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 Pipe saddle support is a structure commonly used to support horizontal steel 

pipe. It prevents direct contact between the pipe and the support. Pipe saddle 

support can experience displacement due to pipe movement and insufficient 

stress analysis. Given these concerns, conducting a load test is essential to 

determine the stress on pipe saddle supports. However, a universal testing 

machine (UTM) is not suitable for this purpose due to the size limitation. 

Therefore, this study proposed a test rig setup for the pipe saddle support 

load test. The test rig consists of a portal frame secured by an underground 

locking system featuring a strong floor. Additionally, an actual pipe is 

utilized to replicate actual loading conditions on the pipe saddle support. The 

applied load is measured using a load cell, with a custom-designed bracket 

to ensure precise load transfer. Finally, the pipe saddle support specimen is 

bolted to a base support to maintain stability during the load test. Stress 

analysis using finite element analysis (FEA) demonstrated that the test rig is 

suitable for conducting load tests on the specimens with a maximum force of 

80 kN. FEA confirmed that the test rig operates within a safety factor of 1.3. 
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1. INTRODUCTION 

The pipe saddle support is a structure commonly used to support horizontal steel pipes from beneath 

[1]–[3]. It functions by transferring loads from adjacent structures, thereby preventing direct contact between 

the pipe and the support [4]. Pipe saddles are typically used when additional structural support is required at 

the attachment point between the slipper and the pipe [5]. 

However, in the case study by Nuthanapati et al. [6], several issues related to pipe saddle support 

were identified. Pipe saddle support can experience displacement due to the pipe's sudden movement and 

insufficient stress analysis. As a result, the failure of the pipe rack structure becomes an inevitable outcome. 

Additionally, there is a lack of standardized procedures for pipe saddle support design and analysis [7]. Given 

these concerns, load testing is essential to determine the stress distribution of pipe saddle supports and is also 

necessary to ensure the safety of the pipe saddle support [8], [9]. 

A load test can be performed with a universal testing machine (UTM). However, the UTM is 

designed for standard-shaped specimens. The Shimadzu AGX-V2 series, for instance, accommodates optimal 

specimen sizes up to 790 mm or 31 inches. In comparison, pipe sizes used in the oil and gas industry can 

range up to 48 inches, making them unsuitable for testing with a UTM. Furthermore, to perform a load test 

for pipe saddle support, it required an actual pipe was required for a more accurate experiment result. 

https://creativecommons.org/licenses/by-sa/4.0/
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Research on pipe supports has shown that custom test rigs are often built to meet specific testing 

requirements [10], [11]. Moreover, due to practicality and cost effectiveness, performing a load test on scaled 

models is considered to validate the full scaled design [12]. A test rig for a large-scale 3-dimensional test 

frame was developed in a study [13], while the majority of previous studies only provided tests for a  

2-dimensional frame. Another study [14] used a custom setup to match the boundary conditions and applied a 

load to the specimen. 

Test rigs must be rigid and strong enough to ensure they do not influence the test results [15], [16]. 

Studies on test rig development have used safety factors ranging from 1.25 to 3, depending on the rig's size. 

This safety factor is chosen to ensure that the test rig was not overloaded during the load test [17]–[19]. 

These studies offer valuable insights into the fabrication of test rigs. However, they do not present a setup 

specifically designed for testing pipe saddle support specimens. 

This study aims to develop a test rig for conducting load tests on pipe saddle support specimens, 

with the goal of providing greater flexibility to accommodate pipe saddle supports with sizes up to 48 inches. 

This test rig is intended to handle load tests for pipe saddle support with capacities up to 80 kN. An actual 

pipe will be used to provide an actual loading condition to the pipe saddle support specimen. Moreover, finite 

element analysis (FEA) will be performed prior to fabrication to enhance confidence for predicting the stress 

[20]–[23]. FEA will be performed on each individual component to simplify the analysis of the test rig [24]. 

The purpose of this study is to provide an accurate and reliable method of performing a load test for pipe 

saddle support. 

 

 

2. RESEARCH METHOD 

Figure 1 presents a research process flowchart that shows the development process for the load test 

of the pipe saddle support. Pipe saddle support model was designed using computer-aided design (CAD) 

software. Once the model’s design and the maximum load are confirmed, the test rig will be designed with a 

capacity of the model’s maximum load. 

 

 

 
 

Figure 1. Flowchart diagram of pipe saddle support load test rig study 

 

 

2.1.  Pipe saddle support test rig requirements 

Figure 2 illustrates the pipe saddle support model that will be tested. For this study, the pipe saddle 

support features a 6-inch inner diameter, with all the plate thicknesses being 2 mm. The components of the 

pipe saddle support are connected by welded joints. Furthermore, in industrial applications, pipe saddle 

supports are positioned on top of pipe racks while the saddle plate cradles the pipe. To test with these 

conditions, the base plate of the pipe saddle support should be bolted to the corresponding support base. 

Moreover, an actual pipe is used to apply the load on top of the saddle plate. 

On the other hand, FEA was conducted to assess the load to fail the model. Failure is defined when 

the model’s Von Mises stress exceeds the material’s yield strength of 250 MPa. Figure 3 illustrates the fixed 

support and the method for applying load on the model. It shows that the downward force is directly applied 

to the saddle plate while the base plate acts as a fixed support. FEA indicated that a force of 80 kN is required 

to induce failure in the pipe saddle support model. Additionally, for this study, stress values of the test rig 

should not exceed 200 MPa to maintain a safety factor of 1.25. Complying with this safety factor is important 

to increase the safety of the operator and ensure it does not affect the accuracy of the results. 
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Figure 2. Pipe saddle support model 
 
 

 
 

Figure 3. Boundary condition of the pipe saddle support model 
 

 

2.2.  Setup of pipe saddle support test rig 

A portal frame is commonly used for a structural test rig, either static or dynamic load test  

[25]–[28]. In this study, the portal frame consists of a column, a beam, and a flat bar. The I-beam type is used 

for the column and beam to provide structural rigidity to the structure, considering the large load required to 

fail the specimen. The portal frame is secured by the underground locking system, as shown in Figure 4.  

This system features a strong floor, flat bar, stud, and lock plate. The experiment setup conducted by 

Tanghetti et al. [29] provides an I-beam that is locked to the strong floor for shear platform testing. The  

I-beam that was attached to the strong floor was set to freely move horizontally. In comparison, this study 

provides a fixed movement for the I-beam, either horizontal or vertical, due to the purpose of the test, which 

is a static load test. Additionally, this portal frame is equipped with a hydraulic system for applying load to 

the specimen. The second section of the test rig is designed to support the specimen. It contains a support 

base to securely place the specimen. The specimen will be bolted to this support base to ensure stability 

throughout the testing process. Lastly, the third section of the test rig is designed to apply a load to the pipe 

saddle support. It consists of a pipe that rests directly on top of the saddle plate. A load cell bracket is 

positioned on top of the pipe to distribute the load from the load cell to the pipe. Figure 5 presents overall test 

rig design of the setup. 
 

 

 
 

Figure 4. Underground locking mechanism of the test rig 
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Figure 5. Test rig overall setup 
 

 

2.3.  FEA of test rig components 

Following the setup of the test rig, the load flow for each component is defined and illustrated in  

Figure 6. This flow corresponds to the maximum load required to cause failure in the model. The load 

distribution is influenced by the positioning and the total number of components in the test rig. The flow 

originates from the hydraulic system, which applies force to the pipe and specimen. Additionally, it exerts 

force on the portal frame and the lock plate, which serves as the underground locking system. Table 1 

summarizes the applied loads (Fa) and the number of test rig components. 

 

 

 
 

Figure 6. Test rig load flow 

 

 

Table 1. Number of components and applied load to the test rig 
No Parts Number of components Fa (kN) 

1 Load cell bracket 1 80 
2 Pipe 6 inch 1 80 

3 Double beam frame 1 80 

4 Column frame 2 40 

5 Flat bar 4 20 

6 Support base 1 80 
7 Lock plate 8 10 
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3. RESULTS AND DISCUSSION 

Once the load flow is established, FEA of each component is performed. FEA results evaluate  

the Von Mises stress experienced by the components. Von Mises stress distribution of each test rig 

components is illustrated in Figure 7 with load cell bracket in Figure 7(a), Pipe 6 inch in Figure 7(b), beam 

frame in Figure 7(c), column frame in Figure 7(d), flat bar in Figure 7(e), base support in Figure 7(f), and 

lock plate in Figure 7(g). 
 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

 
(g) 

 

Figure 7. FEA result for each of the test rig components of (a) load cell bracket, (b) pipe 6-inch, (c) beam 

frame, (d) column frame, (e) flat bar, (f) base support, and (g) lock plate 
 

 

FEA was conducted to obtain the Von Mises stress of the test rig while the required load is applied. 

Von Mises stress, along with the safety factor, is presented in Table 2. It shows that all of the components of 

the test rig are experiencing Von Mises stress under the material’s maximum yield strength, which is  

200 MPa. Additionally, the safety factor of the test rig, exceeding 1.25 as recommended by several studies 

[17]–[19], falls within the acceptable range. Hence, the test rig is competent in conducting pipe saddle 

support load tests with a maximum force of 80 kN, without exceeding its stress limit or compromising the 

test results. An image of the fabricated test rig and its components is shown in Figure 8. 
 

 

Table 2. Von Mises stress and safety factor of the test rig components 
No Parts σv σy Safety factor 

Von Mises stress (MPa) Yield strength of mild steel (MPa) 

1 Load cell bracket 186 250 1.3 
2 Pipe 6 inch 17.6 14.2 

3 Beam frame 62 4.0 

4 Column frame 118.6 2.1 

5 Flat bar 32.5 7.7 

6 Support base 92.6 2.7 
7 Lock plate 47.7 5.3 
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Figure 8. Test rig set-up of pipe saddle support load test 

 

 

4. CONCLUSION 

This showcased the development process of the test rig for the pipe saddle support load test. This 

test rig consists of a portal frame that is locked to a strong floor using an underground locking system. 

Moreover, the test rig setup provides an actual loading condition to the pipe saddle support by using an actual 

pipe. FEA result indicates that the test rig satisfies the design requirements of a safety factor of 1.3. with a 

maximum 80 kN force. Hence, a load test can be performed safely with the proposed test rig setup. 

Nonetheless, this study enables an accurate load test method for the pipe saddle support specimen. Thereby, 

providing valuable contributions to the pipe saddle support stress analysis. 
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