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1. INTRODUCTION

Fractional differential equations (FDEs) have Idngtory. These equations have demonstrated a
considerable interest both in mathematics and ipligaions in recent years. They have been used in
modeling of many physical and chemical processengineering [1-3]. There are also applicationsigmal
processing and sampling and hold algorithms, [4=6ctional integral and derivatives can be of itager
orders and even of complex order. The relatedifnaglt calculus facilitates the description of someblems
which are not easy described by ordinary calculiestd modeling error [4-8]. There are different hoets to
solve the fractional differential equations. Somfetlee recent analytic methods for solving nonlinear
problems are including the Adomian decompositiorthoe (ADM) [9-11], Homotopy Perturbation Method
(HPM) [12-14], Variational Iteration Method (VIM)Lp,16] and Homotopy Analysis Method [17,18]. Pértia
differential equations of fractional order are afteery complicated to be exactly solved and evemiéxact
solution is obtainable, the required calculationaynibe too complicated to be practical, or it midpet
difficult to interpret the outcome.
Finding accurate and efficient methods for solMiiIRES become an important task. In this article uae the
HPM compound with the Laplace transform for solvthg FDEs. The object of present paper is to extend
the application of the LHM method to drive analgtiapproximate solutions for nonlinear fractionab8na-
Tasso-Olver and Fisher equations, so the modelgmahcan be written as the following forms:
Case 1: The nonlinear fractional partial differential etjoa:

uf +a(u3)x +ga(u2)XX +ay, =0,

is called Sharma-Tasso-Olver equation, wherss a real parameteru(x,t)is an unknown function
depending on temporal variabteand spatial variablex . This equation contains both a linear dispersive
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term au double nonlinear terrra(u3)X and Ea(uz)xx. Many physicists and mathematicians have

XXX 7

considered the Sharma-Tasso-Olver equation in tgens due to its appearance in scientific apiiina.

To the explicit solution of integral models, varsoaffective methods like inverse scattering tramaédion
(IST) [19], Darboux transformation [20], Backlundansformation [21], solitary wave as well as peidod
wave solutions [22], Kinks method, the tanh methibe, extended tanh method [23], homogenous balance
method [24], sine-cosine method [25], Jacobi ediphethod [26], F-expansion method [27] and etaeha
been well developed.

Case 2. The nonlinear fractional Fisher differential eqoatis as follows:
u¥=u, —W+(E+)ui-cu, O<pu<l 0ke< 1 (2)

Fisher [28] proposed a reaction diffusion equatisra model to describe the process of spatial dimga
when mutant individuals with higher adaptabilitypagr in populations, namely:

u =u, +a@-uf)(u-¢), 0O<e<1, )

where @, fand ¢ are parameters. This equation is well known in ftalel of population genetic. This
equation is very important to fluid dynamic modet dhe study of this model has been considered byma
authors both for conceptual understanding of plydiows and testing various numerical methods. dfish
equation has been found some applications in diffiefields as instances gas dynamics, number thkeeay,
conduction, elasticity etc. Ismail et al. [29]. Raty, Wazwaz and Gorguis [30] studied the Fishipragion,
the general Fisher equation, and nonlinear diffusiquation of the Fisher type subject to initiahdiions
by using Adomian decomposition method. For moraiteeibout these investigations, many literatures a
appeared [31-35].

2. BASIC DEFINITIONSAND NOTATIONS OF THE FRACTIONAL CALCULUS

In this section, some definitions and propertieghef fractional calculus that will be used in this
work are presented.
Definition 1. The Gamma function is intrinsically tied in framial calculus. The simplest interpretation of
the gamma function is simply the generalizatiorthaf fraction for all real numbers. The definitiohtbe
gamma function is given by:

M(u) = [ e™&*dé, for all w00, (4)

Definition 2. The Riemann-Liouville fractional integral operatd¥ of order 4 on the usual Lebesgue
spacel,[a, b] is given by:

u -1 p - o
J f(x)-mj0 (x=&) f(&)dé, (5)

J°f (x) = (x).

It has the following properties:
(i) 3 exists foranyx O ab J,u> 0,
(i) J4IP=XJ3" =3¢ > 0,

(iii) J4(x- 0)"= %(x-mw‘, >0, y>-1, o0 .

(6)

Definition 3. Let f OL,[a,b], mOO U{0} , then the Caputo fractional derivati2“ of f (x) is defined
as:
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m- m _ 1 X _ p\m-u- dm
) J ﬂDDf(x)_mjo (x=§&) ’“Wf({)d{, m-1<y <m,
DY = (7)
d” f (x) H=m
dx™
It has the following basic properties:
(i) Dif (x) = 3 (x),
. ry+1 -
DA(x —0)) =——="—_(x-0)"™*, u=0, y>-1, 000, 8
(i) DE(x ~0)" =0 = 20, 420, y> 1,0
(iii) DI (x) =f(x), x=0,
(x-0)"

(iv)JﬂDgf(x)=f(X)-mek(0+) Kl

Definition 4. The Laplace transform df (x) is defined as follows:
F(s)= L[ f();s]= [, €™ f(padt 9)

Definition 5. The Laplace transfornﬂ[f (t);s] of the Caputo fractional derivative is given by:

([D4f (t)is] = F(s)—mz_l ¢ 0", Fs)F[ f(1):;$, mkus n (10)

3. METHODOLOGY: ANALYSISOF THE NOVEL PROPOSED METHOD
In order to demonstrate and clarify the basiagdef the Laplace Homotopy Method (LHM), let us
consider the following nonlinear differential egoat

Lu(Xqeees X))+ N[UOK e, %] =0 (X %), (11)

where L is a linear operatorN is a nonlinear operator and(x,,...,X,) is an inhomogeneous term. We
can rewrite Eq. (11) down a correction functiorafa@lows:

L [u(Xp s X)) =00, X ) =M [U(% s %, )] (12)

RE[U(,, %)

where M is a nonlinear operator that has been embracedathiénear source and the rest of the other linear
operator of Eq. (11). In addition we havg [u(X,,...,X,)] :zk( L [u(x..., >q1)]). Therefore by taking

Laplace transform to both sides of Eq. (12) indleal way and using the initial conditions, oneagbthe
result as follows:

p(S)U(Xi,, )g—l’ s )i(+1'"" %):mz_l g/71a”u(Xl,...,);i(-;v()),;)hl,... ,)ﬁ] )J‘F(I:RE[U(XP, )41)], % ;13

where p(s) is a polynomial with the degree of the highesttiphrderivative in Eq. (12), and also
([RE[U(X..... %)]; § is Laplace transform oRE[u(X,...., X,)] -
Supposing the initial conditions, we set:

o
—a(i )5U(X1,...,Xi,l,O,)gﬂ,... ,)‘1 ): (%()(1, ,%(71,0,?(+11_' ,?]( ),5: 1,2,. " ] (14)
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By using the convolution theorem and applying thverse Laplace transform to both sides of Eq. (&3t
in:

m-1 m-n-1
UKo X X K e % )=€‘1L§(Sp(s) ¢ (ke X000 Ko e %3 :%’f (15)

[V RE[U X(ow %o X0 Ko ¥ F(X=7)

where F (s) =%, K[f (% ); s] = F(9, and also for simplicity is supposed that:
p(s

— -1 iy L’H |
At LZO( p(s) dy % %0000 X g e % )js}

h:L:iRE[u(xl ..... X 10 X0 Xorees X)) F(x-7) @.

(16)
(17)

Now a new operator entitled the Homotopy operafiit-14] H(u(xl,...,xn), p) :Qx[0,1] - U can be
defined in the following way which is the princigtiea of this technique:

HUXg %), P) = U(X e, %)= 7 (U %y %))~ PA X X)= 0 (18)

where p 0[0,1] is a Homotopy parameter ang is an initial approximation which satisfies theubdary
conditions. Obviously fop =0, p =1, Eq. (18) reduces to the following equations respely:
H(U Xy, %), 0) = U (X e, % )= 7 (UK o0, %)), (19)
H(U Xy %), D) = U(X e X, )= B (UK ee, %)) ACX,., %)= 0 (20)

So while changing the values qf from zero to unity,u(x,,..., X, ) will be changed fromu, to u. In
topology, this is called deformation, while—-7(u) and u-7(u)— A are called Homotopic. Using the
Homotopy parametep , the following power series can be presentedifor

u(xl,...,xn)=i PY (Xoeeos X)) (21)
Assuming that: a

RE[ U x)]=3 B H(Uo.., ), (22)
homotopy equation will be written asyzf(:)IIows:

;pyuy(xl,...,xn)z A+ J'::Z) B H(Y..., y) f(x-7) &|. (23)

This has been raised by coupling of the Laplacesfaam and the Homotopy technique. Comparing the
coefficients of the like powers of p, the followiagproximations are obtained:

p°: u, = A,
Pt U = [ Ho(u)f(x —7)dr,

p?: u, :J:i H,(uy, u)f(x -7)ar, (24)

p’:u, =J'Ox Ho(Ups Uy,en. Y ) (% —7) .
If the series (21) is convergent then, by takipg1 , one obtain the approximate solution of equafii)

as follows:
L (25)
= u =
u I;rg;puy U+ U+ U+ g+
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4. APPLICATIONSOF THE LAPLACE HOMOTOPY METHOD (LHM)

In order to illuminate the procedure of Laplace Htoopy Method (LHM), the solution of the
fractional Sharma-Tasso-Olver and Fisher diffeemguations will be studied.
Example 1. We consider the fractional Sharma-Tasso-Olver eguaty utilization of LHM which was
explained in section 3. This equation is as follows

u“+aDu+§aD ¥+ aD, u=0, O<pu<1, (26)
with the initial condition:
0 2k—kX+W k @n
u(x,0)= oy .

In this casey is a constant and lies in the intervf,1], t and x are time and spatial coordinates

respectively,a is a real parameter arld, w andr are free parameters.
The exact solution of (26) fo =1 is [21]:

kx - ak®t+w

u(x,t)=2k————- k. (28)
e x—ak t+w +r
Applying the LHM to Eq. (26), the result is as folls:
;171
U(x,s)= u(xO)——E[aQ §+3ap, 4+ an, u}. (29)

Benefiting the inverse Laplace transform to botde3| of Eq. (29), and subsequently constructing the
Homotopy function, one obtain:

B ekx +wW _ (t _ T)p—l (30)
, —Zk— k- R d,
U(X t) ek><+w pJ. E[ L( XT)] F(,Ll)
where:
RE[ u(x,r)]:—( aD, u( xr)+§ aD, 4( xr)+ aD, ¢ xr)j. (31)

Assuming the solution of Eq. (26) as a power sérigke form of:

u(x,t)=u,+ pu+ gfu+ guy+-, (32)
and substituting in (31), results in:

RE[u(x )] == F H(u(x7)= PH(Y(x1), W x)~ D HO W x), & x), o K, (33
where:
HoUp) = -3a8 D= (20, 4) + 24,0, ) - ab,,

H,Uou) =-8{36 D u+3u D, u+6D LD U+ 6y D y+ 3y D, w D, ¥

H, WU, u,) = -3 D, u+ 6, uD u+24u+ 8 Dy 3yR w3yD ¢3yp g
+6D,u,D,u,+ D,,,U,,

kx +w

and so on. Byconsidering u,(x,t) =2k SW o k, and substituting (35) in (33) also equating the
e r
coefficients of the like powers gb , one gets the following set of equations:
t —r)“*"
6= [, Holu) C o,
1 (36)
t —r)"
(x.0) = j ) 0,

after some simplification and substitution, thddaling set of equations are resulted:
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kx +w

e

U, (x,t) = 2kekx+w P K,
kx+w _ a1 kx+w kx +w
U (x,1) = =28K" j(t ) T A — 7 ¥ 0=-2ak o e t
““+r) r(,U) (e + ( )T ()
k><+w kx+w R 7 o Ry kx +w k><+w
u,(x,t)=-2a’k’ rfx+w I (Ul 0 S r|i+w (e U] F(t)=
€™ +r)? l'(,u+1) r(u) €™+ 1)y (u+1)
kx +w kx+w _
=2k e =D 37)
€™ +1)°T(2u+1)
(1) =2 o & ET e e Py )
T (€™ + )T (2u+1) r(u)
kx+w ¢ 2(kx+w) _ kxt+ w
P Gl hd S PN
€™ +n)'T(u+1)
__2a3k10 rek><+w (ez(kx+w) _4rekx+w+ rz) o
€™ +nTEur)
wherek, w andr are constants.
Therefore, the solution in a series form is givgn b
u(X,t) = Uy (X, )+ u(x 9+ u(x §+ y(x y+---. (38)

I. Numerical Resultsfor space-and time fractional Sharma-Tasso-Olver equation

In this subsection, the space and time fractior@r®a-Tasso-Olver equation is considered for
numerical comparisons. In order to numerically fyewhether the proposed methodology leads to higher
accuracy, the approximate solution was evaluatedusing n-term approximation in (38). In Fig. 1

u(x,t):Zizouy and the exact solution have been depicted/ferl, k =1, t =0.1, a=1, r=1, w =1,

Moreover, Fig. 2 illustrates the approximate solusi of the equation which was obtained for difféereriues

of yandk =1, t=0.1, a=1, r=1, w =1, by using the LHM. In Fig. 3(a) -(c), the behavairu(x,t)is
given. Numerical results obtained by these apprations are summarized in Tables 1 and, 2. It isrdieat
the approximate solutions converge to the exacttisol. In addition, these tables demonstrate the
comparison between the exact valuesu@x,t) and its approximate values by LHM wheér=0.01, 4 =1.
Accordingly in this table, a very interesting agremt between the results is observed, which cosfitme
excellent validity of the LHM. In figures 4(a)-)(@nd 5(a) -(c) the error function of Eq. (26) whiis
resulted by LHM are depicted.

exact |

Fig. 1 Comparison between LHM solution and the Fig. 2 Plot solutions of (4.1) whep=1, ¢ =0.7,
exact solution fory=1 andt =0.1 4=0.5 4=0.3, g=0.1andt =0.1
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Table 1. Comparison between the exact valuas(of, t) and its approximate values obtained by LHM

Table 2. Comparison between the exact valuas(of, t) and its approximate values obtained by LHM

t

Boow~wounbsrwnroO

t =0.01

Exact value

0.240212864686635
0.632156545160594
0.846875605296253
0.940803791641747
0.977807724005105
0.991778249755353
0.996967506973151
0.998883337894465
0.999589057933814
0.999828803224529
0.999944375156570

Approximate value

0.24021286468618
0.63215654516099
0.84687560529638
0.94080379164172
0.97780772400508
0.99177824975534
0.99696750697314
0.99888333789447
0.99958905793381
0.99984880322453
0.99994437515657

Absolute error

455x%x 10713
3.96x 10713
1.27x 10713
2.7x 10714
25x 10714
1.3x 107
1.1x 107
5.1x 10715
4.1%x 10715
1.1x 107%°
0.0

(x,t)

Exact value

Approximate value

Absolute error

(5,-0.5)
(4,-0.4)
(3,-0.3)
(2,-0.2)
(1,-0.1)
(0,0)
(1,0.1)
(2,0.2)
(3,0.3)
(4,0.4)
(5,0.5)

0.99505475368673
0.98521691731144
0.95623745812774
0.87405328788601
0.66403677026785
0.24491866240371
0.60436777711716
0.81775407797029
0.92166855440647
0.96739500125712
0.98661429815143

0.995051163053026
0.985414412948829
0.956236877347742
0.874053657051266
0.664036810289600
0.244918662403709
0.604367737127432
0.817753678438746
0.921669089642980
0.967397599250401
0.986618155057450

3.591x 107
25%x 107
5.81x 1077
3.69% 1077
2.002x 1078

0.

3.999x 1078

3.995x 1077

5.352x 1077
2.598x 107

3.857x 107

(b)

Fig. 3 Graphs ofu(x,t) , where (a)u=1, (b) £=0.7and (c) #=0.1

It is admirable and easy to verify the accuracythred results for different values ofr graphically.
Additionally, these figures demonstrate that thrersrof LHM increased in the neighborhood of catipoint

x =0and overall indicate that the differences among lthéM and the real solution are negligible.
Meanwhile, it is worth mentioning that a higher @@y can be obtained by evaluating some more tefms

the series solution.
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(@) (b) (©)

2.5%10°% T 1.x 107
8% 4
1.6% 1077

2.%x 1078 8.x 107
1.4% 1077
1.2% 10774

1.5%107%+ 6.3 1077

Error Error 1% 10774 Error

3 8.%x 1078

1.% 10°% 4% 10
6.% 10°%
-9+ 4.%10°%

5% 10 2.x 1077
2.%107%

g ™ ™ T T T r T T T T T o

.
)
Y
IS
e
|
£
IS
W
e
N
&
LS

x % -6 4 -2 0 7 4 6
X
1.5 % 10784 . 7]
1.2%10 Lx10 6]
1.% 1077
8.x 1077
1.% 108 8.x 10-8
6.%10°74
Error Error ¢ 1084
Error
=74
5.%x 107 4.x 10784 4.x10
-84
2.x 10 2.x10-™
o 0 : - g :
0 5 10 1s 20 0 > 10 15 20 [ ; - - ,
X x 0 5 10 15 20
x

Fig. 4 Graphs of the absolute error functions for différealues ofy/, k =1, r=1,w =1, t =1
anda=0.1, when (a)u=1, (b) u=32,(c) u=1%

@) (b) (©)

3x10°% — 3. 10-454
5% 10-44

2.%10°% 4. % 10-44 2% 10745+

Error Brmor el Error

Lx 1074 2.% 10°+4 1x 10744

Lx 1074
0 y - : - o - T
o 20 40 60 80 100 0 20 40 60 80 100 0 v T T r ,
i 3 0 20 40 60 80 100

Fig. 5 Graphs of the absolute error functions for diffénemlues of 7, x =100, k =1, r=1, w =% ,
anda=0.1, when (a)¢=1, (b) y=2,(c) H=1%

x -0.5 5 x -0.5

1.0 BT
Fig. 6. Comparison between the results of the LHM and #aetesolution for the fractional Fisher equationemwh

H=1, £=0.01. (a) approximate solution, (b) exact solution.
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Table 3: Comparison between the exact valueﬂuéb(,t) and its approximate values obtained by LHM whers 0.5, (/1 =1.

Error

Error

Error

Approximate

Absolute error

(0,0.0) 0.750000000000 0.750000000000 0
(2,0.2) 0.843066997899 0.843066997434 4.65x 10710
(4,0.4) 0.913478570290 0.913478607880 3.76x 1078
(6,0.6) 0.956320652061 0.956320819437 1.67x 1077
(8,0.8) 0.979025112311 0.979025218777 1.06x 1077
(10,1) 0.990181755428 0.991815142291 2.41x 1077
(@) (b) (€)
7.x1077
3.x 1078
6.x 107" 0.000054
2.5x 1078
5.x10"
0.00004-
2.x107% B
4.x 10"
Error Error 0.000034
1.5x 1078 7
3.x10°
0.00002-
1.x 1078 2.x 1077
5.x1079 Lx10-™ 0.00001
T T T T 0+ T T T T T -
0 ) 0 4 6 -6 -4 -2 0 2 6 6 4 2 0 2 4 6
5.x107"
3.x107%
0.00004-
4.x10774
000003
2.x 1073
3.x1077
Error Error
0.00002-
2.x1077
1.x 1078
Lx10-7d 0.00001
0, : ; . 01, . ; - ; 0, :
0 10 15 20 0 5 10 15 20 0 5 10 15 20
Fig. 7: Graphs of the absolute error functions for differealues of
4, £=0.0landt =0.1, when (a)#=1, (b) u=2, (c) u=1%
(a) (b) ()
8.x 10279
121077 1.2x 107274
7.x 107274
6.x10-7 1% 1077 1.x10°24
5.%x 107274 8% 107384 8.x 107284
Error Error
4.x10°%7 - R
6.% 10°284 6.x 107284
3.x107274
4.% 107284 4.%x 1072
2.x 107274
1.x10-274 2.x 107284 2.x 10284
o6 20 40 60 80 100 0 20 ) 60 0 100 o6 20 40 60 50 100

Fig. 8: Graphs of the absolute error functions for différesdues of
4, x =100and £ =0.01, when (@)u=1, (b) u=2,(c) u=3
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Example 2: (Fisher equation) Consider the nonlinear timetfomal diffusion equation of the form:
DAu=D, u-w+(e+)u’-€cu, O<pu<l O<ke<1 (39)
subjected to the initial condition:
(o)
c+e (40)
1

—(5—1)x) '

u(x,0)= -
l+e [ﬁ

The exact solution of (39) and it’s traveling wasgdution of the form:

V2 1

u(x,t)=%(5+1)+—;(1—£)tanr{—4(1—5)x+—4( }gz)t (41)

or equivalently:

La-e(Vzrarex) N e% e V2 e ))

1 1 e
u(x,t)==(e+1)+=1-¢) , (42)
(1) 2( ) 2( / —711(1—5)(JE+(1+£)1) 711(1—5)(J’2+ @e))
e -e
is given in [36].
Applying the Laplace transform to both sides of &%), we have:
_s" 1 43
U(x,s)= v u(x,0)+?£[qxu—d+(£+1)ﬁ—£u%. (43)
According to the LHM:
1
(e
E+e t t-1 44
u(x,t) = - + pJ'O RE xr)]% d, (44)
1+e_[ﬁ 5_1)X] ILI
where:
RE[u(x7)]= D, u- U+ (e+1) d-€ u (45)
Assuming the solution of Eq. (39) as a power sérnigbe form of:
u(x,t)=u,+ pu+ gfu+ guy+--, (46)

and substituting in (45), one obtain:
RE[u(x7)]=- P H(y(x1)= pPH(YOXT), W @)= D HO K x), € x), ( X)), (47
where:

Ho(ug) = DXXUO—U3+(€+l)ug—€UO,

H, (U, u,) = Dy, u1_3ugu1+ 2+ Duyu,

H,(Ug Uy, ) = D, U, = B U+ 26+ Uy U+ €+ G- u, (48)

Hs(uo*ul’uz): D, Us_‘?’u%us"' 2(‘9+1)L11U2+ 2€+ 1)U0L%_ 6y yu- il—é‘ u

1
Considering uy(x,t) = n and substituting in (48), also equating the cogffits of the like
1+ei(ﬁ(gil)xj
powers ofp , one gets the following set of equations:

—(t Sl dr
rw) (49)

u,(x,t)= j; H, (u,, ul)(tr_(—;))ﬂl dr

U, (,1) = [ Ho(u)

1
-l —=(&-1)x
Assuming e (ﬁ ): A, after some simplification and substitution, theldaling set of equations are
resulted:
E+A

uo(x,t):1+A,
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_1AE+D(E-1y "
2 (A+172T (u+1)
LAA-DE+IY E€-1f o,
4 (A+1°T(2u+1)

u, (x,t : (50)

uy(x,t) = ,

and so on. In the same manner the rest of the otmponents can be obtained by using the Maplegogck

Il. Numerical Resultsfor space-and time fractional Fisher equation

In this subsection we present the results of LHMshow the efficiency of this method. Table 3
shows the approximate solution by 5-terms, exatitism and absolutely error obtained by LHM, when
£=0.5, y=1.Itis evident that the efficiency of this apprbazan be dramatically enhanced by computing

further terms ofu(x,t). In Fig. 6(a) we plot the 5-term LHM approximat#wions for € =0.01land y=1.
In 1(b) the plot of the exact solution whegn=1and £ =0.01 is depicted. In figures 7(a)- (c) and 8(a) -(c)

the error function of Eq. (39) which is resulted lifM are illustrated. It is admirable and easy @wify the
accuracy of the results for different valuesgofyraphically. Additionally, these figures demonstrtiat the

errors of LHM increased in the neighborhood oficait point x =0 and overall indicate that the differences
among the LHM and the real solution are negligilso in table 3, a very interesting agreement leetw
the results is observed, which confirms the exoeNelidity of the LHM. Meanwhile it is worth menhing
that a higher accuracy can be obtained by evalyatme more terms of the series solution.

5. CONCLUSION

In this paper, a novel and interesting but rigorhaplace Homotopy Method (LHM) has been
utilized to derive the approximate analytical siwing for nonlinear fractional Sharma-Tasso-Olved an
fractional Fisher equations. To demonstrate thalialof the proposed method, numerical resultsehagen
obtained which shows that the LHM strength layisrease of use and the possibility of using i dsol to
acquire approximate solutions of nonlinear fradiodifferential equation with excellent accuracy by
applying a few iterations.
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