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 Diabetes, a leading cause of global mortality, is responsible for millions of 

deaths annually due to complications such as heart disease, kidney failure, 

and stroke. Projections indicate that 700 million people will be affected by 

diabetes in 2045, placing immense strain on global healthcare systems. Early 

detection and accurate prediction of diabetes are essential in mitigating 

complications and reducing mortality rates. However, existing diabetes 

prediction frameworks face challenges, including imbalanced datasets, 

overfitting, inadequate feature selection, insufficient hyperparameter tuning, 

and lack of comprehensive evaluation metrics. To address these challenges, 

the proposed random forest diabetes prediction (Random DIP) framework 

integrates advanced techniques such as hyperparameter tuning, balanced 

training, and optimized feature selection using a random search cross-

validation (RandomizedSearchCV). This framework significantly improves 

predictive accuracy and ensures reliable clinical applicability. Random DIP 

achieves 99.4% accuracy, outperforming related works by 7.23%, the area 

under curve (AUC) of 99.6%, surpassing comparable frameworks by 7.32%, 

a recall of 100%, exceeding existing models by 9.65%, a precision (97.8%), 

F1-score (98.9%), and outperformance of 6.69%. These metrics demonstrate 

Random DIP's excellent capacity to identify diabetes cases while minimizing 

false negatives (FPs) and providing reliable predictions for clinical use. 

Future work will focus on integrating real-time clinical data and expanding 

the framework to accommodate multi-disease prediction for broader 

healthcare applications. 
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1. INTRODUCTION 

Diabetes mellitus is a chronic metabolic disorder that keeps the blood sugar level high because the 

body either does not produce enough insulin or does not use it correctly and can cause serious harm to many 

other organs, such as the heart, eyes, nerves, and even death [1], [2]. Diabetes has two main subtypes, namely 

type 1 diabetes (T1D) and type 2 (T2D), each requiring personalized interventions [3]. The T1D affects 10% 

of the world’s population while the remaining 90% is affected by T2D [4], [5]. It is very crucial to accurately 

diagnose these subtypes on time to avoid complications or death. Studies indicate that T2D patients with an 

early and accurate diagnosis may avoid 80% of complications [6]. Diabetes has affected over 422 million 

people globally, resulting in about 1.5 million deaths yearly [7]. According to estimates, 700 million people 
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will be affected by the disease in 2045 worldwide [8]. According to WHO, Africa has over 24 million adults 

living with diabetes, and this number is estimated to increase by 129% to reach 55 million by 2045. These 

high mortality numbers indicate the urgent need for effective diabetes prediction frameworks for early 

diagnosis and prevention. Several machine learning (ML) frameworks have been proposed for diabetes 

predictions to obtain hidden insights from biomedical datasets to minimize diabetes complications at an early 

stage. Nevertheless, there exist critical gaps in current works that need to be addressed. 

Research gaps: current ML frameworks rely on a minimal set of features, in this case, just five, 

which may make it more difficult for the model to accurately represent the complexity of diabetes-related 

factors. The exclusive reliance on lifestyle-related factors neglecting other crucial contributors to diabetes can 

potentially compromise the framework's comprehensiveness. The use of female-only datasets in model 

training introduces gender bias, potentially compromising the model's predictive accuracy and 

generalizability to underrepresented groups, such as males. In addition, the majority of frameworks are based 

solely on accuracy metrics overlooking other essential aspects of model performance. Current models exhibit 

suboptimal performance, characterized by low accuracy and high error rates, with some lacking documented 

accuracy metrics. A significant research gap exists in the lack of embedded-based feature selection methods 

for identifying critical data features, as well as the need for fine-tuning classifiers to enhance model accuracy. 

These observations emphasize the importance of addressing these limitations in developing and evaluating 

diabetes prediction frameworks to enhance their comprehensiveness, robustness, and applicability. Thus, it is 

essential to develop a framework that can predict diabetes in a feasible, precise, and cost-efficient manner. 

This research proposes the development of a ML framework for predicting diabetes accurately leveraging 

random forest algorithms to bridge gaps in existing diabetes frameworks. The contributions of this research 

work are as follows,  

i) Gap analysis: identified key gaps in ML-based diabetes prediction frameworks include imbalanced and 

biased datasets, insufficient training data, overfitting, redundant and irrelevant features, inadequate 

feature selection, inadequate model tuning, neglect of comprehensive evaluation metrics, and 

suboptimal performance like predictive accuracy. 

ii) Framework development: developed a random forest-based ML framework to predict diabetes called 

random forest diabetes prediction (Random DIP) to enhance prediction accuracy. 

iii) Dataset manipulation: adopted and manipulated the Hospital Frankfurt dataset which included eight 

independent variables and one target variable to suit the Random DIP model. 

iv) Evaluation: the proposed Random DIP framework significantly outperformed related works when 

evaluated for performance in terms of accuracy, area under curve (AUC), precision, recall, and F1-

score. 

The rest of this article is structured as follows: section 1 provides the Introduction of the research 

followed by section 2 which describes the proposed Random DIP framework. The study findings are 

presented and analyzed in section 3 while section 4 brings the study to a conclusion. 

Literature review: we provide an in-depth gap analysis by conducting a review of the existing 

literature from 2024 up to 5 years ago on diabetes prediction, highlighting the limitations and research gaps. 

The gap analysis summary is that current ML frameworks for diabetes prediction face several gaps, including 

overfitting, feature redundancy, irrelevant features, imbalanced and biased datasets, insufficient data, neglect 

of performance metrics, suboptimal accuracy, and inadequate feature selection and tuning. The following are 

some of the detailed related frameworks with their contributions and gaps. Atif et al. [4] performs an analysis 

of ML classifiers for predicting diabetes mellitus in the preliminary stage but there is poor accuracy 

performance. Pranto et al. [5] analyzed diabetes prediction using the random forest algorithm but faced 

several limitations. The reliance on only four features draws attention to limited and inadequate feature 

selection, reducing the model’s ability to represent the complexity of diabetes-related factors, which 

increases error rates and hinders predictive accuracy. The model’s relatively low accuracy (78%), despite a 

recall of 89% and F1-score of 84%, emphasizes suboptimal performance and overfitting. Additionally, 

training exclusively on female data introduces gender bias, limiting the model’s generalizability to diverse 

populations, thereby producing biased predictions and oversimplified decision boundaries that fail to capture 

real-world complexities. Ahamed et al. [8] employed the light gradient boosting machine (LGBM) algorithm 

for diabetes prediction, achieving an accuracy of 95.20%. While the study explored transformer-based 

learning for dataset enhancement, it relied solely on accuracy for evaluation, overlooking other critical 

performance metrics like precision, recall, and AUC. Although the use of NumPy, Seaborn, and MATLAB 

for analysis provided transparency, the absence of further fine-tuning for classifiers reflects inadequate model 

optimization, limiting the opportunity to achieve even better performance. The study indicates the importance 

of utilizing diverse metrics and additional tuning to improve model evaluation and accuracy. Joshi and 

Dhakal [9] developed a diabetes prediction model using logistic regression (LR) and decision tree (DT) but 

encountered significant limitations. The use of only five features indicates potential redundancy and 

irrelevant features, restricting the model’s capacity to capture complex diabetes predictors. The exclusive 
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reliance on data from women (Pima Indian dataset) introduces bias and imbalance, limiting generalizability. 

Reporting only accuracy and cross-validation error rate reflects neglect of comprehensive performance 

metrics, while the 78.26% accuracy and 21.74% error suggest suboptimal performance and potential 

overfitting. Unspecified tools and inadequate model details further hinder replicability and improvement 

opportunities. Aftab et al. [10] proposed a fused diabetes prediction model combining naïve Bayes, DT, and 

artificial neural network algorithms, achieving high accuracy (95.20%) with a miss rate or false negative 

(FN) rate) of 4.80%. However, the evaluation metrics were limited to accuracy and miss rate, neglecting 

comprehensive performance metrics such as recall, precision, and F1-score, which are essential for assessing 

broader model performance. Furthermore, the lack of details about the ML tools used reduces replicability 

and interpretability. These limitations, despite promising results, indicate the need for deeper evaluations and 

explicit tool specifications to ensure the robustness of the model. Saxena et al. in [11] predicted diabetes 

using the random forest algorithm with feature selection methods, achieving 79.83% accuracy, a specificity 

of 71.4%, a sensitivity of 79.8%, and an AUC of 83.6%. However, the model was trained exclusively on data 

from pregnant women in the Pima Indians dataset, introducing gender and population bias and limiting 

generalizability to broader demographics. While performance metrics such as sensitivity and AUC were 

promising, the relatively low accuracy indicates suboptimal performance. Additionally, the use of Weka 3.9 

was documented, but the limited dataset diversity restricts the model’s ability to make unbiased and 

representative predictions. Agliata et al. [12] developed a type 2 diabetes prediction model using the Adam 

algorithm, achieving an accuracy of 86% and a receiver operating characteristic (ROC) AUC of 93.4%. Chou 

et al. [13] proposes a framework predicting the onset of diabetes with ML methods. Taha and Malebary [14] 

proposes a hybrid meta-classifier of fuzzy clustering and logistic regression for diabetes prediction. Islam  

et al. [15] proposes a comparative approach to alleviating the prevalence of diabetes mellitus using ML. 

Anbananthen et al. [16] proposed a comparative performance analysis of hybrid and classical ML methods in 

predicting diabetes. Despite the strong ROC AUC, the evaluation relied solely on accuracy and AUC, 

neglecting comprehensive metrics such as sensitivity, specificity, and F1-score. The model utilized three 

datasets. While the dataset diversity adds value, the limited evaluation metrics restrict a holistic assessment 

of the model’s effectiveness. This calls for broader metrics to provide more robust and interpretable model 

insights. 

 

 

2. RESEARCH METHOD 

This section describes the steps carried out in the development of the Random DIP model to address 

the identified gaps from the literature of overfitting, feature issues, biased datasets, insufficient data, limited 

performance metrics, suboptimal accuracy, inadequate feature selection, and tuning in ML models. 

Addressing these gaps will be evident through the improvement of performance metrics such as accuracy, 

AUC, precision, recall, and F1-score which correlate with the gaps. Figure 1 shows the architecture for the 

proposed Random DIP framework for diabetes prediction. The steps in Figure 1 are carried out to 

systematically build, train, and evaluate the proposed Random DIP framework using the publicly available 

Hospital Frankfurt Germany dataset. The proposed random forest framework is designed to achieve high 

prediction accuracy by leveraging ensemble learning techniques. This framework integrates advanced 

preprocessing, feature selection, hyperparameter tuning, and rigorous evaluation metrics to ensure robust and 

reliable predictions. In the following, we provide a detailed explanation of each phase of the methodology, 

accompanied by relevant equations where necessary. 

 

2.1.  Dataset acquisition 

Dataset description and quality: the data acquisition phase is critical in developing the proposed 

diabetes prediction framework. This phase involves sourcing and validating a dataset containing features 

indicative of diabetes. The dataset used in this framework is the Hospital Frankfurt Germany dataset, which 

is publicly available on the Kaggle platform. The Hospital Frankfurt Germany dataset is chosen for its 

comprehensive feature set that captures critical diabetes indicators, making it highly relevant to the prediction 

task. Its large sample size enhances the model's ability to generalize across diverse patient populations, 

ensuring robust and reliable predictions. Additionally, its widespread adoption in previous research 

frameworks validates its credibility and utility in diabetes-related studies, reinforcing its suitability for the 

proposed framework [3], [10], [13], [14]. 

Dataset composition: the dataset contains 2,000 instances, with a distribution of 684 diabetic cases 

(34.2%) and 1,316 non-diabetic cases (65.8%). This balanced distribution ensures fair representation of both 

diabetic and non-diabetic classes, providing a solid foundation for training and testing predictive models 

while minimizing bias in classification results. This composition makes the dataset reliable for building 

accurate and balanced prediction algorithms. 
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Figure 1. The proposed Random DIP framework architecture for the diabetes prediction 

 

 

Dataset representation and descriptive characteristics: the dataset is shown as input to the framework 

in Figure 1. The data representation section explains how the dataset is structured, including feature 

organization, labels, and overall format, ensuring clarity for ML model training and evaluation. The dataset 𝐷 

is represented as (1). 

 

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} (1) 

 

Where 𝑥𝑖 = {𝑥(𝑖1), 𝑥(𝑖2), … , 𝑥𝑖𝑚} denotes the feature vector for the 𝑖𝑡ℎ patient. The variable 𝑦𝑖 ∈ {0,1} is the 

dichotomous variable representing two possible where 𝑦𝑖 = 1 if the patient has diabetes or 𝑦𝑖 = 0 if the 

patient does not have diabetes. The variable 𝑛 = 2000 is the total number of patient records and finally, 

𝑚 = 9 is the number of features in the dataset. These features include glucose levels, body mass index 

(BMI), insulin levels, age, blood pressure, skin thickness, pregnancies, diabetes pedigree function, and 

outcome, with the outcome variable indicating whether a patient is diabetic or not. 

Table 1 presents descriptive statistics of the dataset. The average glucose level is 121.18 mg/dL, 

with a standard deviation of 32.07, indicating significant variability. The average BMI is 32.19, suggesting an 

overweight population and insulin levels have a mean of 80.25, with outliers such as a maximum value of 

744. Patient ages range from 21 to 81 years, with a mean of 33.09 years. The dataset is balanced, with 34% 

diabetic cases, ensuring a reliable foundation for predictive analysis.  

 

 

Table 1. The descriptive statistics of the Hospital Frankfurt Germany dataset 
Statistic Pregnancy Glucose Blood pressure Skin thickness Insulin BMI Pedigree function Age Outcome 

Count 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 

Mean 3.703 121. 69.1 20.9 80.25 32.19 0.471 33.10 0.342 
Std 3.3063 32.06 19.18 16.10 111.2 8.141 0.323 11.79 0.474 

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.078 21.0 0.0 

25% 1.0 99.0 63.5 0.0 0.0 27.375 0.244 24.0 0.0 
50% 3.0 117.0 72.0 23.0 40.0 32.3 0.376 29.0 0.0 

75% 6.0 141.0 80.0 32.0 130.0 36.8 0.624 40.0 1.0 

Max 17.0 199.0 122.0 110.0 744.0 80.6 2.42 81.0 1.0 

 

 

2.2.  Data pre-processing 

The data pre-processing phase is crucial for preparing the dataset for the random forest model. It 

involves a series of steps to ensure that the data is clean, relevant, and ready for analysis. These steps help 

enhance the quality of the dataset and, in turn, improve the model’s performance. The phase includes 

exploratory data analysis (EDA), which helps uncover patterns and relationships within the data. It also 

covers techniques like handling missing values, normalizing features, detecting and removing outliers, and 

performing dimensionality reduction. The subsequent subsections explain these steps in detail, elaborating on 

each process and its importance in ensuring the dataset is optimal for training. 

Data pre-processing phase 1: EDA is performed to summarize and visualize the dataset, providing 

insights into its structure and revealing patterns, correlations, or anomalies [15]. Feature distributions are 
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examined using histograms and box plots to detect skewness, outliers, and missing values. Relationships 

between features are analyzed through scatter plots and correlation heatmaps. The correlation coefficient r 

quantifies the strength of relationships. Strong correlations (r >0.7) suggest redundancy, guiding feature 

selection for diabetes prediction. The formula for the correlation coefficient is (2). 

 

𝑟 =
𝐶𝑜𝑣 (𝑋,𝑌)

𝜎𝑋𝜎𝑌
 (2) 

 

Where 𝐶𝑜𝑣 (𝑋, 𝑌) is the covariance between variables 𝑋 and 𝑌, and 𝜎𝑋, 𝜎𝑌 are their respective standard 

deviations. In the Hospital Frankfurt Germany diabetes dataset as shown in Figure 2, higher glucose levels 

show a strong correlation with diabetes presence (r >0.5), while BMI and age have weaker associations  

(r between 0.2 to 0.3). Higher insulin levels correlate strongly with glucose, and higher skin thickness 

correlates with insulin levels. A higher BMI is weakly associated with diabetes and blood pressure, and older 

age shows a weak link to diabetes risk [16]. 

 

 

 
 

Figure 2. The correlation between features of Hospital Frankfurt Germany diabetes dataset 

 

 

Data pre-processing phase 2: handling missing values is critical for improving model performance 

and ensuring accurate predictions. Missing values are imputed using the median value of the corresponding 

feature to avoid distortion from outliers [15]. The imputation formula is (3).  

 

𝑥𝑖𝑗 = {
𝑚𝑒𝑑𝑖𝑎𝑛 ({𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑛𝑗}) if 𝑥𝑖𝑗  is missing

𝑥𝑖𝑗 otherwise.
 (3) 

 

Here, 𝑥𝑖𝑗  is the value of the 𝑗-th feature for the 𝑖-th sample, and the median ({𝑥1𝑗 , … , 𝑥𝑛𝑗}) is the median of 

the feature across all samples. This method ensures the dataset remains robust without introducing biases 

[16]. 

Data pre-processing phase 3: feature normalization is applied to scale features to a comparable 

range, ensuring that large-magnitude features do not dominate model training. The z-score normalization 

formula is (4). 

 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗
 (4) 
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Where 𝑥𝑖𝑗
′  is the normalized value, 𝑥𝑖𝑗  is the original value, 𝜇𝑗 is the mean of the 𝑗-th feature, and 𝜎𝑗 is its 

standard deviation. This standardization centers each feature around a mean of 0 with a unit standard 

deviation, enhancing model convergence and improving performance [16]. 

Data pre-processing phase 4: outlier detection and removal, the outliers shown in Figure 3 are data 

points that deviate significantly from the rest of the dataset, often caused by errors in data collection or 

measurement. These outliers can distort predictions and lead to inaccurate model performance. In diabetes 

prediction, abnormal values, such as extreme glucose levels, can skew results, making the model unreliable. 

To address this, the interquartile range (IQR) method is used to detect and remove outliers. The IQR and 

outlier inequality are calculated as (5) and (6). 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (5) 

 

𝑥𝑖𝑗 < 𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅  or  𝑥𝑖𝑗 > 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅 (6) 

 

Where 𝑄1 and 𝑄3 represent the 25th and 75th percentiles of the dataset, respectively. Any data point 𝑥𝑖𝑗  

falling outside the range in (6) is considered an outlier and removed. This process ensures cleaner, more 

reliable data, improving model generalization and prediction accuracy. Removing outliers as shown in  

Figure 4 helps the model avoid instability, overfitting, and poor performance, leading to better decision-

making [16]-[18]. 

 

 

 
 

Figure 3. Data pre-processing phase 4: outlier detection of each feature 

 

 

 
 

Figure 4. Data pre-processing phase 4: outliers removal data points distribution 
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Data pre-processing phase 5: dimensionality reduction, to reduce computational complexity and 

mitigate overfitting, principal component analysis (PCA) can be applied. PCA transforms the original data 

matrix 𝑋 into a lower-dimensional space 𝑍 while retaining most of the data variance 𝑍 = 𝑋𝑊, where 𝑋 is the 

original data matrix, 𝑊 is the matrix of eigenvectors (principal components) derived from the covariance 

matrix of 𝑋, and 𝑍 is the transformed feature space. For instance, high-dimensional features like BMI, insulin 

levels, and glucose measurements are condensed into fewer dimensions while preserving critical patterns 

influencing diabetes prediction [16]. This reduces computational complexity and mitigates the risk of 

overfitting. 

 

2.3.  Model training 

Model training phase 1: data splitting, when we train the random forest model, we are teaching it to 

predict the outcome (whether a person has diabetes or not) based on patterns in the training data. This 

training process allows the model to learn from the features (such as glucose levels and BMI) and make 

predictions for new, unseen data. Once the data has been pre-processed and cleaned, it is split into training 

and testing sets using an 80:20 ratio. The training set (80%) is used to train the ML model, while the testing 

set (20%) is used to evaluate its performance. This ensures the model can generalize to new, unseen data. 

Tools like scikit-learn's train_test_split function are used to randomly divide the dataset, maintaining a 

balanced representation of diabetic and non-diabetic cases in both subsets, which helps improve model 

accuracy and reliability. The training set is used to train the random forest model, a ML algorithm designed 

to predict diabetes outcomes. During training, the model learns the patterns and relationships between the 

input features (such as glucose levels, insulin, and BMI) and the target variable (diabetes status). After 

training, the model is evaluated using the testing set, which contains data it has never seen before. Evaluation 

metrics such as accuracy, precision, recall, and F1-score are calculated to assess the model's predictive 

performance. Additionally, results from K-fold cross-validation are used to fine-tune hyperparameters such 

as tree depth and number of estimators to improve the model’s generalization and accuracy, ensuring it 

performs optimally on new, unseen data. The following areare the detailed phases for model training of 

Random DIP. 

Model training phase 2: algorithm for creation of random forest, the random forest algorithm, as 

outlined in Algorithm 1, is employed to construct a robust diabetes prediction model. This ensemble learning 

approach creates multiple DTs, each trained on a random subset of the diabetes dataset using the bootstrap 

sampling method [3], [19]. The model predicts diabetes outcomes by aggregating predictions from all the 

individual DTs. The prediction process for the random forest model is represented mathematically as (7). 

 

𝛾 = 𝑚𝑜𝑑𝑒 (𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑇(𝑥)) (7) 

 

Where 𝛾 is the predicted diabetes classification result for the input features 𝑥, 𝑇𝑖(𝑥) denotes the prediction 

from the 𝑖-th DT, and 𝑇 is the total number of DTs in the ensemble. The mode function aggregates 

predictions by selecting the most frequently occurring class label across all trees. This majority voting 

mechanism ensures that the model reduces overfitting compared to individual DTs [20], [21]. By combining 

the strengths of multiple trees, random forest enhances predictive accuracy and generalization, making it an 

effective tool for diabetes classification. The mode function aggregates predictions by selecting the most 

frequently occurring class label across all trees.  

 

Algorithm 1. Algorithm for creation of random forest 

Input: no. of trees (T), no. of features (m), training dataset (𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛), bootstrap sampling method. 

Output: γ: final prediction (diabetes classification result). 

1. Set no. of trees: define the total number of DTs for diabetes prediction as T. 

2. Select no. of features: specify 𝐹𝑚, the number of input features used by each tree to split nodes. 

3. Initialize counter: set tree counter i←1. 

4. while i ≤T do 

5. Randomly sample data with replacement from the diabetes training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 . 

6. Randomly select Fm, the subset of features for the 𝑖𝑡ℎ tree from the total feature set. 

7. Train the 𝑖𝑡ℎ DT 𝑇𝑖  using the sampled dataset and selected feature subset. 

8. Increment tree counter: i←i+1. 

9. end 

10. Final prediction: determine diabetes outcome using majority voting across T trees for new inputs 

 

Model training phase 3: K-fold cross-validation enhances the robustness and generalizability of the 

diabetes prediction model by dividing the dataset into K equal-sized subsets or folds. The model is trained K 
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times, using K-1 folds for training and the remaining fold for testing. This method ensures a more reliable 

evaluation of the model's performance and mitigates overfitting. The performance metric for each fold (𝐶𝑖) is 

computed, and the average performance (𝐶𝑉𝑎𝑣𝑔) is calculated across all K folds. This approach ensures that 

each subset of the diabetes dataset is used for testing, offering a comprehensive assessment of the model's 

ability to predict diabetes accurately. 

 

𝐶𝑉𝑎𝑣𝑔 =
1

𝐾
∑  𝐾

𝑖=1 𝐶𝑉𝑖 (8) 

 

Where 𝐶𝑉𝑎𝑣𝑔 represents the average performance of the model across all folds, providing an overall 

evaluation of the model's ability to predict diabetes. K denotes the total number of folds or subsets of the 

divided dataset. 𝐶𝑉𝑖 refers to the performance metric (e.g., accuracy, precision, and recall) obtained from the 

𝑖𝑡ℎ fold during testing, which reflects how well the model performs on that specific subset. By averaging 𝐶𝑉𝑖 

values across all folds, the model’s generalizability is assessed, ensuring it performs well on unseen data. 

Model training phase 4: hyperparameter optimization, in this section, the training process of the 

random forest model is integrated with hyperparameter tuning to optimize its performance for diabetes 

prediction, as shown in Algorithm 2. Random search cross-validation (RandomizedSearchCV) is chosen as 

an effective technique for finding the best combination of hyperparameters for the random forest model, 

optimizing it for better predictive performance. It helps in tuning key parameters such as the number of trees 

(T), maximum depth (max_depth), the number of features used in tree splitting (m), minimum samples 

required to split an internal node (min_samples_split), and the minimum samples required to be at a leaf node 

(min_samples_leaf). This tuning directly influences the model's accuracy and ability to generalize. The 

model training consists of fitting the random forest algorithm using the training data using Algorithm 1, 

while simultaneously fine-tuning the hyperparameters using RandomizedSearchCV. The objective is to 

maximize the performance metric 𝑀 (such as accuracy, precision, or recall) by adjusting these parameters, 

which enhances the random forest model's ability to predict diabetes. The optimization problem is expressed 

as (9).  

 

𝛩∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝛩∈𝐻

 𝑀(𝐹𝑅𝐹(𝐷train, 𝛩), 𝑌train) (9) 

 

Where Θ represents the set of hyperparameters, which includes the number of trees (𝑇), maximum depth 

(max_depth), and the number of features (𝑚), used for splitting. The variable 𝐻 is the hyperparameter grid 

that defines the possible combinations of these parameters. The variable 𝐹𝑅𝐹(𝐷train, 𝛩) is the random forest 

model trained on diabetes training data 𝐷train with the hyperparameters Θ. The variable 𝑀 is the performance 

metric (e.g., accuracy, precision, and recall) used to evaluate the model's ability to predict diabetes. The 

variable 𝑌train is the actual label of diabetes in the training set. The variable Θ∗ is the optimal set of 

hyperparameters that maximizes the performance metric.  

 

Algorithm 2. Steps for RandomizedSearchCV to optimize hyperparameters 

Input:  Hyperparameter grid (H), no. of iterations (𝑛iter), cross-validation folds (K), diabetes training data 

(𝐷train), diabetes test data (𝐷test), number of trees/estimators (T), number of features (m) 

Output: Optimized hyperparameters (𝛩∗), trained random forest model (𝐹𝑅𝐹), diabetes predictions (𝑦̂test), 

performance metrics (e.g., accuracy, precision, and recall). 

1. Define hyperparameter grid: define H, including T, max_depth, and m. 

2. Initialize RandomizedSearchCV: set up H, iterations 𝑛iter, and K-fold CV. 

3. Train models on diabetes data: fit RandomizedSearchCV using diabetes training data 𝐷train. 

4. Select best hyperparameters: choose optimal 𝛩∗ maximizing CV accuracy for classification. 

5. Final diabetes prediction: optimized 𝛩∗ to predict diabetes outcomes on test data. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Model evaluation metrics 

Table 2 shows a summary of the adopted evaluation metrics, their equations, and their definition in 

diabetes prediction terms. Evaluation is a crucial stage in the ML process. Predictions are made on a 20% test 

dataset using the previously trained framework. This step assesses the framework's ability to generalize new 

data and measures its effectiveness in practical situations. The primary objective is to evaluate the accuracy 

and robustness of the trained framework when applied to unseen data. Evaluation helps identify potential 

issues like overfitting or underfitting and provides insights into the framework's generalization capabilities. 

To effectively assess the impact of the algorithm, it is essential to define specific performance metrics that 
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can measure the quality of a classification framework [4]. The model evaluation metrics are accuracy, 

precision, recall, F1-score, and ROC. The performance evaluation primarily involves calculations based on 

the confusion matrix [2]. A confusion matrix evaluates how well a classification framework predicts diabetic 

and non-diabetic patients as follows [2], [4]. A true positive (TP) shows that a diabetic patient is correctly 

predicted as diabetic. A true negative (TN) shows that a non-diabetic patient is correctly predicted as non-

diabetic. A FN shows that a diabetic patient is incorrectly predicted as non-diabetic. Lastly, a false positive 

(FP) indicates that a non-diabetic patient is incorrectly predicted as diabetic. The framework development 

and evaluation are conducted using Python version 3.12 programming language on Jupyter Notebook version 

6.5.4 on a 64-bit Windows 10 operating system. The hardware specifications include an Intel(R) Core (TM) 

i3-7020U CPU @2.30GHz and 4.00 GB of internal RAM. 

 

 

Table 2. The adopted evaluation metrics 
Metric Definition Equation  

Accuracy Calculates the proportion of correctly classified patients 
(both diabetic and non-diabetic) out of all patients, giving 

an overall performance indicator of the framework [13]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 

(1) 

Precision Evaluates the proportion of correctly identified diabetic 
patients (TPs) out of all patients predicted to be diabetic 

[22]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

(2) 

Recall Measures the proportion of correctly identified diabetic 
patients (TPs) among all actual diabetic patients. It 

indicates the framework's ability to capture all diabetic 

cases [17]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

(3) 

F1-score Combines the framework's ability to avoid falsely labeling 

non-diabetic patients as diabetic (precision) and its 

effectiveness in correctly identifying actual diabetic 
patients (recall) [4], [15].  

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2𝑥(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

ROC Curve 

(AUC) 

Distinguish between diabetic and non-diabetic patients 

across different threshold values [23]. 𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅
0

1

(𝐹𝑃𝑅−1(𝑡))𝑑𝑡 
(5) 

 

 

3.2.  Parameter grid 

In the experiment, we defined a parameter grid, H, with several important hyperparameters for the 

random forest framework. The parameter n_estimators, which controls the number of trees in the forest, was 

tested with values ranging from 1 to 1,000. The max_features parameter, which determines the number of 

features to consider when making a split, was tested with options such as 'auto', 'sqrt', and 'log2'. The 

max_depth parameter, which sets the maximum depth of each tree, varied between 1 and 250 to strike a 

balance between capturing complex patterns and preventing overfitting. Additionally, we adjusted the 

min_samples_split and min_samples_leaf parameters, with values ranging from 2 to 5 and 1 to 3, 

respectively. These parameters control the minimum number of samples required to split a node and to be 

present at a leaf node, thereby influencing the framework's complexity and generalization ability. 

 

3.3.  Best framework parameters 

The hyperparameter search identified an effective combination that significantly boosted model 

performance. A max_depth of 188 allowed trees to capture complex patterns, while max_features set to 'auto' 

enabled the use of all available features during splits. The min_samples_leaf was set to 1, allowing highly 

detailed trees, and the min_samples_split set to 3 helped prevent overfitting by requiring at least three 

samples to split a node. Additionally, n_estimators was set to 22, providing a compact yet strong ensemble. 

These optimized settings resulted in a best cross-validation score of 0.9719, indicating strong generalization 

to unseen data. 

 

3.4.  Proposed framework results-no comparison 

The RandomizedSearchCV was set up to assess ten different combinations of parameters through 

10-fold cross-validation [24], [25], resulting in a total of 100 framework fits. After this extensive search, the 

framework was tested on a separate test set. Figure 5 shows the results of the proposed framework. The 

results of the proposed Random DIP framework demonstrate its exceptional capability in predicting diabetes, 

with notable trends and patterns that highlight its effectiveness. The accuracy of 99.4% indicates that 

Random DIP is highly reliable in correctly identifying both diabetic and non-diabetic individuals. The high 

accuracy suggests that the model has learned to capture the underlying patterns in the data, ensuring minimal 

misclassification, which is critical in medical diagnosis to avoid FNs or FPs. The ROC AUC score of 99.6% 

suggests that Random DIP is highly proficient in distinguishing between diabetic and non-diabetic patients. 
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The near-perfect value reflects the model's ability to maintain high performance even when adjusting the 

decision threshold, ensuring that the prediction system does not miss patients with diabetes, a crucial aspect 

in early diagnosis and treatment.  

A precision of 97.8% means that when Random DIP predicts a patient has diabetes, it is highly 

likely to be correct. This is crucial in healthcare because high precision reduces the occurrence of FPs, 

preventing patients from undergoing unnecessary medical treatments or interventions. The perfect recall 

score (100%) indicates that the model identifies all actual diabetic patients without missing any. This is 

especially important in diabetes prediction, as missing a diabetic patient could lead to delayed diagnosis and 

treatment, potentially resulting in severe health complications. The model's ability to achieve perfect recall 

indicates its effectiveness in catching every possible diabetes case, ensuring early intervention. F1-score 

(98.9%). The F1-score with a value of 98.9% reflects a well-balanced model. This high F1-score 

demonstrates that Random DIP not only performs well in identifying diabetic cases but also maintains a 

strong ability to avoid FPs, making it an ideal model for practical diabetes prediction.  

 

 

 
 

Figure 5. Proposed framework results 

 

 

3.5.  Proposed framework results–comparison with related frameworks 

The proposed framework is now compared with related works from the reviewed. The comparison 

frameworks are Atif et al. [4], Chou et al. [13], Anbananthen et al. [16] shortened as Anban, and our 

proposed Random DIP. We compared our framework with existing frameworks for performance in terms of 

the evaluation metrics of accuracy, ROC AUC, precision, recall, and F1-score. We did this for a fair 

comparison, as our framework uses the same metrics. Our comparison results clearly show that the proposed 

random forest framework outperforms other methods in all evaluated metrics. 

Figure 6 shows the accuracy metric of all the frameworks. The figure highlights that the proposed 

Random DIP framework significantly outperforms all other frameworks with an accuracy of 99.4%. The 

proposed Random DIP outperforms Chou et al. [13] (95.3%) by 4.30%, Atif et al. [4] (97.2%) by 2.26%, and 

Anbananthen et al. [16] (98.5%) by 0.91%. The reason for the high accuracy of the proposed framework 

compared to others is due to (1) effective hyperparameter tuning through RandomizedSearchCV, which 

optimizes the random forest model's parameters, and (2) robust feature selection that eliminates irrelevant 

variables and enhances model performance. The high accuracy means that the proposed framework is highly 

reliable in classifying patients correctly as diabetic or non-diabetic. This high accuracy metric solved the 

research gaps of imbalanced and biased datasets, insufficient training data, and suboptimal predictive accuracy 

in existing frameworks. 

Figure 7 illustrates the ROC AUC metric for all frameworks. The Random DIP framework achieves 

an impressive ROC AUC of 99.6%, demonstrating its superior ability to distinguish between diabetic and 

non-diabetic cases. The proposed Random DIP outperforms Atif et al. [4] (97.2%) by 2.47%, Anbananthen  

et al. [16] (98.3%) by 1.32%, and Chou et al. [13] (99.1%) by 0.50%. The reason for the high ROC AUC of 

the proposed framework is (1) comprehensive data preprocessing, which ensures clean and unbiased input 

data, and (2) optimized DTs within the random forest model, leading to better separation of diabetic and non-

diabetic cases. The high ROC AUC means that the framework can reliably differentiate TPs and TNs across 

varying decision thresholds. This metric of high ROC AUC solved the research gaps of overfitting, 

inadequate feature selection, and neglect of comprehensive evaluation metrics. 
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Figure 6. Comparison in terms of accuracy metric 
 

 

 
 

Figure 7. Comparison in terms of AUC metric 
 

 

Figure 8 displays the precision metric across the frameworks. The proposed Random DIP 

framework achieves a precision of 97.8%, reflecting its accuracy in correctly identifying positive diabetes 

cases among all predicted positives. The proposed Random DIP outperforms Chou et al. [13] (92.7%) by 

5.50%, Atif et al. [4] (97.2%) by 0.62%, and performs slightly under Anbananthen et al. [16] (98.8%) by 

−1.01%. The reason for the high precision of the proposed framework compared to others is (i) balanced data 

handling, which avoids bias during training and (ii) effective feature extraction, which improves the model's 

focus on relevant variables. The high precision means the proposed framework minimizes FPs, ensuring non-

diabetic individuals are not misclassified as diabetic. The slightly lower precision of Random DIP (97.8% vs. 

98.8%) is due to differences in handling FPs. Anbananthen et al. [16] stricter thresholds may improve 

precision, but Random DIP's balanced metrics and perfect recall ensure superior diabetes prediction overall. 

This metric of high precision solved the research gaps of redundant and irrelevant features, insufficient 

training data, and suboptimal performance like predictive accuracy. 

Figure 9 represents the recall metric for the frameworks. The Random DIP framework achieves a 

perfect recall of 100%, outperforming Chou et al. [13] (93.1%) by 7.41%, Atif et al. [4] (97.2%) by 2.87%, 

and Anbananthen et al. [16] (98.8%) by 1.21%. The reason for the high recall of the proposed framework is 

(1) robust cross-validation techniques, which enhance the generalizability of the model, and (2) thorough 

hyperparameter optimization, which ensures that the decision boundaries capture all positive cases. The high 

recall means the framework is highly effective at identifying all true diabetic cases, reducing the risk of 

missed diagnoses. This metric of high recall solved the research gaps of imbalanced and biased datasets, 

neglect of comprehensive evaluation metrics, and inadequate model tuning. 

Figure 10 shows the F1-score metric comparison. The Random DIP framework achieves an F1-

score of 98.9%, showing its balanced performance in precision and recall. The proposed random DIP 

outperforms Atif et al. [4] (88.9%) by 11.24%, Chou et al. [13] (92.9%) by 6.46%, and Anbananthen et al. 

[16] (98.8%) by 0.10%. The reason for the high F1-score of the proposed framework is the advanced 

hyperparameter tuning, which ensures an optimal trade-off between precision and recall, and the effective 

feature engineering, which ensures the model is trained on the most relevant variables. The high F1-score 

means the framework balances precision and recall effectively, making it highly reliable in diabetes 

prediction tasks. This metric of high F1-score solved the research gaps of overfitting, inadequate feature 

selection, and suboptimal performance like predictive accuracy. 
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Figure 8. Comparison in terms of precision metric 
 
 

 
 

Figure 9. Comparison in terms of recall metric 
 
 

 
 

Figure 10. Comparison in terms of F1-score metric 

 

 

4. CONCLUSION 

Diabetes, a leading cause of global mortality, claims millions of lives annually through 

complications like heart disease, kidney failure, and stroke. Existing diabetes prediction frameworks face 

gaps such as imbalanced datasets, overfitting, inadequate feature selection, and insufficient hyperparameter 

tuning, limiting their reliability in clinical settings. The proposed Random DIP framework addresses these 

gaps through advanced hyperparameter tuning, balanced training techniques, and comprehensive evaluation 

across diverse metrics. By optimizing feature selection and employing RandomizedSearchCV, Random DIP 

reduces redundancy and enhances predictive accuracy. Random DIP achieves exceptional results with 99.4% 

accuracy, outperforming current works by 7.23%, 99.6% ROC AUC, surpassing related frameworks by 

7.32%, 100% recall, exceeding existing frameworks by 9.65%, 97.8% precision, and 98.9% F1-score, 

outperforming comparable works by 6.69%. These results signify the framework’s ability to identify diabetes 
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cases accurately while minimizing FNs, crucial for clinical reliability. By addressing gaps in dataset balance, 

feature selection, and evaluation, Random DIP ensures robust diabetes prediction. Future improvements 

include optimizing precision to reduce FPs, integrating real-time clinical data for dynamic adaptability, and 

extending the framework for multi-disease prediction to broaden its healthcare impact. 

 

 

ACKNOWLEDGEMENTS 

The authors thank Botswana International University of Science and Technology for providing 

access to resources and facilities and extending heartfelt gratitude to their families for their unwavering 

support and encouragement. 

 

 

FUNDING INFORMATION 

Authors state no funding involved. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration. 

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Aone Maenge ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓    

Tshiamo Sigwele ✓ ✓  ✓ ✓   ✓  ✓ ✓ ✓ ✓  

Clifford Bhende ✓  ✓ ✓   ✓   ✓ ✓    

Chandapiwa Mokgethi ✓      ✓   ✓ ✓    

Venu Madhav Kuthadi ✓     ✓    ✓ ✓ ✓ ✓  

Blessing Omogbehin  ✓        ✓   ✓  

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY 

Data availability is not applicable to this paper as no new data were created or analyzed in this 

study. 

 

 

REFERENCES 
[1] U. Ahmed et al., “Prediction of diabetes empowered with fused machine learning,” IEEE Access, vol. 10, pp. 8529–8538, 2022, 

doi: 10.1109/ACCESS.2022.3142097. 

[2] P. Durga and T. Sudhakar, “An analysis of various machine learning techniques for predicting diabetes in its early stages,” 

Journal of Pharmaceutical Negative Results, vol. 13, no. S01, Jan. 2022, doi: 10.47750/pnr.2022.13.S01.238. 
[3] M. A. Rahim, M. A. Hossain, M. N. Hossain, J. Shin, and K. S. Yun, “Stacked ensemble-based type-2 diabetes prediction using 

machine learning techniques,” Annals of Emerging Technologies in Computing, vol. 7, no. 1, pp. 30–39, 2023,  

doi: 10.33166/AETiC.2023.01.003. 
[4] M. Atif, F. Anwer, F. Talib, R. Alam, and F. Masood, “Analysis of machine learning classifiers for predicting diabetes mellitus in 

the preliminary stage,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, pp. 1302–1311, 2023,  

doi: 10.11591/ijai.v12.i3.pp1302-1311. 
[5] B. Pranto, S. M. Mehnaz, E. B. Mahid, I. M. Sadman, A. Rahman, and S. Momen, “Evaluating machine learning methods for 

predicting diabetes among female patients in Bangladesh,” Information, vol. 11, no. 8, 2020, doi: 10.3390/INFO11080374. 

[6] K. Kangra and J. Singh, “Comparative analysis of predictive machine learning algorithms for diabetes mellitus,” Bulletin of 
Electrical Engineering and Informatics, vol. 12, no. 3, pp. 1728–1737, 2023, doi: 10.11591/eei.v12i3.4412. 

[7] A. U. Haq et al., “Intelligent machine learning approach for effective recognition of diabetes in e-healthcare using clinical data,” 

Sensors, vol. 20, no. 9, 2020, doi: 10.3390/s20092649. 

 



Int J Adv Appl Sci  ISSN: 2252-8814  

 

Optimizing diabetes prediction using machine learning: a random forest approach (Aone Maenge) 

467 

[8] B. S. Ahamed, M. S. Arya, and A. O. V. Nancy, “Diabetes mellitus disease prediction using machine learning classifiers with 
oversampling and feature augmentation,” Advances in Human-Computer Interaction, vol. 2022, 2022,  

doi: 10.1155/2022/9220560. 

[9] R. D. Joshi and C. K. Dhakal, “Predicting type 2 diabetes using logistic regression and machine learning approaches,” 
International Journal of Environmental Research and Public Health, vol. 18, no. 14, 2021, doi: 10.3390/ijerph18147346. 

[10] S. Aftab, S. Alanazi, M. Ahmad, M. A. Khan, A. Fatima, and N. S. Elmitwally, “Cloud-based diabetes decision support system 

using machine learning fusion,” Computers, Materials and Continua, vol. 68, no. 1, pp. 1341–1357, 2021,  
doi: 10.32604/cmc.2021.016814. 

[11] R. Saxena, S. K. Sharma, M. Gupta, and G. C. Sampada, “A novel approach for feature selection and classification of diabetes 

mellitus: machine learning methods,” Computational Intelligence and Neuroscience, vol. 2022, 2022,  
doi: 10.1155/2022/3820360. 

[12] A. Agliata, D. Giordano, F. Bardozzo, S. Bottiglieri, A. Facchiano, and R. Tagliaferri, “Machine learning as a support for the 

diagnosis of type 2 diabetes,” International Journal of Molecular Sciences, vol. 24, no. 7, 2023, doi: 10.3390/ijms24076775. 
[13] C. Y. Chou, D. Y. Hsu, and C. H. Chou, “Predicting the onset of diabetes with machine learning methods,” Journal of 

Personalized Medicine, vol. 13, no. 3, 2023, doi: 10.3390/jpm13030406. 

[14] A. A. Taha and S. J. Malebary, “A hybrid meta-classifier of fuzzy clustering and logistic regression for diabetes prediction,” 
Computers, Materials and Continua, vol. 71, no. 2, pp. 6089–6105, 2022, doi: 10.32604/cmc.2022.023848. 

[15] M. R. Islam, S. Banik, K. N. Rahman, and M. M. Rahman, “A comparative approach to alleviating the prevalence of diabetes 

mellitus using machine learning,” Computer Methods and Programs in Biomedicine Update, vol. 4, 2023,  
doi: 10.1016/j.cmpbup.2023.100113. 

[16] K. S. M. Anbananthen, M. B. M. A. Busst, R. Kannan, and S. Kannan, “A comparative performance analysis of hybrid and 

classical machine learning method in predicting diabetes,” Emerging Science Journal, vol. 7, no. 1, pp. 102–115, 2023,  
doi: 10.28991/ESJ-2023-07-01-08. 

[17] T. Daghistani and R. Alshammari, “Comparison of statistical logistic regression and randomforest machine learning techniques in 

predicting diabetes,” Journal of Advances in Information Technology, vol. 11, no. 2, pp. 78–83, 2020, doi: 10.12720/jait.11.2.78-83. 
[18] M. K. Hasan, M. A. Alam, D. Das, E. Hossain, and M. Hasan, “Diabetes prediction using ensembling of different machine 

learning classifiers,” IEEE Access, vol. 8, pp. 76516–76531, 2020, doi: 10.1109/ACCESS.2020.2989857. 

[19] H. N. Lakshmi, A. V. Vathsala, B. K. Upadhyay, and A. N. Rao, “Application and analysis of machine learning algorithms on 
pima and early diabetes datasets for diabetes prediction,” International Journal on Recent and Innovation Trends in Computing 

and Communication, vol. 11, pp. 28–35, 2023, doi: 10.17762/ijritcc.v11i5s.6594. 

[20] S. Upadhyay and Y. K. Gupta, “Prediction of diabetes in adults using supervised machine learning model,” Indian Journal of 
Engineering, vol. 20, no. 53, 2023, doi: 10.54905/disssi/v20i53/e26ije1657. 

[21] E. K. Oikonomou and R. Khera, “Machine learning in precision diabetes care and cardiovascular risk prediction,” Cardiovascular 

Diabetology, vol. 22, no. 1, 2023, doi: 10.1186/s12933-023-01985-3. 
[22] Y. Qin et al., “Machine learning models for data-driven prediction of diabetes by lifestyle type,” International Journal of 

Environmental Research and Public Health, vol. 19, no. 22, 2022, doi: 10.3390/ijerph192215027. 

[23] S. K. Sharma et al., “A diabetes monitoring system and health-medical service composition model in cloud environment,” IEEE 
Access, vol. 11, pp. 32804–32819, 2023, doi: 10.1109/ACCESS.2023.3258549. 

[24] J. Shin et al., “Development of various diabetes prediction models using machine learning techniques,” Diabetes and Metabolism 

Journal, vol. 46, no. 4, pp. 650–657, 2022, doi: 10.4093/dmj.2021.0115. 
[25] F. Mohsen, H. R. H. Al-Absi, N. A. Yousri, N. El Hajj, and Z. Shah, “A scoping review of artificial intelligence-based methods 

for diabetes risk prediction,” npj Digital Medicine, vol. 6, no. 1, 2023, doi: 10.1038/s41746-023-00933-5. 

 

 

BIOGRAPHY OF AUTHORS 

 

 

Aone Maenge     is an MSc student in the Department of Computing and Informatics 

at Botswana International University of Science and Technology. His research focuses on 

applying various machine learning models for diabetes prediction. He has been involved in 

several collaborations with other machine learning researchers in the department to expand and 

complement his knowledge and skill in the areas of research. He can be contacted at email: 

ma23018971@studentmail.biust.ac.bw. 

  

 

Tshiamo Sigwele     is currently a lecturer in the Department of Computing and 

Informatics at Botswana International University of Science and Technology (BIUST) with 

research interests in cloud computing, machine learning, and wireless communication. Dr. 

Sigwele graduated in 2017 with a Ph.D. in Cloud Computing And Telecommunications from 

the University of Bradford, UK. He has over 20 internationally recognized publications. He 

worked as a researcher from 2017 to 2018 in a British Council-funded project, BLESS U: 

Bandar Lampung Enhanced Smart Health Services with Smart Ubiquity, with a grant total of 

€89,937, and published several high-quality publications. He is currently supervising PhD and 

MSc students in the areas of cloud computing and machine learning. He is involved in several 

research projects at BIUST. He can be contacted at email: sigwelet@biust.ac.bw.  

  

mailto:sigwelet@biust.ac.bw
https://orcid.org/0009-0007-2587-140X
https://scholar.google.com/citations?user=kXoBCNIAAAAJ
https://www.webofscience.com/wos/author/record/KWU-8595-2024
https://orcid.org/0000-0001-7492-8053
https://scholar.google.com/citations?user=erEQY44AAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=56512356800
https://www.webofscience.com/wos/author/record/GPC-8710-2022


                ISSN: 2252-8814 

Int J Adv Appl Sci, Vol. 14, No. 2, June 2025: 454-468 

468 

 

Clifford Bhende     is an MSc student focusing on applying machine learning 

models for Ischemic predictions in the Department of Computing and Informatics at Botswana 

International University of Science and Technology. His focus research is in IHD prediction 

using machine learning techniques. He specializes in ischemic heart disease prediction using 

machine learning techniques by developing accurate predictive models to identify at-risk 

individuals, aiming to improve early detection and intervention strategies for better 

cardiovascular health outcomes. He is also involved in collaborations with other researchers in 

areas of machine learning in the department. He can be contacted at email: 

bk22100097@studentmail.biust.ac.bw.  

  

 

Chandapiwa Mokgethi     is an MSc student focusing on applying machine learning 

models in optimizing energy in mobile edge computing in the Department of Computing and 

Informatics at Botswana International University of Science and Technology. Her research 

focuses on cloud computing, edge computing, machine learning, and energy efficiency. She 

has actively engaged in numerous collaborations with fellow machine learning researchers 

within the department, aiming to broaden and enhance her expertise in various research 

domains. She can be contacted at email: mc23018972@studentmail.biust.ac.bw.  

  

 

Venu Madhav Kuthadi     is an Associate professor in the Department of 

Computing and Informatics at Botswana International University of Science and Technology 

(BIUST) with research interests in the internet of things, intrusion detection, distributed denial 

of service, wireless sensor networks, and machine learning. He is currently supervising PhD 

and MSc students in the areas of internet of things, wireless sensor networks, and machine 

learning. He is involved in several research projects at BIUST. He can be contacted at email: 

kuthadiv@biust.ac.bw.  

  

 

Blessing Omogbehin     is an MSc student in the Department of Computing and 

Informatics at Botswana International University of Science and Technology, Palapye, 

Botswana focusing on applying machine learning models to enhance cybersecurity. Her 

research centers on improving data security and access control in cloud computing 

environments. With a strong foundation in programming, database management, and 

information security, she has developed practical tools for network analysis and encryption 

using Python. Passionate about cybersecurity education, Blessing is dedicated to advancing 

AI-driven solutions that address real-world security challenges. She can be contacted at email: 

ob24019134@studentmail.biust.ac.bw.  

 

mailto:mc23018972@studentmail.biust.ac.bw
https://orcid.org/0009-0004-3732-4233
https://www.webofscience.com/wos/author/record/JED-8348-2023
https://orcid.org/0009-0005-2032-2634
https://www.webofscience.com/wos/author/record/KWU-8437-2024
https://orcid.org/0000-0003-4515-1921
https://scholar.google.com/citations?user=CTnhiBQAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55479366900
https://orcid.org/0009-0000-7590-2752
https://www.webofscience.com/wos/author/record/KWU-8274-2024

