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 Machine learning (ML) integration into various industries has revolutionized 

operations recently, enhancing efficiency and predictive capabilities. 

However, the rapid adoption of ML models also presents significant safety 

concerns that are highly demanded. To achieve this, scholarly articles from 

reputable databases such as Scopus and Web of Science (WoS) focus on 

studies published between 2022 and 2024, which were extensively searched. 

The study's flow is based on the PRISMA framework. The database found 

(n=40) that the final primary data was analyzed. The findings were divided 

into three themes: i) safety and risk management, ii) ML and artificial 

intelligence (AI) applications in safety, and iii) smart technology for safety. 

The conclusion highlights the need for continuous monitoring and updating 

of the safety protocols to keep in step with the growing ML landscape. This 

review contributes to the understanding of ML safety. It offers global lessons 

that can guide future research and policy-making efforts to ensure ML 

technologies' safe and ethical use. 
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1. INTRODUCTION 

In the rapidly evolving technological landscape, machine learning (ML) has emerged as a 

transformative force across diverse sectors, including healthcare, finance, transportation, and entertainment 

[1]–[3]. Its ability to analyze vast datasets, identify patterns, and make data-driven predictions has 

revolutionized decision-making processes and operational efficiency. However, integrating ML into critical 

systems also introduces substantial risks, necessitating a robust safety framework to ensure reliable, ethical, 

and secure operations. The importance of safety in ML applications cannot be overstated, as system errors, 

biases, or vulnerabilities can have severe consequences. For example, erroneous ML predictions in healthcare 

may lead to misdiagnoses, impacting patient outcomes. Similarly, flawed algorithms in financial markets can 

result in substantial losses, while safety failures in autonomous vehicles pose life-threatening risks. 

Despite its advantages, ML systems face inherent challenges due to their complexity and reliance on 

data-driven learning rather than explicit programming. The quality and representativeness of training data are 

critical; biased or incomplete datasets can lead to skewed predictions, perpetuating social inequalities or 

producing unreliable outcomes [4]–[6]. Furthermore, the opacity of many advanced ML models, commonly 

called the "black box" problem, limits transparency and interpretability, undermining trust and 

https://creativecommons.org/licenses/by-sa/4.0/
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accountability. This lack of clarity makes it difficult to identify the factors influencing model decisions, 

posing challenges for developers and end-users. Consequently, ensuring the safety of ML systems requires 

addressing these issues while maintaining performance and reliability. 

This study proposes a comprehensive safety model to address the challenges of integrating ML into 

critical systems. The model emphasizes key components essential for mitigating risks and enhancing system 

reliability. First, it advocates for robust data governance practices to ensure high-quality, diverse, and 

representative datasets, with continuous monitoring to detect data drift and degradation [7], [8]. Second, the 

framework promotes algorithmic transparency and interpretability, enabling stakeholders to understand and 

trust model outputs. Techniques such as feature importance analysis and explainable AI (XAI) are crucial for 

enhancing model comprehensibility. Additionally, the proposed model incorporates rigorous testing and 

validation processes, simulating diverse scenarios to identify potential failure points before deployment. 

Real-time monitoring and anomaly detection systems enhance operational safety by promptly identifying and 

addressing unexpected issues. Finally, the model emphasizes a multi-disciplinary approach, integrating 

ethical, legal, and social considerations to align ML systems with societal values [9], [10]. Collaboration 

between policymakers, industry stakeholders, and researchers is essential to develop regulatory frameworks 

and industry standards promoting innovation and safety. This article aims to provide a practical and scalable 

framework that organizations can adopt to harness the benefits of ML while minimizing associated risks, 

ultimately fostering a safer and more trustworthy technological future. 

 

 

2. LITERATURE REVIEW 

Recent advancements in ML have significantly contributed to developing safety models across 

various domains. A notable application is in cyber-attack detection, where ML methods have been leveraged 

to predict and prevent cybercrimes. Singh et al. [11] highlighted the importance of employing ML techniques 

to analyze and forecast cyber-attack patterns. Their study compared eight different ML algorithms, with 

support vector machine (SVM) linear demonstrating superior accuracy in detecting cyber-attacks, while 

logistic regression was most effective in identifying malicious actors. This work underscores the critical role 

of ML in enhancing cyber security by providing predictive insights that aid in the proactive management of 

cyber threats. In the realm of food safety, the incorporation of big data and ML has been transformative. 

Sapienza and Vedder [12] the security, accountability, fairness, explainability, transparency, privacy  

(P-SAFETY) model integrates high-level principles such as SAFETY into food safety risk assessment 

frameworks. This model addresses the regulatory challenges posed by the vast amount of data processed and 

emphasizes the need to balance data confidentiality with public disclosure requirements. By proposing 

principle-based recommendations, their research facilitates effective data governance in food safety, ensuring 

that technological advancements do not compromise regulatory standards. 

The transportation sector has also seen significant benefits from ML applications in safety models. 

Malik et al. [13] developed an intelligent real-time learning framework to enhance the safety of last-mile 

delivery services. This framework uses statistical and ML techniques to model rider attributes, such as age, 

influence of transport mode, and route selection. Their study revealed that age-specific infrastructure usage 

significantly impacts rider safety, and the ML model's high predictive accuracy demonstrates its potential in 

optimizing transportation planning and infrastructure design for safer urban mobility. In connected vehicle 

environments, the use of ML for real-time safety analysis has shown promising results. Yuan et al. [14] 

applied explainable ML techniques to assess traffic flow features and their impacts on safety. The random 

forest model emerged as the most effective, achieving a high area under the curve (AUC) score. By using 

shapley additive explanation (SHAP) values, the study provided more reflective insights into the mechanisms 

of traffic conflicts and prominence the significance of variables such as lane speed differences and truck 

proportions.  

Safety prediction models in civil engineering have also benefited from ML. Ahmed et al. [15] 

developed a model to predict the factor of safety (FS) for reinforced highway slopes using recycled plastic 

pins (RPP). Their study employed statistical and ML approaches, proving more accurate. The integration of 

ML in this context allows for better prediction and validation of slope stability, showcasing its utility in 

geotechnical engineering for safer infrastructure development. In sports event management, Wang et al. [16] 

proposed a risk early warning safety model using back propagation (BP) neural networks combined with 

fuzzy theory. This model aims to mitigate risks by providing early warnings based on various risk indicators. 

The empirical analysis demonstrated the model's reliability and effectiveness in predicting and preventing 

potential accidents during sports events. This application illustrates the versatility of ML in enhancing safety 

across diverse scenarios. Moreover, the application of ML in eco-driving strategies for automated vehicles 

has been explored by Li et al. [17]. Their study introduced a multi-objective eco-driving strategy 

incorporating a safety model to optimize driving performance in urban traffic. By using deep reinforcement 
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learning (DRL), the proposed strategy effectively balances fuel economy and safety, and proving beneficial 

in managing the complexities of urban driving environments. 

Gheraibia et al. [18] presented an innovative approach that combines fault tree analysis (FTA) with 

ML to enhance the modeling of safety-critical systems. This method uses real-time operational data to detect 

abnormalities and update safety models dynamically. Integrating decision trees explains faults, facilitating 

continuous improvement in safety management practices. This hybrid approach demonstrates how ML can 

complement traditional safety modeling techniques to achieve higher accuracy and reliability. Recent studies 

have shown that ML models, particularly gradient-boosting models such as categorical boosting (CatBoost), 

outperform traditional regression models in predicting traffic safety outcomes. Li et al. [19] utilized SHAP to 

interpret the results of CatBoost and extreme gradient boosting (XGBoost) models, identifying critical factors 

such as ramp type and curve presence, which significantly influence freeway crash frequency. These models 

provide more accurate predictions and valuable insights into the underlying factors affecting traffic safety, 

which is essential for targeted safety management interventions. 

In the healthcare sector, data security is paramount, especially in telemedicine applications for rural 

areas. Biswas et al. [20] proposed a secure ML and blockchain-based telemedicine model (SMLBT) to 

enhance data security for patients in remote regions. This model leverages supervised and unsupervised ML 

techniques to analyze patient records, ensuring secure, and scalable healthcare services. Integrating 

blockchain technology further enhances the system's security, making it a viable solution for developing 

countries. Adaptive traffic signal control (ATSC) has seen significant advancements with the integration of 

ML, particularly reinforcement learning (RL). Essa and Sayed [21] developed a self-learning ATSC 

algorithm that optimizes traffic safety in real-time. By utilizing VISSIM simulations and real-world data, 

their RL-based algorithm demonstrated a 40% reduction in traffic conflicts compared to traditional systems. 

This approach highlights the potential of ML to simultaneously enhance traffic efficiency and safety. 

Zhang and Aty [22] addressed pedestrian safety by developing a real-time conflict prediction model 

using ML. Their model achieved high predictive accuracy with the XGBoost algorithm by analyzing conflict 

indicators such as post encroachment time (PET) and time to collision (TTC) from closed-circuit television 

(CCTV) footage. This model allows for proactive traffic management strategies to adjust signal timings to 

prevent pedestrian-vehicle conflicts, thus enhancing urban traffic safety. In sports, ML has been applied to 

enhance safety in physical training. Yin and Wang [23] utilized ML techniques to develop a safety mode 

control model for dragon boat sports training. Their approach combined big data analysis with fuzzy 

clustering techniques to identify and mitigate safety risks, significantly improving safety management in 

sports training environments. Effective management of lithium-ion (Li-ion) batteries is crucial for their safe 

usage. Myilsamy et al. [24] proposed a hybrid learning model (HLM) combining autoregressive integrated 

moving average (ARIMA), gated recurrent unit (GRU), and convolutional neural network (CNN) to predict 

Li-ion batteries' state of health (SoH). Their model demonstrated superior accuracy and reliability, vital for 

ensuring the safety and longevity of batteries used in various real-time applications. 

In robotics, ensuring the safe transfer of policies learned in simulations to real-world applications is 

challenging due to the reality gap. Kaushik et al. [25] introduced SafeAPT, a robot learning algorithm that 

selects safe policies through Bayesian optimization. This approach minimizes safety violations during real-

world interactions, making it a promising solution for safe robotic learning and deployment. Integrating ML 

in industrial safety models has revolutionized fault detection and risk management. Mario et al. [26] 

emphasized ML for predicting industrial faults and enhancing safety protocols. Their study highlighted the 

need for continuous innovation and the development of robust safety models to mitigate industrial risks 

effectively. Construction sites are prone to accidents, making safety risk models crucial. Mostofi et al. [27] 

developed a graph convolutional network (GCN) to predict construction accident severity by leveraging 

dependency information between accidents. This approach significantly improved risk assessment accuracy 

and generalization ability, providing a more reliable safety model for construction professionals. 

Hallmark and Dong [28] addressed the safety challenges of winter weather on roadways. Their 

study identified critical factors influencing winter crash rates by employing the Boruta algorithm for feature 

selection in crash frequency models. This framework aids in developing effective winter maintenance 

strategies to enhance roadway safety under adverse weather conditions. Analyzing historical aircraft 

trajectory data in air traffic management can improve safety and efficiency. Olive and Basora [29] developed 

a framework using autoencoding neural networks to detect anomalies in aircraft trajectories. Their approach 

provided valuable insights for air traffic control, enhancing safety protocols and operational efficiency. 

 

 

3. METHODS 

A comprehensive literature-structured review evaluation is used to evaluate the worldwide 

occurrence of an adaptation [30], [31]. Comprehensive, structured review papers that align with well-defined 

topics and apply methodical, explicit techniques to choose and evaluate relevant research are the essence of 
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systematic literature reviews. Although this method is widely used in the health sciences, it has not been 

thoroughly applied to engineering studies. The great potential in a field marked by safety towards ML shows 

research but inadequate means to monitor what is happening. The PRISMA method is provided step by step, 

and it includes identification, screening, eligibility, data abstraction, and analysis [32]. 

 

3.1.  Identification 

The selection of a substantial volume of relevant literature was accomplished by utilizing several 

crucial stages of the systematic review procedure in this investigation. Following the selection of keywords, a 

search for similar terminology was conducted by consulting dictionaries, thesauri, encyclopedias, and past 

research about the topic at hand. Creating search strings for the Scopus and Web of Science (WoS) databases 

allowed for identifying all pertinent phrases, as shown in Table 1. At the beginning of the systematic review, 

1,091 publications relevant to the study's subject were successfully obtained from the two databases. 

 

 

Table 1. The search strings 
Database Search strings 

Scopus TITLE-ABS-KEY ("machine learning" AND "safety" AND "technology" AND "risk") AND (LIMIT-TO 

(SUBJAREA, "ENGI")) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (PUBYEAR, 2022) OR 

LIMIT-TO (PUBYEAR, 2023) OR LIMIT-TO (PUBYEAR, 2024)) AND (LIMIT-TO (LANGUAGE, 
"English")) AND (LIMIT-TO (SRCTYPE, "j")) AND (LIMIT-TO (PUBSTAGE, "final")) 

Date of access: December 2024 

WoS "machine learning" AND "safety" AND "technology" AND "risk" (Topic) and 2024 or 2023 or 2022 
(Publication Years) and Article (Document Types) and English (Languages) and Engineering (Research Areas) 

Date of access: December 2024 

 

 

3.2.  Screening  

Potentially relevant research items are collected during the screening to determine their alignment 

with the predefined research questions. This phase commonly involves using content-related criteria, such as 

selecting research items related to applying safety models in ML as global lessons. All duplicate papers are 

removed at this stage. In the first stage of screening, 968 publications were excluded. In contrast, 123 papers 

were evaluated based on specific inclusion and exclusion criteria for this study in the second stage, as shown 

in Table 2. The primary criterion was literature (research papers), the primary source of practical 

recommendations. Furthermore, the review was limited to English-language publications from 2022-2024. A 

total of 102 publications were rejected due to duplication. 

 

 

Table 2. The search strings 
Criterion Inclusion Exclusion 

Language English Non-English 
Timeline 2022–2024 <2022 

Literature type Journal (article) Conference, book, review 

Publication stage Final In press 
Subject Engineering Besides engineering 

 

 

3.3.  Eligibility 

In the third phase, the eligibility assessment, 102 articles were compiled. During this stage, a 

thorough examination of all articles' titles and core content was conducted to ensure they met the inclusion 

criteria and were relevant to the study's research objectives. Consequently, 62 articles were excluded because 

they were out of the field, their titles needed to be more significant, their abstracts were not related to the 

study's objectives, or there needed to be full-text access based on empirical evidence. As a result, 40 articles 

remained for the upcoming review. 

 

3.4.  Data abstraction and analysis 

An integrative analysis was employed in this study to examine and synthesize various research 

designs (quantitative methods). The aim was to identify relevant topics and subtopics. The initial step in 

theme development was the data collection phase. As shown in Figure 1, the authors analyzed  

40 publications for assertions or material pertinent to the current study's topics. Subsequently, they evaluated 

significant studies related to safety and ML, investigating the methodologies and research results of these 

studies. The authors collaborated with co-authors to develop themes based on the evidence within the study's 
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context. A log was maintained throughout the data analysis process to record any analyses, viewpoints, 

puzzles, or other thoughts relevant to data interpretation. Finally, the authors compared the results to identify 

inconsistencies in the theme design process. 

The authors also compared the findings to resolve discrepancies in the theme-creation process. If 

inconsistencies arose, they were addressed collaboratively. The developed themes were then refined to ensure 

consistency. To ensure the validity of the issues, the examinations were conducted by two experts, one 

specializing in engineering and the other in data science. This expert review phase ensured each sub-theme's 

clarity, importance, and adequacy by establishing domain validity. Adjustments were made based on the 

authors' discretion, incorporating expert feedback and comments. The questions are as follows: i) How can 

ML and artificial intelligence (AI) enhance various industrial sector's risk assessment and safety measures?, 

ii) How can ML frameworks be optimized for real-time safety monitoring and incident response?, and iii) 

How can smart technologies improve safety and security in residential and urban settings? 
 
 

 
 

Figure 1. Flow diagram of the proposed search study 

 

 

4. RESULTS AND DISCUSSION 

As ML has emerged as a disruptive force across numerous industries and contributed to the region's 

development, ML models raise substantial safety issues. Based on the search method, 40 articles were 

extracted and examined. All papers were classified based on three primary themes: safety and risk 

management in various industries (11 articles), ML and AI applications in safety (15 articles), and smart 

technologies for safety and security (14 articles). 
 

4.1.  Safety and risk management in various industries 

Safety and risk management are critical components across various industries, from maritime 

operations to construction and manufacturing. Integrating advanced technologies such as AI, ML, and edge 

computing has enhanced the ability to detect anomalies, assess risks, and implement preventive measures. 

This analysis explores different industry-specific safety frameworks, highlighting the efficacy of these 

technological interventions in mitigating risks and ensuring operational safety. 
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Ensuring safety in high-risk industries requires advanced risk management approaches.  

Algarni et al. [33] proposed an edge computing-based framework using long short-term memory (LSTM) 

and isolation forests (IF) to enhance cybersecurity in maritime wireless communications (MWC), reducing 

latency and strengthening anomaly detection. Ruengdech et al. [34] introduced the risk assessment system for 

muscle injuries (RASMI), an AI-driven system that applies rapid entire body assessment (REBA) standards 

to detect unsafe postures in manufacturing, offering real-time warnings and cost-effective risk assessment. 

While these methods improve safety, they lack a comprehensive approach to broader operational risks. In 

contrast, our proposed safety framework achieves safety performance, outperforming existing methods by 

providing a more comprehensive solution for the oil and gas industry, ensuring improved safety and risk 

mitigation. 

The integration of operational technology (OT) and information technology (IT) has enhanced 

safety risk prediction in power monitoring systems. Wei and Wei [35] improved the XGBoost algorithm by 

incorporating the whale optimization algorithm (WOA)-XGBoost model, which reduces prediction errors and 

increases sensitivity, leading to more accurate and timely risk assessments. Similarly, Xu [36] utilized 

computer vision to detect unsafe behaviors in construction hoisting operations, enabling real-time warnings, 

and preventive actions. While these approaches enhance risk mitigation in their respective domains, they 

focus on specific hazards. In contrast, our proposal to reduce the risk provides a more precise solution, 

achieving safety protocols and outperforming existing models in the fuel station industry, ensuring more 

robust safety management. 

Highway construction entails significant safety risks, requiring advanced accident analysis 

techniques. Smetana et al. [37] used a large language model (LLM) to analyze data from the occupational 

safety and health administration (OSHA) severe injury reports (SIR) database. Their study employs natural 

language processing (NLP) to identify major accident causes, such as heat-related injuries and struck-by 

incidents, leading to improved preventive measures. In lean manufacturing, the 5S+1 methodology highlights 

safety. Shahin et al. [38] demonstrate how computer vision and object detection algorithms, particularly the 

you only look once (YOLO) v7 architecture, can ensure compliance with personal protective equipment 

(PPE) standards, significantly reducing hazards. The visual geometry group-16 (VGG)-16 algorithm also 

provides high accuracy and real-time processing for enhancing workplace safety. 

Water sports, especially diving, require strict safety measures to prevent accidents like 

decompression sickness. Ling et al. [39] created a wearable device with a safety alarm that uses ML, cost-

effective sensors, GPS, and Bluetooth to monitor divers and alert them and their coaches about potential 

risks. This system evaluates a diver's health and provides timely warnings to enhance safety. The advent of 

autonomous ships brings new safety challenges linked to AI and ML. Khan et al. [40] performed a risk 

assessment using an integrated ML approach, identifying human factors and operational issues as key 

accident causes. This assessment helps stakeholders develop stronger safety systems for autonomous 

maritime operations. 

Efficient and safe handling of hazardous waste is crucial in civil engineering. Sivakumar et al. [41] 

explore AI-enhanced decision support systems (DSS) that utilize ML and predictive modeling to optimize 

waste collection, transportation, and disposal. These systems improve risk assessment, ensure environmental 

compliance, and support real-time decision-making for safer, more sustainable practices. Alekperova [42] 

highlights the role of AI and ML in enhancing the safety of oil and gas production. By considering the entire 

life cycle of facilities, these technologies improve emergency management and reduce accident risks. For 

managing pedestrian movement in crowded areas, Zhang et al. [43] propose a model using video recognition 

and ML to analyze behavior, identify congestion, and issue early warnings to prevent accidents. This 

approach improves risk management in pedestrian environments, promoting safer public spaces. 

Advanced technologies such as AI, ML, edge computing, and computer vision revolutionize safety 

and risk management across various industries. By leveraging these technologies, industries can enhance 

their ability to detect anomalies, assess risks, and implement preventive measures, ensuring safer and more 

efficient operations. 
 

4.2.  Machine learning and artificial intelligence applications in safety 

ML and AI applications have been increasingly utilized to enhance safety across various domains. 

Integrating advanced AI technologies in these fields has shown significant promise in mitigating risks and 

improving predictive capabilities. 

Integrating ML and AI into safety applications has greatly enhanced various sectors by improving 

risk prediction and management. In maritime safety, Nourmohammadi et al. [44] developed a deep 

spatiotemporal ocean accident prediction (DSTOAP) model that forecasts accidents in South Korea’s 

territorial waters with over 78% accuracy, and more than 84% for collision incidents. This model uses data 

on ocean depth, weather, and vessel trajectories, establishing a strong predictive framework for maritime 
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safety. In the aerospace industry, Hernández and Prats [45] created AI-based methodologies to enhance error 

prediction and risk mitigation during aircraft assembly. Their study employed SVMs, random forests, and 

logistic regression to significantly reduce error rates and processing times. This highlights the potential for AI 

to optimize complex manufacturing systems and improve safety outcomes.  

Maritime transport is encountering new safety challenges due to intelligent and autonomous ships. 

Li et al. [46] analyzed various ship trajectory prediction methods using automatic identification system (AIS) 

data, comparing five ML and seven deep learning approaches. Their findings highlight the effectiveness of 

these methods in identifying abnormal ship behaviors and enhancing maritime safety. In the mining industry, 

Yin et al. [47] proposed a data-driven method for predicting water inrush incidents using microseismic 

monitoring data. By combining ML and deep learning models to analyze spatiotemporal data, they 

significantly improved prediction accuracy, showcasing the value of advanced data analytics for mining 

safety and operational efficiency. 

The coal mining sector is benefiting from AI-driven safety applications. Wang et al. [48] used 

adaptive boosting (AdaBoost)-driven real-time warning systems to predict rock burst risks by analyzing 

extensive spatiotemporal data. This method provides timely warnings, showcasing AI's potential to enhance 

safety in hazardous environments. In industrial settings, Xu et al. [49] developed an LSTM-based sequence-

to-sequence autoencoder to predict the health status of workers in confined spaces, using data from wearable 

devices. This hybrid model effectively recognizes health conditions, illustrating how AI can improve worker 

safety and productivity in complex environments. 

Slip and fall accidents, a major cause of injuries, can be reduced using intelligent insoles with ML 

algorithms. Xu et al. [50] developed a method employing sensor fusion technology to predict slip risks by 

training ML models on data from instrumented shoe insoles and a slip simulator. This approach shows 

promise for real-time slip risk prediction and enhanced safety. Deshpande [51] focused on predicting marine 

icing from freezing sea spray using an ML model called "Spice," developed from experimental data. This 

research underscores the significance of data-driven models in managing marine icing, contributing to the 

safety of marine vessels. 

Luo et al. [52] analyzed risks associated with cut-ins-lane-changing behavior on urban expressways 

using multi-driver simulation data to compare decision trees, gradient boosting decision trees (GBDT), and 

LSTM models. The LSTM model proved the most accurate, demonstrating the effectiveness of advanced ML 

in improving traffic safety. In aviation, Haselein et al. [53] used Bayesian networks (BNs) to model near-

mid-air collisions (NMAC) based on NASA's aviation safety reporting system data. Their models provided 

insights into risk factors and highlighted the benefits of combining BNs with ML for enhanced aviation 

safety. For environmental safety, Li et al. [54] developed an ML framework for detecting wastewater 

pollution with IoT-based spectral technology. Their study improved near-infrared (NIR) calibration models 

for rapid pollutant detection, illustrating how AI can address industrial pollution and enhance water safety. 

Wang et al. [55] proposed a spatio-temporal deep learning method for simulating conflict risk on 

freeways. Their spatiotemporal transformer network (STTN) effectively predicts risk patterns using a conflict 

risk index and surrogate safety measures, highlighting its potential for traffic management and safety 

systems. Similarly, Alawad and Kaewunruen [56] utilized unsupervised ML in railway stations to enhance 

safety management. Their study optimized latent Dirichlet allocation (LDA) for analyzing textual data, 

offering valuable insights from historical accident data to improve safety in railway operations. 

The shipping industry can significantly benefit from federated learning (FL) in predictive 

maintenance (PdM). Angelopoulos et al. [57] demonstrated that FL improves maintenance decision-making 

and reduces downtime in Shipping 4.0 applications, highlighting the potential of decentralized ML to 

enhance operational efficiency and safety. In chemical processing, Wang et al. [58] proposed a virtual 

machine (VM) based predictive maintenance model to reduce equipment failures and enhance safety by 

integrating IoT and ML. Their research underscores the critical role of AI in promoting operational safety in 

high-risk industrial settings. 

ML and AI enhance safety across industries by improving risk prediction and management. AI-

driven models optimize accident forecasting, hazard detection, and operational efficiency in maritime safety, 

aerospace, mining, and industrial settings. Applications include ship trajectory analysis, predictive 

maintenance, environmental safety, and worker health monitoring, demonstrating AI’s transformative role in 

risk mitigation. 

 

4.3.  Smart technologies for safety 

Smart technologies are revolutionizing safety by integrating AI, ML, and the IoT to predict risks, 

enhance monitoring, and prevent accidents. These innovations improve safety across industries, enabling 

real-time decision-making and proactive hazard management for safer environments. 

Implementing smart technologies is crucial for enhancing safety and security, particularly in the 

construction industry through human-robot teaming. Shayesteh et al. [59] propose a training platform using 
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immersive technologies and wearable sensors to improve safety training in human-robot collaboration 

(HRC). This platform assesses cognitive load, ensuring effective training and prompting safer behaviors 

among construction workers. Additionally, electronic skins (e-skins) developed by Ge et al. [60] enhance 

safety in human-robot interactions by sensing environmental parameters. This technology demonstrates how 

integrating sensory data can significantly improve collaborations between humans and robots in complex 

settings. 

Deep learning methods have shown considerable potential in home security. Vardakis et al. [61] 

discuss using ML techniques to recognize faces and human activities, aiming to create safer urban homes. 

This technology also has applications in fields like medicine for diagnostics. Moreover, the development of 

intelligent door lock systems highlights the focus on deep learning for security. Mrabet et al. [62] presented a 

Tiny ML (TinyML)-based system for real-time face mask detection, vital in high-risk areas like healthcare. 

These advancements emphasize the significant role of ML in addressing modern security challenges in smart 

home systems. 

In healthcare, integrating smart technologies has proven essential for ensuring safety, particularly in 

using PPE. Chapman et al. [63] investigated the use of infra-red imaging combined with ML to detect leaks 

in respirators, a critical factor in protecting healthcare workers. This method surpasses traditional fit-checks, 

offering a more reliable approach to ensuring the proper fit of respirators, thereby enhancing occupational 

safety in healthcare settings. Moreover, the integration of wearable sensors and ML for monitoring drivers' 

health conditions, as explored by Sohail et al. [64], showcases the potential of these technologies in reducing 

accidents caused by health-related issues such as diabetes. The combination of vehicular ad-hoc networks 

(VANET) technology and wearable sensors provides real-time health monitoring, significantly contributing 

to road safety. 

Integrating smart technologies in healthcare is crucial for safety, especially regarding PPE. 

Chapman et al. [63] examined how infrared imaging and ML can detect respirator leaks, and provided a more 

reliable method than traditional fit-checks to ensure proper fit and enhance occupational safety. Similarly, 

Sohail et al. [64] explored wearable sensors combined with ML to monitor drivers' health, aiming to reduce 

accidents linked to health issues like diabetes. This integration of VANET technology with wearable sensors 

enables real-time health monitoring, improving road safety. 

The application of smart technologies to enhance infrastructure safety is crucial. Lu et al. [65] 

developed an early warning system for drinking water supply in smart cities, leveraging online sensor 

networks and ML to improve risk management. Shahriar et al. [66] proposed a vehicle-to-infrastructure (V2I) 

framework using ML to enhance intersection safety and reduce collisions. Hou et al. [67] introduced an ML 

method for detecting vortex-induced vibrations in bridges, ensuring structural stability. These studies focus 

on specific applications; the safety model offers a more adaptive solution, demonstrating superior 

performance and enhancing overall infrastructure safety. 

The optimization of electric vehicle supply equipment (EVSE) in multi-unit residential buildings 

(MRBs) has also benefited from smart technologies. Samadi and Fattahi [68] discussed the effectiveness of 

an energy management system (EMS) that uses ML tools to optimize EVSE operations, ensuring efficient 

energy use and reducing costs. This approach supports the safe and sustainable integration of electric vehicles 

in residential areas. 

The advancement of smart technologies extends to cybersecurity, particularly in protecting AI-based 

systems from potential threats. Tareq et al. [69] highlight the vulnerabilities of AI systems to cyber-attacks 

and the critical role of deep learning and federated learning in enhancing cybersecurity. Meanwhile,  

Carlo et al. [70] discuss the need for regulatory frameworks to address AI's ethical and technical challenges 

in space applications, underscoring the interdisciplinary nature of these threats and the importance of 

comprehensive safety measures. Both emphasize the importance of robust cybersecurity frameworks to 

safeguard AI technologies.  

The use of smart technologies significantly improves safety and security across various fields. These 

innovations address modern safety challenges, enhance construction training, and protect infrastructure. 

Strong cybersecurity frameworks are also crucial for safeguarding AI-based systems, emphasizing the need 

for interdisciplinary approaches in today’s safety landscape. 

 

 

5. CONCLUSION 

This study has highlighted the transformative potential of ML in enhancing safety and risk 

management across diverse industries. Through a systematic review of studies published between 2022 and 

2024, guided by the PRISMA framework, three core themes were identified: safety and risk management, the 

applications of ML and AI, and the utilization of smart technology for safety enhancement. The findings 

demonstrate notable advancements, including improved predictive capabilities, efficient anomaly detection, 
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and proactive preventive measures, all contributing to safer operational environments. Nonetheless, the rapid 

adoption of ML technologies presents certain challenges and limitations. These include the necessity for 

high-quality data, ethical concerns related to algorithmic decision-making, and regulatory hurdles that may 

hinder widespread implementation. Continuous monitoring and the adaptive evolution of safety protocols are 

essential to align with ongoing technological developments. Moreover, addressing counterclaims regarding 

accessibility, cost-effectiveness, and data privacy is crucial, as ML solutions, despite their potential, must 

remain scalable and adaptable across various contexts. Future research should prioritize the development of 

resource-efficient and adaptable ML models capable of functioning effectively in diverse operational 

settings. Additionally, the establishment of harmonized regulatory frameworks and robust ethical guidelines 

is essential to ensure the safe and responsible integration of ML technologies into safety and risk 

management practices. 
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