best practices in the field, as highlighted by [32]. However, our approach differs in its integration 

of real-time ultrasonic sensors for environmental awareness, which enhances the robot's ability to navigate 

dynamic environments a feature not extensively explored in prior work. Future work should validate these 

findings on larger and more diverse datasets to ensure generalizability. Second, the 3D-printed Mecanum 

wheels, while effective, may have durability issues in harsh environments. Testing the wheels under more 

extreme conditions would provide valuable insights into their long-term performance. 

The assembly of the robot involved integrating several critical components, listed in Table 2. The 

stepper motors (Model: PSM57HS2A54-2P) and servo motors (Models: MG996R and 9G) were essential for 

driving the Mecanum wheels and operating the KUKA robotic arm, respectively. The camera module 

(Camera V2 for Raspberry Pi, 8 MP) plays a pivotal role in the robot's vision system, capturing images for 

object detection. 
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Table 2. Equipment of the robot 
Item Model number Quantity 

Step motor PSM57HS2A54-2P 4 

Servo motor MG996R 4 

Servo motor micro 9g 3 

Camera Camera V2 for Raspberry Pi 8 MP 1 

Obstacle detector HC-SR04 3 
Raspberry Raspberry Pi 3 board 1 

Battery External battery 20000 mAh PD 3.0/QC 4.0 1 

 

 

Figure 17 illustrates the 3D-printed Mecanum wheels, which were crucial for achieving the desired 

mobility. The wheels' ability to move in any direction without changing orientation allows the robot to 

navigate tight spaces and adjust its position with precision. This capability is key for tasks like object 

retrieval in cluttered environments. Figure 18 shows the completed robot. 

 

 

 
 

Figure 17. Mecanum wheel printed with a 3D printer 

 

 

    
 

Figure 18. The completed robot 

 

 

The robot's object detection system is powered by a CNN implemented using TensorFlow. The 

camera captures images and publishes them on the "image_topic," where the CNN processes the images to 

detect objects. Upon detecting an object, the system publishes the detection information, including the 

coordinates of the detected objects, on the "object_detection_topic." The KUKA robotic arm, equipped with 

six servo motors, uses this detection data to execute the necessary movements to grasp the object. The 

precision of the CNN in detecting objects and the accuracy of the servo motors in positioning the arm are 

critical for successful object retrieval. The integration of these systems ensures that the robot can 

autonomously detect and manipulate objects in real-time. 

To enhance the robot's environmental awareness, three ultrasonic sensors (HC-SR04) were mounted 

on the robot one at the front and two on the sides. These sensors continuously measure the distance between 

the rover and surrounding objects, publishing this data to the "ultrasonic_sensor_module." The real-time 

distance measurements allow the robot to avoid collisions and navigate safely in dynamic environments. The 

integration of these sensors with the robot’s control system enables the rover to autonomously make 

decisions about its path, ensuring safe operation even in complex and unpredictable environments. 



Int J Adv Appl Sci  ISSN: 2252-8814  

 

Autonomous navigation system for a rover with robotic arm using convolutional neural … (Aziz El Mrabet) 

737 

5. CONCLUSION 

In this study, we developed and validated an autonomous rover system equipped with a KUKA 

robotic arm, using extensive simulations to assess its performance in navigation and object manipulation 

tasks. These simulations proved essential for testing the system in a risk-free virtual environment, allowing 

us to refine the architecture, control strategies, and perception algorithms before transitioning to physical 

deployment. The results confirmed the feasibility and reliability of our approach, demonstrating the rover’s 

ability to navigate complex terrains autonomously and perform precise object detection, localization, and 

grasping operations using the robotic arm. This work lays a strong foundation for real-world implementation, 

where the system can be adapted to various application domains such as search and rescue missions, 

industrial automation, and planetary exploration. In future work, we aim to integrate advanced learning 

methods such as reinforcement learning to improve decision-making in dynamic environments, and to 

conduct real-world experiments to evaluate the system's robustness under diverse operational conditions. 

Overall, our findings highlight the potential of simulation-driven development in robotics and pave the way 

toward the deployment of versatile, intelligent, and autonomous robotic platforms. 
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