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 In this paper, a numerical method is proposed for solving weakly singular 

Fredholm integral equations in Hilbert reproducing kernel space (RKHS). The 

Taylor series is used to remove singularity and reproducing kernel function are 
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1. INTRODUCTION  

Weakly singular Fredholm integral equations (WSFIEs) have many applications in problems of 

applied sciences, mathematical physics, astrophysics and solid mechanics. The numerical solvability of these 

equations and other related equations have been pursued by several authors and solved by many numerical 

methods such as generalization of the Euler-Maclaurin summation formula [1], application of homotopy 

perturbation method [2], differential transform method [3], discrete Galerkin method [4], modified HPM 

method [5], SCW method [6], spectral methods [7], fractional linear multi-step methods [8], Jacobi spectral 

method [9] and other methods occured in [10-14]. 

Recently, based on reproducing kernel theory, the reproducing kernel method (RKM) has been 

successfully applied to integral equations, Hilbert type singular integral equations of the second kind [15], 

Fredholm integral equation of the first kind [16], singular integral equation with cosecant kernel [17], the 

reproducing kernel method has been presented and developed in [18-25]. 

In this letter, a numerical scheme by using reproducing kernel space and Taylor series to solve the 

following weakly singular Fredholm integral equation is provided: 
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 with the assumption 1<<0  , is weakly singular and )(xu  is the unknown 

function to be determined. 
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This paper is organized as five sections including the introduction. In the next section, the reproducing 

kernel spaces are presented in order to construct reproducing kernel functions in the space [0,1]2

mW . Equation 

(1) is converted into an equivalent equation and the representation of approximate solution for Fredholm 

integral equations with a weakly singular kernel is obtained in Section 3. The numerical examples are presented 

to demonstrate the accuracy of the method in Section 4. The last section is a brief conclusion. 

 

 

2. A REPRODUCING KERNEL HILBERT SPACE [0,1]2

mW  

The function space [0,1]2

mW  is defined as follows: 

Definition 2.1. )(|)({=[0,1] 1)(

2 xuxuW mm 
 is an absolutely continuous real value function, 

[0,1]})( 2)( Lxu m  . The inner product and norm in [0,1]2

mW  are defined respectively by 
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And 
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In general, the function space [0,1]2

mW  is a reproducing kernel space and its reproducing kernel 

)(yRx  has the following reproducing property 
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The reproducing kernel )(yRx  can be denoted by 
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where coefficients },21,2,={),(),( miydyc ii  , could be obtained by solving the following 

equations  
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3. SOLVING EQUATION (1) IN THE REPRODUCING KERNEL SPACE  

3.1. An Equivalent Transformation of Equation (1) 

In this section, for solving Equation (1) an equivalent transformation of Equation (1) is proposed. 

Consider the integral equation with the given conditions in relation (1). With the Taylor series expansion of 

)(tu  based on expanding about the given point x  belonging to the interval 0,1, we have the Taylor series 

approximation of )(tu  in the following form  
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where tx,  is between x and t. By substituting relation (8) into Equation (1), we have  
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where )(=)((0) xuxu  and tuxtt
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  . Alternatively, we use the truncated 

Taylor series of )(tu  and solve the following equation 
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when 1<<0  , txtt k d)()(1
1

0
 


  is computable for .,0,1,= nk   Hence, Equation (10) can be written 

as following  
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3.2. The Exact and Approximate Solution 

The solution of Equation (11) is given in the reproducing kernel Hilbert space ),>[0,1](2 nmW m
 

parameter n  is related to the number of terms Taylor series that are chosen. We define the operator 

[0,1][0,1]: 22

nmm WW L  as  
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then Equation (11) can be written as  
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).(=)( xfuL  (13) 

 

It is clear that L  is a bounded linear operator and 
L  is the adjoint operator of L . In order to obtain 

the representation of the solution of Equation (11), let  
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(𝑥),  𝜓𝑖(𝑥) = 𝐿∗𝜙𝑖(𝑥) = [𝐿𝑦𝑅𝑥(𝑦)](𝑥𝑖),  (𝑖 = 1,2, … ), (14) 

 

where 
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Theorem 3.2.1. If 


1=}{ iix  is dense in [0,1],  then 


1=)}({ ii x  is complete system in [0,1].2

mW  Proof. If for 

any [0,1],)( 2

mWxu   it has ,1,2,=0=)(),( ixxu i   namely  
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Note that 


1=}{ iix  is a dense set, hence 0.)( xuyL  It follows that 0)( xu . So the proof of 

theorem is complete. By Gram-Schmidt process, we obtain an orthogonal basis 


1=)}({ ii x  of [0,1],2

mW  

such that 
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where ik  are orthogonal coefficients. In order to obtain ij , let  
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Theorem 3.2.2 If )(xu  is the solution of Equation (1), then  
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Proof. )(xu  can be expanded to Fourier series in term of normal orthogonal basis )(xi  in [0,1],2

mW  
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The proof is complete. 

By truncating the series of the left-hand side of (19), we obtain the approximate solution of (1)  
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)(xuN  in (21) is the N -term intercept of )(xu  in (19), so )()( xuxuN   in [0,1]2

mW  as .N  

Lemma 3.2.1. If [0,1])( 2
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there exists a constant c  such that  
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The proof of the lemma is complete. W  

Theorem 3.2.3. Suppose the following conditions are satisfied 

(i) mWN xu
2

)(  is bounded; 

(ii) 


1=}{ iix  is dense in [0,1].   

Then N -term approximate solution )(xuN  converges to the exact solution )(xu  of Equation (1) and the 

exact solution is expressed as  
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Proof. (i) The convergence of )(xuN  will be proved. From (21), one gets  
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Considering the completeness of [0,1]2

mW , it has  
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(ii) It is proved that )(xu  is the solution of Equation (11). 

From (22), it follows  
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That is, )(xu  is the solution of Equation (11) and  
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The proof is complete.  
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4. NUMERICAL EXAMPLES 

In this section, two examples with exact solutions are given. We take 10=N , that N  is the number 

of terms of the Fourier series of the unknown function )(xu . Parameter n  is the number of terms of the Taylor 

series and we choose nm >  for solving these examples.  

Example 4.1. We consider the following weakly singular Fredholm integral Equation [1]: 
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with the exact solution 
2=)( xxu .  

Let 3=n  and applying the reproducing kernel method. The comparison between the exact solution 

and the approximate solution and the absolute errors in spaces [0,1][0,1], 8

2

7

2 WW  are graphically shown in 

Figure 1, respectively. The absolute errors between )(xu  and )(10 xu  in spaces [0,1][0,1], 8

2

7

2 WW  are shown 

in Table 1. By increasing m , the behavior improves. This is an indication of stability on the reproducing 

Kernel. It is obviously our presented method is more accurate than the Euler-Maclaurin summation  

formula method [1]. 

 

 

 
 

Figure 1. The Figures of the Approximate Solution, the Absolute Errors in 
7

2W  and 
8

2W ,  

Respectively Left to Right 
 

 

Table 1. Numerical Results of Example 4.1. 

Node 
7
2

10 |)()(|
W

xuxu 

 

8
2

10 |)()(|
W

xuxu 

 

0.0 7.67855E-6 2.19411E-7 

0.1 4.66849E-6 1.14427E-7 
0.2 2.65571E-6 3.12565E-8 

0.3 1.46256E-6 3.01542E-8 

0.4 8.89451E-7 7.06685E-8 
0.5 7.17540E-7 9.23934E-8 

0.6 7.14806E-7 9.88244E-8 

0.7 6.45315E-7 9.43676E-8 
0.8 2.81128E-7 8.48212E-8 

0.9 5.85169E-7 7.66356E-8 

1.0 2.12987E-7 7.69541E-8 

 

 

Example 4.2. We consider the following weakly singular Fredholm integral Equation [1]: 
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the corresponding exact solution is given by 
xexu =)( . 

Let 7=n  and applying the reproducing kernel method. The comparison between the exact solution 

and the approximate solution and the absolute errors in spaces [0,1][0,1], 9

2

8

2 WW  are graphically shown in 
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Figure 2, respectively. The absolute errors between )(xu  and )(10 xu  in spaces [0,1][0,1], 9

2

8

2 WW  are 

shown in Table 2. By increasing m , the behavior improves. This is an indication of stability on the reproducing 

Kernel. It is obviously our presented method is more accurate than the Euler-Maclaurin summation  

formula method [1]. 

 

 

 
 

Figure 2. The Figures of the Approximate Solution, the Absolute Errors in 
8

2W  and 
9

2W ,  

Respectively Left to Right 

 

 

Table 2. Numerical Results of Example 4.2. 

Node 8
2

10 |)()(|
W

xuxu   
9
2

|)()(|
WN xuxu   

0.0 2.29568E-6 1.66515E-7 
0.1 9.78099E-7 1.30769E-7 

0.2 3.95911E-7 1.49509E-8 

0.3 2.23955E-7 5.36106E-8 
0.4 2.01035E-7 2.94664E-8 

0.5 2.27987E-7 2.15008E-8 

0.6 2.71515E-7 4.34800E-8 

0.7 3.03137E-7 4.84487E-8 

0.8 2.97588E-7 3.17069E-8 

0.9 2.76424E-7 7.47239E-8 
1.0 9.86883E-7 2.21194E-8 

 

 

5. CONCLUSION 

In this paper, we established a method to find numerical solutions of the Fredholm integral equations 

with a weakly singular kernel. We used the Taylor series to remove singularity and solved some examples with 

our proposed method. According to the examples solved in two different spaces, by increasing m , the behavior 

improves. This is an indication of stability on the reproducing Kernel. The results from the numerical examples 

show that the present method is accurate and reliable for solving these equations. 
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