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 This study presented a deep learning-based model in the submersible pump 

impellers quality inspection process. The proposed method aimed to relieve 

worker workload, automate the system, as well as increase the accuracy in 

defect detection and classification. The proposed approach aims to be 

implemented on systems with low investment cost and limited resources, 

i.e., small single-board computers, enabling flexible deployment in industrial 

environments. The model consisted of three convolutional neural network 

(CNN) models, i.e., visual geometry group 16 (VGG16), ResNet50, and a 

custom model. The outputs of three networks were either synthesized later 

through an ensemble stage or used separately. A graphical user interface 

(GUI) was also developed for real-time inspection and user-friendly 

interaction. The approach achieved up to 99.8% accuracy in identifying 

defects, including surface scratches, corrosion, and geometric irregularities. 

The proposed method improved the quality assurance process by reducing 

manual inspection efforts. Future research could explore advanced 

techniques like anomaly detection to further enhance system performance 

and versatility. 
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1. INTRODUCTION 

In modern industry, manual inspections are time-consuming and error-prone. In order to provide 

reliable and high-quality products, inspections should be automated and apply innovative technologies. 

Currently, computer vision and deep learning techniques are two candidate methods that are widely adopted 

by industry due to their prominent advantages, such as low cost and implementation simplicity. In the 

computer vision field, the convolutional neural network (CNN) has proved its huge value through several 

applications in both manufacturing and inspection processes.  

According to several former studies, deep learning systems outperformed regular machine learning 

systems in pattern recognition, computer vision, and image processing. Simonyan and Zisserman [1] 

examined CNN and numerous architectures, like as LeNet, AlexNet, and GoogleNet, on the large ImageNet 

datasets. They deduced from this study that the amount of data may directly impact the number of epochs and 

accuracy of the selected model. Moreover, He et al. [2] provided a methodology for product inspection and 

testing based on deep learning approaches. Based on the goals of existing product inspection systems, they 

provided an effective method for sustaining and enhancing a product inspection system. Due to the approach 

provided, the proposed system was seen to have good system maintenance and stability. In addition, utilizing 
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a customized AlexNet-based CNN. Krishna and Kalluri [3] suggested a method for classifying defects in 

yarn-dyed fabrics. The experimental findings demonstrated significant resilience in yarn-dyed fabric fault 

classification and a promising average classification rate. Kim et al. [4] also presented a distinctive 

recognition strategy for steel surface faults based on upgraded artificial neural network algorithms, including 

feature visualizing, along with accuracy evaluation. The steel surface defect classification problem was pre-

trained using the visual geometry group 16 (VGG19), and the matching DVGG19 was developed to extract 

the feature pictures in various layers from the defect weight model. Then, a new virtualized services directory 

(VSD) network was developed and utilized to classify steel surface flaws. The experiment findings pointed 

out that the suggested approach may significantly increase average classification accuracy, and the model can 

converge fast, which was beneficial for steel surface defect identification utilizing a VSD network model of 

feature visualization and quality evaluation. For automatic fruit grades classification, Jing et al [5] 

investigated the influence of several complex CNN structures on the reliability of a strawberry grading 

system (quality inspection). Then, they examined several types of current deep CNN architectures, such as 

AlexNet, MobileNet, GoogLeNet, VGGNet, and Xception, compared to a two-layer CNN architecture. 

According to the results, VGGNet had the highest accuracy, whereas GoogLeNet had the most 

computationally efficient design. Both the two-class classification and the four-class classification showed 

the same findings. Guan et al. [6] developed an injection moulding quality inspection process system in edge 

intelligence. As a result, the mentioned model's accuracy was greater than 90%, demonstrating that the 

system may be used in the field. 

In recent years, computer performance has improved dramatically, leading to significant 

advancements in deep learning technology. Deep learning is capable of automatically learning complex 

features, giving it strong generalization abilities and making it highly effective in various object detection 

tasks [7], [8]. As a result, defect detection methods based on deep learning are gaining more attention. This 

field can be divided into object detection and object segmentation. Du et al. [9] enhanced the Faster R-CNN 

network by incorporating feature pyramid networks (FPN) and region of interest (RoI Align), enabling the 

detection of defects in X-ray images of automotive cast aluminum parts. Similarly, Xue et al. [10] used 

techniques like Overlap and Mosaic to expand the training dataset, achieving accurate detection of various 

casting defects with the you only look once, version 3 (YOLOv3) model. Duan et al. [11] added an spatial 

pyramid pooling (SPP) layer to YOLOv3 before the final convolutional layer. Experimental results 

demonstrated a significant improvement in the mean average precision (mAP) for recognizing casting digital 

radiography (DR) image defects, reaching 88.02% compared to the original network [12]. Cha et al. [13] and 

Cui et al. [14] introduced a CNN that combines faster R-CNN with a region proposal network (RPN), 

enabling the detection of multiple types of damage simultaneously at a remarkable speed of just 0.03 seconds 

per image. On the other hand, the SDDNet network incorporates a feature refinement module (FRB) and a 

skip-layer connection module to handle various texture defects [15], [16]. However, this model has 

limitations, such as missed detections when dealing with targets that have strong background noise or unclear 

texture details. It also suffers from low segmentation accuracy and limited generalization ability when 

identifying both workpieces and defective conditions. 

This study looked into the effects of CNN architecture on industrial product inspection and 

classification. While previous studies investigated the impact of deep learning techniques on these tasks, they 

did not explicitly address their influence on system deployment using single-board computers. Through these 

studies, CNN and deep learning techniques have proven effective for product inspection and classification. 

However, these approaches require systems with fast computational capabilities and high RAM, often 

leading to high investment costs and power consumption, which hinder their industrial applications. To 

address this limitation, this study focused on CNN architectures with appropriate sizes, enabling easy 

deployment on single-board computers such as BeagleBone, Raspberry Pi, or Orange Pi. These optimizations 

enhance the practicality of CNN and deep learning for industrial inspection. The proposed mechanism also 

ensures system sustainability, which is a critical factor in determining the adoption of the method. Since the 

proposed system operates independently of the main system and each module functions autonomously, the 

inspection system remains operational even if a module fails or needs testing before integration. Figure 1 

illustrates the system design applied in this study. 

We focused on automating inspections of submersible pump impellers, which are error-prone due to 

various casting defects. By implementing different CNN architectures such as VGG16 [7], ResNet50 [8], and 

one custom model, the study investigated the effectiveness of using a non-pretrained CNN under the 

circumstance of limited data, which is very common in industry. Moreover, during research, the transfer 

learning and ensemble methods were also considered. Under transfer learning, only the output layer is trained 

while other layers are frozen. This strategy reduces overfitting, the training time, and utilizes the former well 

pre-trained model. The returned results of all models were fused later in the ensemble stage to enhance the 

accuracy and efficiency of defect detection and classification. From the industrial view, each model played a 
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role as a module that contributed directly to the success of the classifier. During the operation, ineffective and 

inaccurate modules can be checked and replaced without creating any serious effect on the whole system. 

 

 

 
 

Figure 1. The system models 

 

 

Additionally, a graphical user interface (GUI) was developed to improve usability and real-time 

decision-making capabilities. This research addressed the limitations of manual inspection, offered a deep 

learning-based approach for quality inspection. The integration of CNN models and GUI technology 

contributed to more efficient and accurate defect identification, paving the way for smarter production and 

inspection systems in the era of Industry 4.0 and manufacturing digitization. In the rest of the paper, the 

second section mentioned proper literature reviews, while the next section described the used data set and 

proposed methodology. The conclusion was provided in the final section. 

 

 

2. RESEARCH METHOD 

2.1.  Dataset information 

The dataset used in this study comprises 7,348 images with dimensions of 300×300 and was 

obtained from the "Real-life industrial dataset of casting product" on Kaggle [17]. All of the 6,633 images 

were used for training and validation, with 3,758 representing defective and 2,875 representing non-defective 

pump impellers. An 80/20 split was used to divide the training and validation data. The test folder contained 

453 images of faulty pump impellers and 262 images of non-faulty pump impellers. Figure 2 provides a short 

dataset summary. 

This data set was already used in some works, such as Ekambaran and Ponnusamy [18],  

Alfarizi et al. [19], Wang and Jing [20], Sundaram and Zeid [21], or Hu et al. [22], to name a few. 

Ekambaran and Ponnusamy [18] used multipath DenseNet and ResNet34 for product classification.  

Alfarizi et al. [19] compared the accuracy of k-nearest neighbors (KNN) and naive Bayes algorithms in 

detecting defects in impeller products. Using t-distributed stochastic neighbor embedding (t-SNE) 

visualization, the study concluded that KNN was more reliable for defect detection in industrial applications. 

Wang and Jing [20] introduced the coordinate attention mechanism into the backbone network to allocate 

more attention to the defect target. The research also used the bidirectional weighted feature pyramid network 

in the feature fusion network to replace the original path aggregation network, improving the model’s ability 

to fuse features of different sizes. Sundaram and Zeid [21] introduced the quality control system using one 

custom CNN model for inspection and a computer application that can be deployed on the shop floor.  

Hu et al. [22] adopted the Xception model to create a robust classification system. The study also applied 

data augmentation techniques to enhance the dataset in Figure 3, allowing the model to generalize more 

effectively and improve its defect recognition capabilities. Augmentation techniques have been applied to all 

the images in the dataset to enhance the diversity and variability of the data. The images were labelled with 

tags indicating whether they are classified as "ok" (normal, as shown in Figure 3(a)) or "def" 

(defect/anomaly, as shown in Figure 3(b)). 

 

2.2.  Dataset training model 

In this study, VGG16, ResNet50, and a custom model based on a CNN structure were adopted for 

training. The returned outputs from each network were sent later to the ensemble stage for making final 

decisions or used separately. In the ensemble stage, the final label was decided by majority rule [23]. The 

main use of the ensemble technique was to improve the overall performance of the entire system if it were 

required. By combining several independent weak classifiers, the ensemble method can create a strong 

classifier with higher sensitivity. The proposed structure of the classifier is shown in Figure 4. 
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In addition, PyQt5 was employed to create a GUI. The GUI functioned as an interactive image 

classification tool, allowing users to input images of pump impellers and receive real-time outcomes for 

classification. In this research, the dataset was trained using various CNN architectures, including VGG16, 

ResNet50, and a custom model. The custom model consisted of many convolutional layers activated by 

ReLU, followed by max pooling for dimension reduction. The first layer employed 32 3×3 filters with 

ReLU activation. In 2×2 windows, outputs were routed through max pooling. This method was repeated 

two more times. The final maximum pooling outputs were flattened and sent to a dense layer with sigmoid 

activation to reduce dimensionality. For probability distribution over classes, the last dense layer 

employed SoftMax activation. 

 

 

 
 

Figure 2. Data dispersion 

 

 

  
(a) (b) 

 

Figure 3. Random images of pump impellers from the dataset of (a) defective and (b) normal 

 

 

 
 

Figure 4. The proposed structure of the classifier 
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In general, all three considered models contained several two-dimensional convolution layers. They 

are the key operations in CNN that are responsible for generating a feature map that captures important 

patterns or features in the input image. The operation can be represented mathematically as (1). 
 

(𝑓 ∗ 𝑔)[𝑥, 𝑦] = ∑ 𝑓[𝑖, 𝑗]. 𝑔[𝑥 − 𝑖, 𝑦 − 𝑖]∞
𝑖,𝑗=−∞  (1) 

 

Where f is the input image and g is the kernel, x and y are the indices or coordinates of the output function 

resulting from the convolution. They determine the specific location in the output where the convolution 

operation is applied. Activation functions for different networks in this study include rectified linear unit 

(ReLU) [24] and sigmoid [25] functions, which are shown in (2)-(3), respectively. Furthermore, at the output 

layer, the SoftMax [26] activation function was adopted as in (4). 
 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥) (2) 
 

𝜎(𝑥) =
1

1+𝑒−𝑥 =
𝑒𝑥

𝑒𝑥+1
 (3) 

 

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 (4) 

 

Where 𝜎(𝑧𝑖) represents the output probability of the 𝑖𝑡ℎ class, 𝑒𝑧𝑖 is the exponential function applied to the 

𝑖𝑡ℎ class output, and ∑ 𝑒𝑧𝑗𝐾
𝑗=1  represents the sum of exponential functions applied to all class outputs. Two 

distinct functions were used to compute the loss function. The first is sparse categorical cross-entropy, which 

is appropriate for multi-class classification jobs where the target variable is integer encoded. This was used in 

the custom model stated in (5). 
 

𝐿 = − ∑ 𝑡𝑖 ∗ log(𝑝𝑖)𝑁
𝑖=1  (5) 

 

Where L represents the loss value, N is the number of classes, 𝑡𝑖  is the true label and 𝑝𝑖 is the predicted 

probability distribution over 𝑖𝑡ℎ the classes. The second loss function is binary cross-entropy, which is often 

used for binary classification tasks and is employed in VGG16 and ResNet50. The binary cross-entropy loss 

function is mathematically represented by (6). 
 

𝐿 = −
1

𝑁
∑ 𝑦𝑖 ∗ 𝑙𝑜𝑔𝑁

𝑖=1 (𝑦𝑖̂) + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − 𝑦̂𝑖) (6) 

 

Where 𝑦𝑖  is the target label for the 𝑖𝑡ℎ sample and 𝑦̂𝑖  is the predicted probability by the model for the 𝑖𝑡ℎ 

sample belonging to the positive class. 

To utilize the power of these successful networks as well as to reduce the training time of these 

models, transfer learning and ensemble techniques were applied in later steps. For VGG16 and ResNet50, 

only the last output layer was retrained while their other layers were frozen. Stochastic gradient descent 

(SGD) and Adam optimization methods were used to update network parameters during training. SGD 

changes parameters based on gradients determined on a subset of training data, whereas Adam combines 

adaptive learning rates and momentum. Training used a batch size of 32 to maximize computational 

efficiency. Each architecture was trained for nine epochs, allowing the network to learn and modify weights 

and biases over time. An epoch was one trip through the complete training dataset. This method optimized 

the loss function, changed parameters, and increased convergence speed. 

Moreover, the GUI created with PyQt5 was also developed for constructing interactive and user-

friendly programs. The GUI allows the user to upload photos and select the desired architecture for 

inspection. When the application is launched, the user is presented with an intuitive interface in which they 

can browse and upload images from their local system. The selected photos were then inspected using the 
favored architecture of choice (e.g., VGG16, ResNet50, the custom model, or ensemble models). By 

utilizing the trained models within the GUI, users can easily evaluate the condition of pump impellers by 

simply uploading an image. The chosen model will process the image and provide the predicted 

classification, indicating whether the impeller is defective or non-defective. Figure 5 shows the developed 

GUI, and the classification log is shown in Table 1. After finishing the inspection, the GUI gives the user 

the option to export the results to an Excel file. The produced Excel file comprises the recognized 

conditions of the tested products, making it easy for further analysis and record-keeping. The PyQt5-based 

GUI provided a smooth and interactive experience, allowing users to quickly submit photos, choose the 

architecture, and export inspection results. It improved usability and allowed for more effective data 

handling and analysis for quality control. 
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Table 1. The classification log 
Prod. ID Time Date VGG ResNet Custom Ensemble 

Impeller 973 16:45 31-05-2023 Ok Ok Ok Ok 

Impeller 27 16:45 31-05-2023 Def Def Def Def 

Impeller 50 16:45 31-05-2023 Def Def Def Def 

Impeller 95 16:45 31-05-2023 Def Def Def Def 

Impeller 71 16:46 31-05-2023 Ok Ok Ok Ok 
Impeller 118 16:46 31-05-2023 Ok Ok Ok Ok 

Impeller 26 16:46 31-05-2023 Def Def Def Def 

... ... ... ... ... ... ... ... 

 

 

 
 

Figure 5. The developed GUI 

 

 

3. RESULTS 

3.1.  Model performances 

The evaluation of the proposed architectures was conducted using a confusion matrix, accuracy, 

precision, recall, and F1-score. These evaluation metrics provided a comprehensive performance of the 

models, valuable insights about their capabilities, as well as their strengths and weaknesses. The accuracy, 

precision, recall, and F1-score are computed by (7)-(10), respectively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (10) 

 

Figure 6 provided details about the training process of three models. Table 2 summarizes the 

performance of three models after 9 epochs. We found that training accuracy correlates with the use of pre-

trained models, as transfer learning enables faster convergence. The proposed method in this study tended to 

have an inordinately higher proportion of training efficiency, as VGG16 achieved 100% training accuracy 

and 99.24% validation accuracy at the 9th epoch, while ResNet50 reached 99.92% training accuracy and 

99.47% validation accuracy at the same epoch. At this point, the custom model obtained 98.79% training 

accuracy and 99.10% validation accuracy. VGG16 and ResNet50 converged more quickly due to transfer 

learning, whereas the custom model required a longer training period since all parameters had to be trained 

from scratch, and the dataset used was not as comprehensive as the one applied for VGG16 and ResNet50. 
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Table 2. Summarizes the performance of three models after 9 epochs 
Model Training loss Validation loss Training accuracy Validation accuracy 

VGG16 0.002 0.030 1.000 0.992 

ResNet50 0.003 0.008 0.999 0.995 

Custom model 0.007 0.010 0.987 0.971 

 

 

From the Figure 6, all VGG16 (Figure 6(a)), ResNet50 (Figure 6(b)), and the custom model  

(Figure 6(c)) all had high performance in picture classification. Consequently, all models can serve as a 

backbone which are responsible for feature extraction. Their output layer can be substituted with any proper 

classification method. In addition, the feature vectors from backbones can also be stacked to form a unique 

feature vector, which can be used as input for any classifier. Depending on the applied method of the 

classifier, independent models can interact with others in several ways and enhance the accuracy of the 

synthesis model. This study only examined the most common way to synthesize these results by using the 

bagging method, i.e., the majority voting rule. This has the advantage of ease when the modifications are 

required. The inclusion and exclusion of a network from the ensemble can be done very quickly and 

conveniently without any retrained activity. This cannot be achieved effectively if other methods are adopted. 

 

 

  
(a) 

 

(b) 

 

 
(c) 

 

Figure 6. Training loss and accuracy of three models of (a) training loss and accuracy of the ResNet 50 

model, (b) training loss and accuracy of the VGG16 model, and (c) training loss and accuracy of  

the custom model 

 

 

3.2.  Testing application 

In the testing phase, the performance of the trained models was evaluated on a separate dataset 

containing 453 images of faulty pump impellers and 262 images of non-faulty pump impellers. Our findings 

indicate that higher feature sensitivity is not associated with poor performance in classifying pump impellers 
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accurately. The proposed method may benefit from incorporating ensemble strategies without negatively 

affecting its generalization capability. These test images, representing real-life samples not used during 

training or validation, provided an unbiased benchmark for assessing the models' ability to accurately 

distinguish between faulty and non-faulty impellers based on the learned features and patterns. Figure 7 

shows the confusion matrix of all models. 

During the testing phase, the VGG16 model exhibited exceptional performance in analyzing the 

testing photos. It achieved impressive accuracy, correctly predicting 450 out of 453 faulty photos and 

accurately identifying all non-defective images (Figure 7(a)). This highlighted the model's effectiveness in 

distinguishing between the two classes. In Figure 7(b), the ResNet50 model demonstrated exceptional 

accuracy in predicting the test photos. It accurately identified 451 out of 453 faulty photos and correctly 

classified all non-defective images, showcasing its effectiveness in distinguishing between the two classes. 

These numbers for the custom model were 452 out of 453 in the defective class and 247 out of 263 in the 

non-defective class (Figure 7(c)), while the ensemble model had 451 out of 453 in the defective class and  

263 out of 263 in the non-defective class (Figure 7(d)). 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 7. Training loss and accuracy of all models of (a) confusion matrix of the VGG model, (b) confusion 

matrix of the ResNet50 model, (c) confusion matrix of the custom model, and (d) confusion matrix of the 

ensemble model 

 

 

This study investigated a comprehensive evaluation and analysis of the proposed system. However, 

additional and in-depth research may be required to confirm its long-term effectiveness, particularly 

regarding its scalability in diverse industrial environments. Although the custom models did not perform so 

well compared to VGG16 and ResNet50 due to the lack of pre-trained data, the proposed system has a very 

high sensitivity for the remaining cases. This can be attributed to the robust sensitivity of the two pre-trained 

networks. Given a data point belonging to class C, if all networks are independent of other networks and the 

sensitivity of network i regarding to class C is denoted as 𝑝𝑖
𝐶 , i.e., 𝑝𝑖

𝐶 = 𝑃(𝑋 𝑖𝑠 𝑐𝑙𝑎𝑠𝑠𝑓𝑖𝑒𝑑 𝑎𝑠 𝐶|𝑋 ∈ 𝐶), the 

sensitivity of the system when using the ensemble model regarding to class C is computed as in (11). 
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𝑃𝐶 =  𝑝1
𝐶 𝑝2

𝐶  𝑝3
𝐶 +  (1 − 𝑝1

𝐶)𝑝2
𝐶  𝑝3

𝐶 + 𝑝1
𝐶 (1 − 𝑝2

𝐶 ) 𝑝3+
𝐶   𝑝1

𝐶  𝑝2
𝐶 (1 − 𝑝3)

𝐶  (11) 

 

In discussion, Ekambaran and Ponnusamy [18] utilized VGG19 and ResNet34, achieving an  

F1-score of 99.54% with a classification time of 454 ms. Similarly, Alfarizi et al. [19] conducted a 

comparative analysis of KNN and naïve Bayesian, demonstrating that KNN achieved an accuracy of 98.11%, 

whereas naïve Bayesian only reached 85.38%. This finding suggests that KNN is significantly more effective 

for fault detection systems. Furthermore, Hu et al. [22] employed the Xception Aug model to enhance system 

stability. The study compared CNN, Inception V3, and Xception Aug, reporting accuracy rates of 98.02%, 

98.48%, and 99.16%, respectively. Based on these results, the author concluded that the Xception model is 

the most suitable for ensuring system stability. In our contribution, we compare VGG16, ResNet50, and a 

custom model. The findings indicate that both VGG16 and ResNet50 achieved a training accuracy of 99%. 

Additionally, we developed an application capable of running on embedded computing devices, providing a 

practical and cost-effective classification solution for industrial manufacturing environments. 

 

 

4. CONCLUSION 

The study used VGG16, ResNet50, and the custom model to accurately categorize photos of casting 

products, specifically pump impellers. Our findings offer definitive proof that this phenomenon is linked to 

subtle alterations in product quality, rather than being caused by increased quantities of image data. The 

study employed VGG16, ResNet50, and a custom model to accurately categorize photos of casting products-

specifically, pump impellers. Each model performed admirably, achieving high accuracies on both training 

and testing datasets. Additionally, a user-friendly graphical interface was developed using PyQt5, enabling 

users to input photos, select different architectures, and export the categorization results to an Excel file. The 

proposed design is well-suited for industrial inspection and ensures system sustainability, as it operates 

independently of the main system with each module functioning autonomously. Moreover, aside from the 

low investment cost, the system's overall accuracy in its initial stage-when data are limited-can be enhanced 

by leveraging well-known pre-trained models in parallel with custom models. The ensemble method also 

played an important role in increasing the accuracy of the model in the initial stage. So, future research may 

look into various datasets be used to train the models. This will aid in evaluating the models' performance on 

a variety of manufacturing products and determine their generalization capabilities. Furthermore, increasing 

the GUI functions, such as adding real-time image capturing and offering visualization tools for improved 

model interpretation, would improve the user experience even further. This study highlights the successful 

implementation of CNN architectures and ensemble methods in industrial quality control and exhibits the 

possibilities of using GUI technology for efficient and user-friendly picture categorization systems. 
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