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 Different types of Quorum Sensing in Bacteria, both intra-species and inter-
species, have been analyzed over the last decade. A number of Mathematical 
Models has been proposed to explain the process of Quorum Sensing which 
depends on a threshold concentration of autoinducers (or QSM) reflecting 
high bacterial density. Stability of the solution of the differential equations of 
such an intra-species model for Vibrio fischeri is discussed in this paper. 
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1. INTRODUCTION 

Nature is full of amazing facts and one such fact is the existence of bacterial cells in human body.  
There are trillions of human cells that make each of us but surprising reality is that there are ten trillions 
bacterial cells residing in and on a human body! So not more than 10% human cells are present compared to 
the huge bacterial cells.  It would not be foolish if we introduce ourselves as only 10% human but 90% 
bacteria! (Bassler et. al.  2001). Though studies of cell-to-cell bacterial communication were initiated almost 
half a century ago, it was not earlier than by a decade, we have been introduced with the phrase Quorum 
Sensing, which has potential strength to answer such questions (Dunn et. al. 2007). Bacteria can 
communicate to one another, using a chemical language. Since a single bacterium can do nothing against the 
host body, they wait and keep sending and receiving such chemical signals until  they become numerous 
enough to crush the host's immune system. Individual bacterium secretes signaling molecules called auto-
inducers into their surroundings, and as the density of bacteria increases, so does the concentration of the 
signaling molecule. Each bacterium also has a receptor for the auto-inducer. When the auto-inducer binds to 
the receptor, it activates the transcription of certain genes, including those responsible for the synthesis of the 
inducer itself. As the bacterial population grows, more inducer molecules are synthesized. This forms a 
positive feedback system and the concentration of the molecule keeps rising. This process continues till a 
critical mass, or quorum, of bacteria and auto inducers are achieved. Then specific behaviors initiate on a 
global scale and the bacteria act like enormous multi-cellular organism. Quorum sensing thus enables 
bacteria to organize and respond quickly to environmental changes, such as the availability of nutrients, other 
microbes or toxins in their environment. While some auto-inducers are species-specific, many bacteria also 
produce a universal auto-inducer, known as AI-2, used across different bacterial species. AI-2 was first 
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discovered in a bioluminescent species of marine bacteria capable of giving off visible light, but it has since 
been identified in hundreds of other species.  

The types of behaviors initiated by quorum sensing are typically those that are beneficial only when 
performed as a group, such as the release of toxins or the formation of aggregates called biofilms. 
Theoretically, blocking quorum sensing would prevent the bacteria from turning pathogenic and producing 
the toxins that are an immediate cause of disease in bacterial infections. Here are some examples of Quorum 
Sensing that take place in diverse species of bacteria.  

Quorum sensing was originally discovered in the luminescent bacterium Vibrio fischeri. Vibrio 
fischeri is a marine bacterium which can be found both as free-living organism and as a symbiont in the light-
producing organ of an animal host, such as the Hawaiian bobtail squid. The host provides a nutrient-rich 
environment for the bacterium and the bacterium provides light for the host. It was observed that liquid 
cultures of Vibrio fischeri produced light only when large numbers of bacteria were present.  As a free-living 
organism, Vibrio fisheri exists at low densities and appears to be non-luminescent. At high cell 
concentrations, the level of the auto-inducer becomes sufficient to induce transcription of the genes that 
produce the enzyme luciferase, leading to bioluminescence. A single cell is not capable of producing enough 
luciferase to cause visible luminescence. Using quorum sensing, the cell can save its effort for the time when 
sufficient similar cells are around, so that their combined action produces a visible glow. The bacteria thus 
behave differently in the free-living and symbiotic states. It is important for pathogens to co-ordinate their 
virulence to escape the immune response of the host and establish a successful infection. The luminescence 
in Vibrio fischeri is controlled by the transcriptional activation of the lux genes. Most quorum sensing signals 
are small organic molecules or peptides. For example, gram-negative bacteria employ N-acyl homoserine 
lactones (AHLs), alkyl quinolones (AQs) and fatty acid methyl esters. Gram-positive bacteria use peptides 
like the autoinducing peptides (AIPs). The streptomycetes synthesize butyrolactones such asA-factor. AHL-
mediated quorum sensing is one of the best characterized cell-to-cell communication mechanisms. More than 
70 bacterial species are known to produce AHL-type quorum-sensing signals, with many producing multiple 
AHLs. Another example of quorum sensing is the creation of bio-films. Quorum sensing is required for full 
virulence of pathogens like S. aureus and Vibrio cholerae. Also, bacteria sometimes group together to form 
an organized ‘bio film’ covered by a polymer. Bio films are resistant to UV-radiation, desiccation and 
antibiotics. In several bacteria, disrupting quorum sensing adversely affects bio film formation. The pathogen 
Pseudomonas aeruginosa uses quorum sensing to coordinate behaviours such as bio film formation, 
swarming motility, and aggregation. These bacteria grow inside a host organism without harming it, until 
they reach a threshold concentration. Then, having detected that their number is sufficient to overcome the 
host’s immune system, they become aggressive and form a bio film, causing disease. This pathogen uses 
AHL-mediated quorum sensing to regulate the production of many factors needed for virulence. The last 
example that we state is the Quorum Sensing in Prokaryote–Eukaryote Interactions. Although quorum 
sensing signal molecules have largely been considered effectors of prokaryotic gene expression, they can also 
affect the behaviour of eukaryotic cells. AHLs are known to have immuno modulatory effects. They also 
induce relaxation of blood vessels. Apparently some bacteria have the power to influence the host’s immune 
responses to their benefit, and stimulate the delivery of nutrients for their survival by increasing the blood 
supply. But signal molecules may also benefit the host. 'Probiotic' bacteria are thought to be beneficial to the 
host organism and are added as dietary supplements in health-promoting food. Cultures of Bacillus subtilis, 
for example, have been used to treat dysentery and other intestinal problems. Recently, itwas revealed that B. 
subtilis produces a quorum sensing signal molecule, the competence-and-sporulation-stimulating factor, 
which induces the synthesis of the heat shock protein Hsp27 in the intestine. This protects intestinal cells 
against oxidative damage and loss of barrier function. The marine alga Ulva releases zoospores into the 
water. These attach to a suitable surface and differentiate into new algae. The zoospores are known to settle 
preferentially on to sites of concentrated AHL biosynthesis. The discovery that several bacteria make 
identical signal molecules prompted the idea that these signals may be exploited as a cross-talk mechanism 
between distinct species. Another luminescent bacterium, Vibrio harveyi, produces two auto-inducers. The 
first (AI-1) is an AHL used for communication only among V. harveyi bacteria. The other, AI-2   is 
synthesized from S-adenosyl methionine. The enzyme which catalyzes the final step in this synthesis is called 
LuxS. The gene for LuxS is found in many different bacteria, all of which make and respond to AI-2. This 
suggests that perhaps AI-2 allows bacteria to sense and react to not only members of their own species, but 
also to all other species that produce AI-2.  

In this paper we study the mathematical model of quorum sensing in Vibrio fischeri. The model was 
originally proposed by J. P. Ward (Ward et al, 2001). We have tried to modify it and instead of solving it for 
different particular cases, we have solved it more generally with much flexibility to explain those special 
cases. Finally, we analyzed the stability of the above general solution. 
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2. MATHEMATICAL MODELING 
In our model we assume a well mixed population of up-regulated and down-regulated cells. The 

complete process of up-regulation and down-regulation and QSM production rate are described as a system 
of ordinary differential equations. Bacterial population growth, which was studied in batch culture, is 
modeled  in such a way that  the time scale of QSM concentration to achieve a local maximum, 
corresponding to maximal cell densities, lies between 8-14 hours (Ward et al 2001). This model is based on a 
set of preliminary assumptions, compatible to the biological conditions, as follows:  

Assumption-1.  The population consists of up-regulated (density Nu , viewed as  the number of 
cells per unit volume) and down-regulated (with density Nd) sub-populations of 
cells, corresponding to bacteria with a complex-bound or empty lux-box, 
respectively. 

Assumption-2. Down-regulated cells are up-regulated by QSMs (concentration A) with rate 
constant α . 

Assumption-3. The QSM is produced by both up-regulated and down-regulated cells , at rates  ku  
and kd   respectively with  kd << ku . 

Assumption-4. Down-regulated occurs spontaneously, due to breakdown of lux-box bound QSM-
QSP complex at a rate β.  

Assumption-5. QSMs can be broken down by the medium, and hence lost to the system, at a rate 
λ. 

Assumption-6. Cell division of one down-regulated cell produces two down -regulated cells. 
Assumption-7. Cell division of up-regulated cells produces on average γ up- regulated and (2 – γ) 

down-regulated cells (where 0 ≤ γ ≤ 2) assuming that only a population of 
replicated chromosomes contain occupied lux-boxes. We anticipate that γ ≈ 1, 
which indicates that division of one up-regulated cell produces one up-regulated 
and one down-regulated cell. 

Assumption-8. Cell-division rate of up-regulated and down-regulated cells are equal, being 
determined by the parameter r, where the doubling rate is at low densities. 

 
 

 

Fig 1. Diagram showing the process of up-regulation and down-regulation of cells. 
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Fig 2. Diagram showing the quorum at attaining a threshold concentration (Q). 
 

 

 

3. SOLUTION AND STABILITY ANALYSIS 
In biological systems, it is extremely difficult to find analytically the exact solution of such system 

of differential equations. However numerical solutions are quite easy to find on obtaining estimated values of 
the parameters involved. We have tried to solve the system analytically. 

Stability of the Linear System: Points of equilibrium (Nd
*, Nu

*, A*) i.e., where  fi (Nd
*, Nu

*, A*)  = 0 for all 
i = 1, 2, 3, are not always stable. Since stable and unstable equilibria bear different characteristics in the 
dynamics of a system, it will be wise to classify equilibrium points based on their stability (Wang et. al. 
2005). 
Equilibria are found by determining the values of the variables that cause all of the variables to remain 
constant, i.e. 
 

fi (Nd
*, Nu

*, A*)  = 0 for all i = 1, 2, 3 (1) 
 
Again, there may be multiple equilibria, and finding them may be difficult.  
Suppose that x* is an equilibrium point. By definition, f(x*) = 0.  
The partial derivative in the above equation is to be interpreted as the Jacobian matrix. If the components of 
the state vector x are x1 , x2 , …. , xn and the components of the  rate vector f are  f1 , f2 , …. , fn , then the 

Jacobian is 
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If  δx is small, then only the first term in equation (6) is significant since the higher terms involve powers of 
our small displacement from equilibrium. If we want to know how trajectories behave near the equilibrium 
point, e.g. whether they move toward or away from the equilibrium point, it should therefore be good enough 

to keep just this term. The eigen values of the Jacobian are, in general, complex numbers. Let λj = µj 

+iνj, where   µj  and νj  are, respectively, the real and imaginary parts of the eigen value. Each of the 
exponential terms in the expansion can therefore be written as 

 
The complex exponential in turn can be written as  

 
The complex part of the eigen value therefore only contributes an oscillatory component to the solution. It’s 

the real part that matters: If µ j > 0 for any j, e
µj t  grows with time, which means that trajectories will 

tend to move away from the equilibrium point.  
 
However this theorem cannot enlighten what happens if some of the eigen values have zero real parts while 
the others are all negative. This case can’t be decided based on linear stability analysis. The nonlinear terms 
in fact determine the stability in this case, which requires a detailed nonlinear theory.   On the other hand 
linear stability analysis tells us how a system behaves near an equilibrium point. It cannot however tell us 
anything about what happens farther away from equilibrium. Phase-plane analysis combined with linear 
stability analysis can generally give us a full picture of the dynamics, but things become much more difficult 
in higher-dimensional spaces. Now we consider a technique due to Liapunov, which can be used to determine 
the stability of an equilibrium point  both near and far from the equilibrium point.  
Liapunov’s method is based on a simple idea. Suppose that V(x) is a function of our state variables which has 
a minimum at an equilibrium point and which has no local minima.   Now suppose that we can show that the 
dynamics of our system results in a steady decrease in V in some neighborhood of the equilibrium point. This 
necessarily means that we are tending toward the minimum of V, which is just the equilibrium point. Having 

shown this, we can conclude that the equilibrium point is stable over the entire neighborhood of x*
 over 

which V decreases. A function V with these properties is called a Liapunov function. 

Definition   Let U be a region of phase space containing the equilibrium point x*
. Let    V : U → R be a 

continuous and differentiable function. V is a positive definite function for the point  x*
if it satisfies the 

following two conditions: 
 

1. V( x* ) = 0, and 
2. V(x) > 0 for x ∈U – { x* } 

 
In order to use this theorem, we have to obtain a Liapunov function. Unfortunately, it’s often really difficult 
to come up with a Liapunov function for a given system, except in some special cases where the physics of 
the problem suggests a particular choice. 
So we use the following algorithm to analyze the stability of any system, linear or non-linear: First of all, we 
find all equilibria. Then we determine whether and when they are biologically meaningful. If we get so, we 
calculate the Jacobian J and its value J* at an equilibrium of interest. To find out numerically, the eigen 
values of the matrix J*, we solve the characteristic equation det (J* – λI) = 0. The equilibrium is locally stable 
is the real parts of all eigen values are negative. Equivalently, the real part of the leading eigen value (i.e. the 
eigen value with the largest real part) must be negative. If the real part of the leading eigen value is exactly 
zero, the analysis is inconclusive. If the eigenvalues are purely imaginary, the system will spiral around the 
equilibrium along some axes. Instead of actually calculating the eigen values, one can use the Routh- Hurwitz 
criteria. For a model with two variables and a Jacobian J* = ( )a,b,c,d  , the equilibrium is stable if  det(J*) 



      �          ISSN: 2252-8814 

IJAAS Vol. 1, No. 3, September 2012 :  139 – 146 

144

YES 

The analysis is 
 Inconclusive. STOP 

The system will spiral 
around the equilibrium 

along some axes. 
 

Determine 
whether and when they are 

biologically 
meaningful. 

Calculate the Jacobian J* at an equilibrium. 
 

To find out numerically, the eigen values of the matrix J*, solve  the 
characteristic equation det(J* – λI) = 0. 
 

Determine 
whether the real parts of  

all eigen values are 
negative. 

 

The equilibrium  
is locally stable 

whether  
all the eigen values 

 are purely 
 imaginary. 

 

YES 

START Find all equilibria. 

Try another equilibrium  

YES 

NO 

YES 

NO 
 whether  

all the eigen values are 
zeros 

 

NO 

The system 
is 

 Unstable 

= ad – bc > 0 and tr(J*) = a + d < 0. Furthermore, the eigen values are imaginary if  [ ]tr(J*)
2
 < 4 det (J*) . We 

repeat previous five steps for all equilibria of interest. It will be better to present the whole procedure as a 
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Fig 3. Flow-chart of Stability Analysis 
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If we make a small perturbation to the point of equilibrium of the above system, the disturbance 
decays or increases or oscillates according to the nature of its stability. Here are the different possibilities or 
patterns how the disturbance changes with time:  

 
 

 
 

 

 

All the eigen values are real and negative causing 
exponential decay of the disturbance. The 
equilibrium is stable. 

Some eigen values are imaginary and the real 
part of all such eigen-values ard the real eigen 
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and decays rapidly with time. The equilibrium is 
stable. 
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positive real part. The disturbance increases with 
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All eigen values have zero real parts and nonzero imaginary parts, causing stable oscillation. 
 

Fig 4. Different states of stability 
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From the experimental data, an equilibrium point is found to be of the form (ε, ε, M), where M >> ε > 0, 
resulting one of the eigen values of the Quorum Sensing Matrix to be –M. Though other two eigen values are 
zeros, which are inconclusive about the stability of the system, but the presence of the dominating – M 
clearly shows that the system is locally stable. 
 
 
4. CONCLUSION  

The proposed mathematical model for quorum sensing in Vibrio fischeri is shown to give rise a 
stable solution and the general solution is compatible with the real situation. However it is not clear, at least 
at the present state of analysis, what happens after the quorum is achieved. Time evolution of the up-
regulated and down-regulated cells as well as that of the QSM-concentration cannot enlighten the exact 
duration or fate of the bioluminescence occurred during a local maximum is attained by the QSM-
concentration. Not only that, the bacterial communication through diffusion of the QSMs deserves the 
inevitable analysis about the noise acquired and its consequences. This will be done in subsequent papers. 
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