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1. INTRODUCTION

Nature is full of amazing facts and one such fadhe existence of bacterial cells in human body.
There are trillions of human cells that make eatlisobut surprising reality is that there are tellidns
bacterial cells residing in and on a human bodyh8bmore than 10% human cells are present comgared
the huge bacterial cells. It would not be foolihwve introduce ourselves amly 10% human but 90%
bacterid (Bassler et. al. 2001). Though studies of aeleell bacterial communication were initiated altnos
half a century ago, it was not earlier than by eade, we have been introduced with the phserum
Sensing, which has potential strength to answer such @rest(Dunn et. al. 2007). Bacteria can
communicate to one another, usingh@mical languageSince a single bacterium can do nothing agairst th
host body, they wait and keep sending and receisimch chemical signals until they become numerous
enough to crush the host's immune system. IndiVidaaterium secretes signaling molecules called-aut
inducers into their surroundings, and as the denditbacteria increases, so does the concentrafidhe
signaling molecule. Each bacterium also has a tecégr the auto-inducer. When the auto-inducedbito
the receptor, it activates the transcription otaiargenes, including those responsible for thersais of the
inducer itself. As the bacterial population growsore inducer molecules are synthesized. This foams
positive feedback system and the concentratiorhefrbolecule keeps rising. This process continukas ti
critical mass, or quorum, of bacteria and auto dedsl are achieved. Then specific behaviors initatea
global scale and the bacteria act like enormoustitoellular organism. Quorum sensing thus enables
bacteria to organize and respond quickly to envirental changes, such as the availability of nutsiesther
microbes or toxins in their environment. While soméo-inducers are species-specific, many bactdsia
produce a universal auto-inducer, known as Al-Zduacross different bacterial species. Al-2 wast fir
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discovered in a bioluminescent species of marireebia capable of giving off visible light, buths since
been identified in hundreds of other species.

The types of behaviors initiated by quorum sensirggtypically those that are beneficial only when
performed as a group, such as the release of toxinthe formation of aggregates called biofilms.
Theoretically, blocking quorum sensing would previéme bacteria from turning pathogenic and producin
the toxins that are an immediate cause of diseabadterial infections. Here are some examplesumir@m
Sensing that take place in diverse species of bacte

Quorum sensing was originally discovered in the iheacent bacterium Vibrio fischeri. Vibrio
fischeri is a marine bacterium which can be fouathlas free-living organism and as a symbiont @ligjht-
producing organ of an animal host, such as the Hamdobtail squid. The host provides a nutrientri
environment for the bacterium and the bacteriunvigess light for the host. It was observed that iiqu
cultures of Vibrio fischeri produced light only wihéarge numbers of bacteria were present. Aseliving
organism, Vibrio fisheri exists at low densitiesdamppears to be non-luminescent. At high cell
concentrations, the level of the auto-inducer bexorsufficient to induce transcription of the genlest
produce the enzyme luciferase, leading to biolusteace. A single cell is not capable of producingugh
luciferase to cause visible luminescence. Usingumcsensing, the cell can save its effort for thetwhen
sufficient similar cells are around, so that tr@mbined action produces a visible glow. The b#ctidus
behave differently in the free-living and symbiostates. It is important for pathogens to co-oridirtheir
virulence to escape the immune response of theamsestablish a successful infection. The lumieese
in Vibrio fischeri is controlled by the transcriptial activation of the lux genes. Most quorum ssgsignals
are small organic molecules or peptides. For examplam-negative bacteria employ N-acyl homoserine
lactones (AHLs), alkyl quinolones (AQs) and faticamethyl esters. Gram-positive bacteria use gdepti
like the autoinducing peptides (AIPs). The streptoates synthesize butyrolactones such asA-factdi.-A
mediated quorum sensing is one of the best chaizadecell-to-cell communication mechanisms. Mdrart
70 bacterial species are known to produce AHL-fgperum-sensing signals, with many producing mutipl
AHLs. Another example of quorum sensing is the timeaof bio-films. Quorum sensing is required fotl f
virulence of pathogens like S. aureus and Vibrioletae. Also, bacteria sometimes group togethdonm
an organized ‘bio film' covered by a polymer. Biinfs are resistant to UV-radiation, desiccation and
antibiotics. In several bacteria, disrupting quorsensing adversely affects bio film formation. a¢hogen
Pseudomonas aeruginosa uses quorum sensing toiraierdehaviours such as bio film formation,
swarming motility, and aggregation. These bactgriaw inside a host organism without harming it,ilunt
they reach a threshold concentration. Then, haglgtgcted that their number is sufficient to overeaime
host’'s immune system, they become aggressive ama &bio film, causing disease. This pathogen uses
AHL-mediated quorum sensing to regulate the prdadocbf many factors needed for virulence. The last
example that we state is the Quorum Sensing in @yoke—Eukaryote Interactions. Although quorum
sensing signal molecules have largely been coresideffectors of prokaryotic gene expression, tteyalso
affect the behaviour of eukaryotic cells. AHLs &®wn to have immuno modulatory effects. They also
induce relaxation of blood vessels. Apparently sdraeteria have the power to influence the hostimime
responses to their benefit, and stimulate the dgliwf nutrients for their survival by increasirtgetblood
supply. But signal molecules may also benefit theth'Probiotic' bacteria are thought to be berafto the
host organism and are added as dietary supplermehealth-promoting food. Cultures of Bacillus dlibt
for example, have been used to treat dysenterytrat intestinal problems. Recently, itwas revedied B.
subtilis produces a quorum sensing signal molectlle, competence-and-sporulation-stimulating factor,
which induces the synthesis of the heat shock pratsp27 in the intestine. This protects intesticells
against oxidative damage and loss of barrier fonctirhe marine alga Ulva releases zoospores imdo th
water. These attach to a suitable surface andreliffate into new algae. The zoospores are knovaettite
preferentially on to sites of concentrated AHL lyiathesis. The discovery that several bacteria make
identical signal molecules prompted the idea that¢ signals may be exploited as a cross-talk mesrha
between distinct species. Another luminescent bacte Vibrio harveyi, produces two auto-inducersieT
first (Al-1) is an AHL used for communication ongmong V. harveyi bacteria. The other, Al-2 is
synthesized from S-adenosyl methionine. The enayhieh catalyzes the final step in this synthesisaided
LuxS. The gene for LuxS is found in many differbatteria, all of which make and respond to Al-2isTh
suggests that perhaps Al-2 allows bacteria to sendereact to not only members of their own spedias
also to all other species that produce Al-2.

In this paper we study the mathematical model @irgon sensing in Vibrio fischeri. The model was
originally proposed by J. P. Ward (Ward et al, 200%e have tried to modify it and instead of sotyihfor
different particular cases, we have solved it mgeaerally with much flexibility to explain those expal
cases. Finally, we analyzed the stability of thewvabgeneral solution.
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2. MATHEMATICAL MODELING

In our model we assume a well mixed population pfregulated and down-regulated cells. The
complete process of up-regulation and down-requiadind QSM production rate are described as arsyste
of ordinary differential equations. Bacterial pogtidn growth, which was studied in batch culture, i
modeled in such a way that the time scale of Q&Mcentration to achieve a local maximum,
corresponding to maximal cell densities, lies betw8-14 hours (Ward et al 2001). This model is hasea
set of preliminary assumptions, compatible to tindolgical conditions, as follows:

Assumption-1. The population consists of up-regulated (density, Miewed as the number of
cells per unit volume) and down-regulated (with gignNy) sub-populations of
cells, corresponding to bacteria with a complexrzbuor empty lux-box,
respectively.

Assumption-2. Down-regulated cells are up-regulated by QSMs (entration A) with rate
constant .

Assumption-3. The QSM is produced by both up-regulated and doxguated cells , at rates, k
and lg respectively with <<k, .

Assumption-4. Down-regulated occurs spontaneously, due to breshdd lux-box bound QSM-
QSP complex at a rafe

Assumption-5. QSMs can be broken down by the medium, and herstéddhe system, at a rate
A.

Assumption-6. Cell division of one down-regulated cell produces down -regulated cells.

Assumption-7. Cell division of up-regulated cells produces onragey up- regulated and (2}

down-regulated cells (where € y < 2) assuming that only a population of
replicated chromosomes contain occupied lux-bo¥és. anticipate thay = 1,
which indicates that division of one up-regulatedl produces one up-regulated
and one down-regulated cell.

Assumption-8. Cell-division rate of up-regulated and down-regethtcells are equal, being
determined by the parameter r, where the doubbtgyis at low densities.

Cell Division

Up-regulated Cells

Ny
Ky
a Quorum Sensing Molecules (QSM) B

iCs

Down-regulated Cells
Ng

A L 2

Cell Division

Fig 1. Diagram showing the process of up-regulasiod down-regulation of cells.
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Fig 2. Diagram showing the quorum at attainingraghold concentration (Q).

3. SOLUTION AND STABILITY ANALYSIS

In biological systems, it is extremely difficult fmmd analytically the exact solution of such syste
of differential equations. However numerical salas are quite easy to find on obtaining estimatddes of
the parameters involved. We have tried to solvesiistem analytically.

Stability of the Linear System: Points ofequilibrium(Ng, N,, A") i.e., wherefi (Ng, N, A") = Ofor all

i =1, 2, 3 are not always stable. Since stable and unstdpédibria bear different characteristics in the
dynamics of a system, it will be wise to classifyuéibrium points based on their stability (Wang at
2005).

Equilibria are found by determining the values lo¢ tvariables that cause all of the variables toaiem
constant, i.e.

fi (NG NG, A =0foralli=1, 2, 3 1)

Again, there may be multiple equilibria, and finglithem may be difficult.
Suppose that" is an equilibrium point. By definitiorf(x’) = 0.
The patrtial derivative in the above equation ibéanterpreted as thkcobian matrix. If the components of

the state vectax are X o X s Xy and the components of the rate vedtare f1 , f2 Y e fn , then the
Jacobian is
dxq dxz 777 dxp
of 2f 91y
J = dx; dxp T dxy
9 Ay 21,
| dx dxy 77 dxp |
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If & is small, then only the first term in equation {®}significant since the higher terms involve posvef
our small displacement from equilibrium. If we waatknow how trajectories behawearthe equilibrium
point, e.g. whether they move toward or away fromequilibrium point, it should therefore be goodegh

to keep just this term. The eigen values of thebli@an are, in general, complex numbers. l\qt: ,Uj

+|Vj, where ,Uj ande are, respectively, the real and imaginary parthefeigen value. Each of the
exponential terms in the expansion can therefongriiten as

e}“ff _ Ut Vit

The complex exponential in turn can be written as

‘ J"f e (vr ) L 7ei :
e" /' = cos(v t) + isin(v jt).
The complex part of the eigen value therefore @olytributes an oscillatory component to the sofutitis

.
the real part that matters: M > O for anyj, éuj grows with time, which means that trajectories will
tend to move away from the equilibrium point.

However this theorem cannot enlighten what hapjfes@me of the eigen values have zero real paritewh
the others are all negative. This case can't beddddased on linear stability analysis. The naaimnterms

in fact determine the stability in this case, whielguires a detailed nonlinear theory. On thesottand
linear stability analysis tells us how a systemawels near an equilibrium point. It cannot howeedlr us
anything about what happens farther away from dagiiim. Phase-plane analysis combined with linear
stability analysis can generally give us a fulltpie of the dynamics, but things become much mfiewlt

in higher-dimensional spaces. Now we consider lartigcie due to Liapunowhich can be used to determine
the stability of an equilibrium point both neadaar from the equilibrium point.

Liapunov’s method is based on a simple idea. SupfitaV/(x) is a function of our state variables which has
a minimum at an equilibrium point and which haslamal minima. Now suppose that we can show that t
dynamics of our system results in a steady deciieagén some neighborhood of the equilibrium point. This
necessarily means that we are tending toward thémaim ofV, which is just the equilibrium point. Having

shown this, we can conclude that the equilibriunmp@ stable over the entire neighborhoodXof over
whichV decreases. A functiovi with these properties is called_mpunov function.
*

Definition Let U be a region of phase space containing theliegum point X . Let V:U - R be a
*

continuous and differentiable function. V igasitive definite function for the point X if it satisfies the
following two conditions:

LV(X ) =0, and
2.V(x) >0forx OU—-{ X }

In order to use this theorem, we have to obtaifiapunov function. Unfortunately, it's often realiijfficult
to come up with a Liapunov function for a giventsys, except in some special cases where the phgbics
the problem suggests a particular choice.

So we use the following algorithm to analyze thabity of any system, linear or non-linear: Figdtall, we
find all equilibria. Then we determine whether amgen they are biologically meaningful. If we get se
calculate the Jacobian J and its valuetlan equilibrium of interest. To find out numatly, the eigen
values of the matrix Jwe solve the characteristic equation det-@I) = 0. The equilibrium is locally stable
is the real parts of all eigen values are negaBegiivalently, the real part of the leading eigatue (i.e. the
eigen value with the largest real part) must beatieg. If the real part of the leading eigen valuexactly
zero, the analysis is inconclusive. If the eigeangalare purely imaginary, the system will spiralusd the
equilibrium along some axes. Instead of actuallgutating the eigen values, one can use the Radditinwitz

criteria. For a model with two variables and a béao J = ( a,b,c,d ), the equilibrium is stable if detjJ
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2
=ad-bc >0 and tr() = a + d < 0. Furthermore, the eigen values asgimary if [tr(J)] < 4 det (J) . We
repeat previous five steps for all equilibria ofeirest. It will be better to present the whole pidre as a

flow-chart.

(START ? Find all equilibria.

Try another equilibrium

Determine
whether and when they are
biologically
meaningful.

Calculate the Jacobiandt an equilibrium.

To find out numerically, the eigen values of thetnmal’, solve the
characteristic equation det@Al) = 0.

A 4

Determine
whether the real parts of
all eigen values are
negative.

YES

whether

all the eigen value
are purely
imaginary.

A 4

The equilibrium
is locally stable

YES

whether
all the eigen values 3
zeros

A 4

The system will spiral
around the equilibrium
along some axes.

The system
is
Unstable

v The analysis is
STOP Inconclusive.

Fig 3. Flow-chart of Stability Analysis
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If we make a small perturbation to the point ofiglquum of the above system, the disturbance
decays or increases or oscillates according todre of its stability. Here are the different gibgities or
patterns how the disturbance changes with time:

A

All the eigen values are real and negative causiBgme eigen values are imaginary and the real

exponential decay of the disturbance. Theart of all such eigen-values ard the real eigen

equilibrium is stable. values are negative, the disturbance oscillates
and decays rapidly with time. The equilibrium is
stable.

All eigen values are real with at least one positivAt least one eigen value is imaginary having
The disturbance increases exponentially. Tip@sitive real part. The disturbance increases with
equilibrium is unstable. oscillation. The equilibrium is thus unstable.

ANVANYANYES

All eigen values have zero real parts and nonzeeginary parts, causing stable oscillation.

Fig 4. Different states of stability

Now we come back to our original problem of Quor@ansing Model. We assume that the
biological conditions are compatible to the lineation process of the system.
If A1, Ay, Az are the eigen values of the matrix Q, the gershition of the equation (1) can be written, in
terms of the corresponding eigen-vectorls (;Qz , Q3 , as

X(0)=C MU Lo Mt g Mt ,
- 1Qle 2Qze 3Q3e 2)

where C1 , C2 , C3 are arbitrary constants.
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From the experimental data, an equilibrium pointoisnd to be of the forme( €, M), where M >>¢ > 0,
resulting one of the eigen values of the QuorunsBgnMatrix to be —M. Though other two eigen valaes
zeros, which are inconclusive about the stabilityttee system, but the presence of the dominating —
clearly shows that the system is locally stable.

4. CONCLUSION

The proposed mathematical model for quorum senisingibrio fischeri is shown to give rise a
stable solution and the general solution is corbpatiith the real situation. However it is not cleat least
at the present state of analysis, what happens #ite quorum is achieved. Time evolution of the up-
regulated and down-regulated cells as well as dfidghe QSM-concentration cannot enlighten the exact
duration or fate of the bioluminescence occurredindua local maximum is attained by the QSM-
concentration. Not only that, the bacterial commation through diffusion of the QSMs deserves the
inevitable analysis about the noise acquired andahsequences. This will be done in subsequemrrpap
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