Enhanced Derivative-Free Conjugate Gradient Method for Solving Symmetric Nonlinear Equations

Jamilu Sabi'u

Department of Mathematics, Faculty of Science, Northwest University Kano, Nigeria

approach is promising.

Article Info	ABSTRACT
	In this article, an enhanced conjugate gradient approach for solving
Article history:	STRACT this article, an enhanced conjugate gradient approach for solving metric nonlinear equations is propose without computing the Jaco-bian rix. This approach is completely derivative and matrix free. Using
Received Nov 29, 2015	matrix. This approach is completely derivative and matrix free. Using

Received Nov 29, 2015 Revised Feb 2, 2016 Accepted Feb 16, 2016

Keyword:

Backtracking line search Conjugate gradient method Hyperplane Symmetric nonlinear equations

Copyright © 2016 Institute of Advanced Engineering and Science. All rights reserved.

classical assumptions the proposed method has global conver-gence with

nonmonotone line search. Some reported numerical results shows the

Corresponding Author:

Department of Mathematics Faculty of Science, Northwest University Kano, Kano, Nigeria. Email:sabiujamilu@gmail.com

INTRODUCTION 1.

Let us consider the systems of nonlinear equations

F(x) = 0, (1)

where $F: \mathbb{R}^n \to \mathbb{R}^n$ is a nonlinear mapping. Often, the mapping, F is assumed to satisfying the following assumptions:

A1. There exists an $x^* \in \mathbb{R}^n$ s.t $F(x^*) = 0$

- A2. *F* is a continuously differentiable mapping in a neighborhood of x^*
- A3. $F'(x^*)$ is invertible

A4. The Jacobian F'(x) is symmetric.

Monotonicity means

$$(F(x) - F(y))^T (x - y) \ge 0, \ \forall x, y \in \mathbb{R}^n$$
 (2)

The prominent method for finding the solution of (1), is the classical Newton's method which generates a sequence of iterates $\{xk\}$ from a given initial point x_0 via

$$x_{k+1} = x_k - (F'(x_k))^{-1} F(x_k), \tag{3}$$

where k = 0, 1, 2... The attractive features of this method are; rapid convergence and easy to implement. Nevertheless, Newton's method requires the computation of the Jacobian matrix, which require the firstorder derivative of the systems. In practice, computations of some functions derivatives are quite costly and

Journal homepage: http://iaesjournal.com/online/index.php/IJAAS

sometime they are not available or could not be done precisely. In this case Newton's method cannot be applied directly. In this work, we are interested in handling large-scale problems for which the Jacobian is either not available or requires a low amount storage, the best method is CG approach. It is vital to mention that, the conjugate gradient methods are among the popular used methods for unconstrained optimization problems. They are particularly efficient for handling large-scale problems due to their convergence properties, simply to implement and low storage [10]. Not withstanding, the study of conjugate gradient methods for large-scale symmetric nonlinear systems of equations is scanty, this is what motivated us to have this paper. In general, CG methods for solving nonlinear systems of equations generates an iterative points $\{x_k\}$ from initial given point x_0 using

$$x_{k+1} = x_k + \alpha_k d_k, \tag{4}$$

where $\alpha_k > 0$ is attained via line search, and direction dk are obtained using

$$d_{k} = \begin{cases} -F(x_{k}) & if \quad k = 0\\ -F(x_{k}) + \beta_{k}d_{k} & if \quad k \ge 1 \end{cases}$$
(5)

 βk is termed as conjugate gradient parameter.

This problems under study, may arise from an unconstrained optimization problem, a saddle point problem, Karush-Kuhn-Tucker (KKT) of equality constrained optimization problem, the discritized two-point boundary value problem, the discritized elliptic boundary value problem, and etc.

Equation (1) is the first-order necessary condition for the unconstrained optimization problem when F is the gradient mapping of some function $f: \mathbb{R}^n \to \mathbb{R}$,

$$minf(x), x \in \mathbb{R}^n$$
 (6)

For the equality constrained problem

$$\min_{x,y} f(x),$$

s.t $h(z) = 0,$ (7)

where *h* is a vector-valued function, the KKT conditions can be represented as the system (1) with x = (z, v), and

$$F(z,v) = (\nabla F(z) + \nabla h(z)v, h(z)), \tag{8}$$

where v is the vector of Lagrange multipliers. Notice that the Jacobian $\nabla F(z, v)$ is symmetric for all (z, v) (see, e.g., [?]). Problem (1) can be converted to the following global optimization problem(5) with our function *f* defined by

$$f(x) = \frac{1}{2} ||F(x)||^2 \tag{9}$$

A large number of efficient solvers for large-scale symmetric nonlinear equations have been proposed, analyzed, and tested in the last decade. Among them are [4, 2, 9]. Still the matrix storage and solving of n-linear system are required in the BFGS type methods presented in the literature. The recent designed nonmonotone spectral gradient algorithm [1] falls within the frame work of matrix-free.

The conjugate gradient methods for symmetric nonlinear equations has received a good attension and take an appropriate progress. However, Li and Wang [5] proposed a modified Flectcher-Reeves conjugate gradient method which is based on the work of Zhang et al. [3], and the results illustrate that their proposed conjugate gradient method is promising. In line with this development, further studies on conjugate gradient are [7, 10, 8, 13]. Extensive numerical experiments showed that each over mentioned method performs quite well.

We organized the paper as follows: In the next section, we present the details of the proposed method. Convergence results are presented in Section 3. Some numerical results are reported in Section 4. Finally, conclusions are made in Section 5.

Enhanced Derivative-Free Conjugate Gradient Method For Solving Symmetric ... (Jamilu Sabi'u)

2. ENHANCED DERIVATIVE-FREE (EDF)

Given an initial point x_0 , an iterative scheme for problem (1) generally generates a sequence of iterates

$$x_k = x_{k-1} + \alpha_k d_{k-1}, \ k = 1, 2 \dots$$
(10)

which employs a line search procedure along the direction dk to compute the stepsize αk . Typical line searches include Backtracking, Armijo or Wolfe line searches. Let $z_k = x_k + \alpha_k d_{k-1}$, the hyperplane

$$H_k = \left\{ x \in R^n | (x - z_k)^T F(z_k) = 0 \right\}$$
(11)

strictly separates x_k from the solution set of (1). Therefore, from this facts Solodov and Svaiter[6] advised to let the next iterate x_{k+1} be the projection of x_k onto this hyperplane H_k . That is, x_{k+1} is defined by

$$x_{k+1} = x_k - \frac{F(z_k)^T (x_k - z_k)}{||F(z_k)||^2} F(z_k)$$
(12)

In this paper, the direction dk is base on [13], specifically

$$d_k = \begin{cases} -F_k & \text{if } k = 0\\ -\theta_k F_k + \beta_k d_k & \text{if } k \ge 1 \end{cases}$$
(13)

where F_k means $F(x_k)$ and β_k defined as

$$\beta_k = \frac{(\theta_k y_k - s_k)^T}{y_k^T d_k} F_k \tag{14}$$

$$\theta_k = \frac{s^T s_k}{s_k^T y_k} \tag{15}$$

Throughout this paper, //.// is the Euclidean norm, $s_k = x_k - x_{k-1}$ and $y_k = F_k - F_{k-1}$

However, to compute the stepsize α_k , nonmonotone line search proposed by [4] is an interesting idea that avoids the necessity of descent directions to guarantee that each iteration is well defined. Let $\omega_1 > 0$, $\omega_2 > 0$, $r \in (0, 1)$ be constants and $\{\eta_k\}$ be a given positive sequence such that

$$\sum_{k=0}^{\infty} \eta_k < \infty \tag{16}$$

Let $\alpha_k = max\{1, r^k\}$ that satisfy

$$||F(x_k + \alpha_k d_k)||^2 - ||F(x_k)||^2 \le -\omega_1 ||\alpha_k F(x_k)||^2 - \omega_2 ||\alpha_k d_k||^2 + \eta_k ||F(x_k)||^2$$
(17)

EDF Algorithm

Step 1 : Given $x_0, \alpha > 0$, $\omega \in (0, 1)$, $r \in (0, 1)$ and a positive sequence ηk satisfying (16), and set k = 0.

Step 2 : Test a stopping criterion. If yes, then stop; otherwise continue with Step 3.

Step 3 : Compute d_k by (13).

Step 4 : Compute α_k by the line search (17).

Step 5 : Compute
$$x_{k+1} = x_k - \frac{F(z_k)^T (x_k - Z_k)}{||F(Z_k)||^2} F(z_k)$$

Step 6 : Consider $k = k + 1$ and go to step 2.

3. GLOBAL CONVERGENCE

This section presents global convergence results of the Enhanced derivative free conjugate gradient method. In order to analyze the convergence of our method, we will make the following assumptions on nonlinear systems F.

D 53

Assumption

- (i) The level set $\Omega = \{x/F(x) \le e^n F(x_0)\}$ is bounded
- (ii) In some neighborhood N of Ω , F(x) is Lipschitz continuous i.e there exists a positive constant L > 0 such that

$$\|F(x) - F(y)\| \le L\|x - y\|$$
(18)

 $\forall x, y \in N$. Properties (i) and (ii) implies that there exists positive constants M_1, M_2 such that

$$||F(x)|| \le M_1, \quad ||F(z)|| \le M_2, \quad \forall x \in \mathbb{N},$$
(19)

Lemma 3.1 [4]Let the sequence $\{x_k\}$ be generated by the algorithms above. Then the sequence $\{||F_k||\}$ converges and $x_k \in N$ for all $k \ge 0$.

Lemma 3.2 Let the properties of (1) above hold. Then we have

$$\lim_{k \to \infty} ||\alpha_k d_k|| = \lim_{k \to \infty} ||s_k|| = 0,$$
(20)

$$\lim_{k \to \infty} ||\alpha_k F_k|| = 0 \tag{21}$$

Proof.by (16) and (17) we have for all k > 0,

$$\omega_2 ||\alpha_k d_k||^2 \le \omega_1 ||\alpha_k F(x_k)||^2 + \omega_2 ||\alpha_k d_k||^2 \le ||F_k||^2 - ||F_{k+1}||^2 + \eta_k ||F_k||^2$$
(22)

by summing the above k inequality, then we obtain:

$$\omega_2 \sum_{i=0}^k ||\alpha_k d_k||^2 \le ||F_k||^2 \left\{ \sum_{i=0}^k (1-\eta_i) \right\} - ||F_{k+1}||^2$$
(23)

so, from (19) and the fact that $\{\eta_k\}$ satisfies (16) the series $\sum_{i=0}^k ||\alpha_k d_k||^2$ is convergent. This implies (24). By a similar way, we can prove that(21) holds.

Lemma 3.1 Suppose that $\{x_k\}$ is generated by EDF algorithm. Let $s_k = x_k - x_{k-1}$. Then, we have

$$\lim_{k \to \infty} \|\alpha_k d_k\| = \lim_{k \to \infty} \|s_k\| = 0,$$
(24)

Proof.

$$\|x_k - x_{k-1}\| = \frac{|F(z_k)^T(x_k - z_k)|}{\|F(z_k)\|} \le \frac{\|F(z_k)\| \|x_k - z_k\|}{\|F(z_k)\|}$$
(25)

$$= \|x_k - z_k\| = \alpha_k \|d_k\|.$$
(26)

The following theorem establishes the global convergence of the EDF algorithm. **Theorem 3.3** Let $\{x_k\}$ be generated by EDF algorithm. Then, we have

$$\liminf_{k \to \infty} \|F(x_k)\| = 0.$$
⁽²⁷⁾

Proof. We prove this theorem by contradiction. Suppose that (27) does not hold, then there exists a positive constant τ such that

$$\|F(x_k)\| \ge \tau, \quad \forall k \ge 0. \tag{28}$$

Clearly, $||F_k|| \le ||d_k||$, which implies

$$\|d_k\| \ge \tau, \quad \forall k \ge 0. \tag{29}$$

Observe that,

$$y_k \| = \|F(x_k) - F(x_{k-1})\| \le L \|s_k\|$$
(30)

$$|\theta_k| \le \frac{||s_k^T||||s_k||}{||s_k^T||||y_k||} \longrightarrow 0 \tag{31}$$

meaning there exists a constant $\lambda \in (0, 1)$ such that for sufficiently large k

$$|\theta_k| \le \lambda.$$
 (32)

Again from the definition of our β_k^* we obtain

$$|\beta_k^*| \le \frac{||\theta_k y_k - s_k|| ||F_k||}{||y_k^T|| ||s_k||} \le M_1 \frac{||\theta_k y_k - s_k||}{||y_k^T|| ||s_k||} \longrightarrow 0$$
(33)

which implies there exists a constant $\rho \in (0, 1)$ such that for sufficiently large k

$$|\beta_k^*| \le \rho. \tag{34}$$

Without lost of generality,

$$||d_k|| \le ||\theta_k g_{k+1}|| + |\beta_k|||d_k|| \le \lambda M_1 + \rho ||d_{k-1}||$$
(35)

which shows that the sequence $\{d_k\}$ is bounded. This together with (28) and (29) yields a contradiction. Hence the proof is complete.

4. NUMERICAL EXPERIMENT

In this section, we compare the performance of our method for solving non-linear equation (1) with A derivative-free conjugate gradient method and its global convergence for solving symmetric nonlinear equations [13]. The two algorithms were implemented with the following parameters; $\omega_1 = \omega_2 = 10^{-4}$, $\alpha_{k-1} = 0.01$, r = 0.2 and $\eta_k = \frac{1}{(k+1)^2}$. The codes for both methods were written in Matlab 7.4 R2010a and run on a personal computer 1.8 GHz CPU processor and 4 GB RAM memory. We stopped the iteration if the toatal number of iterations exceeds 2000 or $||F_k|| \le 10^{-4}$. "-" represent failure due one of the following: (i) insufficient memory

(ii) Number of iteration exceed 2000 (iii) If *//Fk//* is not a number(NaN) Problems 1-5 are from [12] and the rest are artificial problems. Problem 1. The strictly convex function: $F_i(x) = e^{xi} - 1$; 1, 2, ..., n Problem 2: .(*n* is multiple of 3) for i = 1, 2, . n/3, $F_{3i-2}(x) = x_{3i} - x_{3i-1} - x_{3i}^2 - 1,$ $F_{3i-1}(x) = x_{3i} - x_{3i-1} - x_{3i-1}^2 - x_{3i-2}^2 + x_{3i-1}^2 - 2,$ $F_{3i}(x) = e^{-x_{3i-2}} - e^{-x_{3i-1}}.$ Problem 3. The Exponential function: $F_{i}(x) = \frac{i}{10} \left(1 - x_{i}^{2} - e^{-x_{i}^{2}} \right); 1, 2, \dots, n-1$ $F_{n}(x) = \frac{n}{10} \left(1 - e^{-x_{n}^{2}} \right).$ Problem 4. Trigonometric Function: $F_i(x) = 2(n+i(1-\cos x_i)-\sin x_i-\sum_{j=1}^n \cos x_j)$ ($1\sin x_i - \cos x_i$) for i = 1, 2, ., nProblem 5. The discretized Chandrasehar's H-equation: $F_i(x) = x_i - (1 - \frac{c}{2n} \sum_{j=1}^n \frac{\mu_i x_j}{\mu_i + \mu_j})^{-1}, \text{ for } i = 1, 2, ..., n,$ wth $c \in [0, 1)$ and $\mu = \frac{i - 0.5}{n}$, for $1 \le i \le n$. (In our experiment we take c = 0.9). Problem 6. Arti_cial Problem: $F_{2i-1}(x) = x_{2i-1} + x_{2i}(-x_{2i}+5)(x_{2i}-2) - 13$; 1, 2, ..., $\frac{n}{2}$ $F_{2i}(x) = x_{2i-1} + x_{2i}(x_{2i} + x_{2i} - 14) - 29.$ Problem 7.Arti_cial Problem: $F_i(x) = 3n - \sum_{i=1}^n \cos(x_i - 2) - \sum_{i=1}^n x_i - \sin(x_i - 2)$, for i = 1, 2, ..., n,

Problem 8. Arti_cial Problem:

54

 $F_{i}(x) = x_{i} - 0.1x_{i+1}^{2}; 1, 2, \dots, n-1$ $F_{n}(x) = x_{n} - 0.1x_{1}^{2}$ Problem 9.*Arti_cial Problem:* $F_{i}(x) = \sum_{i=1}^{n} x_{i}^{2} \sin x_{i} - x_{i}^{4} + \sin x_{i}^{2}, \text{ for } i = 1, 2, \dots, n,$

				EDF			DFCG	
Problem (P)	X ₀	n	Iter	Time	$ F_{k} $	Iter	Time	$//F_{k}//$
P1	e	50	7	0.013401	1.01E-07	-	-	-
		100	7	0.007188	1.43E-07	-	-	-
		500	7	0.010701	3.19E-07	-	-	-
		1000	7	0.014594	4.51E-07	-	-	-
		10000	7	0.15437	1.43E-06	-	-	-
		100000	7	0.505017	4.51E-06	-	-	-
		500000	7	2.964011	1.01E-05	-	-	-
		1000000	7	6.490167	1.43E-05	-	-	-
	0.1e	50	3	0.003589	4.66E-06	4	0.0056	2.71E-06
		500	3	0.00514	1.47E-05	4	0.010405	0.010405
		5000	3	0.022715	4.66E-05	4	0.072571	2.71E-05
		50000	4	0.159338	1.87E-08	4	0.61336	8.58E-05
		500000	4	1.769383	5.92E-08	5	7.388756	4.32E-08
P2	e	100	5	0.008126	1.21E-06	5	0.009352	8.32E-08
		1000	5	0.016368	3.85E-06	5	0.023964	2.64E-07
		10000	5	0.093909	1.22E-05	5	0.187341	8.36E-07
		100000	5	0.606995	3.85E-05	5	1.640271	2.64E-06
	0.1e	500	3	0.00578	1.47E-05	4	0.012256	8.58E-06
		5000	3	0.02127	4.66E-05	4	0.069252	2.71E-05
		50000	4	0.161407	1.87E-08	4	0.600705	8.58E-05
		500000	4	1.790072	5.92E-08	5	7.61203	4.32E-08
P3	e	500	13	0.011359	6.01E-05	11	0.054786	6.72E-05
		1000	14	0.035401	5.18E-05	19	0.063617	5.81E-05
		10000	10	0.179693	4.39E-05	-	-	-
		50000	11	0.520165	8.38E-05	-	-	-
	0.1e	500	1	0.003457	1.24E-05	7	0.020203	8.87E-05
		1000	12	0.029657	4.85E-05	-	-	-
		5000	13	0.11261	9.26E-05	-	-	-
		50000	12	0.597629	7.90E-05	95	6.054463	6.51E-05
		100000	15	1.652158	9.51E-05	-	-	-
		500000	17	8.94895	6.94E-05	23	14.79145	9.00E-05

Table 1. Test	Results for	the Two	Methods.	where $e = ones(n,1)$
	10000100 101		1.1001100000,	

Table 2.	Test Resu	lts for the	Two	Methods,	where $e = ones($	n,1)
----------	-----------	-------------	-----	----------	-------------------	-----	---

				EDF			DFCG	
Problem (P)	X0	n	Iter	Time	$//F_{/}$	Iter	Time	$//F_{k}//$
P4	e	1000	26	0.149828	6.48E-05	-	-	-
		10000	31	5.597554	4.53E-05	-	-	-
		50000	37	9.69744	9.73E-07	-	-	-
	0.1e	1000	23	0.105184	3.13E-05	-	-	-
		100000	34	5.610234	5.63E-06	-	-	-
P5	e	1000	24	0.067117	3.47E-05	51	0.223826	5.77E-05
		5000	28	0.40068	5.09E-05	60	1.123916	8.65E-05
		10000	29	0.644661	8.39E-05	61	1.916932	8.35E-05
		50000	29	2.38082	9.88E-05	-	-	-
	0.1e	1000	19	0.064227	5.53E-05	215	1.107148	5.42E-05
		5000	23	0.367682	6.63E-05	48	0.600497	9.04E-05
		10000	25	0.577474	4.15E-05	51	1.578848	7.46E-05
		50000	27	2.1800	7.02E-05	56	5.790128	8.08E-05
P6	e	500	546	0.639782	9.63E-05	-	-	-
		1000	558	2.025724	9.86E-05	-	-	-
		10000	605	9.510888	9.87E-05	-	-	-
		50000	637	42.46983	9.69E-05	-	-	-
P7	e	500	8	0.02121	5.14E-09	9	0.034247	1.34E-05
		5000	8	0.128485	2.69E-07	10	0.226067	2.24E-07
		50000	8	0.658527	7.36E-05	9	1.520098	5.07E-05
		100000	8	1.252776	5.68E-05	10	3.480638	1.50E-05
	0.1e	500	7	0.018371	1.61E-07	10	0.035181	1.08E-08
		5000	7	0.154703	2.29E-07	10	0.226576	6.92E-07
		50000	8	0.73483	1.07E-05	13	2.043117	7.45E-05
		100000	10	1.8931	6.70E-05	10	3.425698	7.75E-05

Enhanced Derivative-Free Conjugate Gradient Method For Solving Symmetric ... (Jamilu Sabi'u)

			Table 5. Test Results for the 1 wo Methods, where e =ofies(ii,1)						
				EDF			DFCG		
Problem (P)	x ₀	n	Iter	Time	$ F_k $	Iter	Time	$//F_{k}//$	
P8	e	500	4	0.019037	2.85E-06	5	0.013187	5.32E-05	
		5000	4	0.031794	9.00E-06	6	0.139321	3.28E-08	
		50000	4	0.206865	2.85E-05	6	0.803616	1.04E-07	
		500000	4	2.693915	9.00E-05	6	7.289005	3.28E-07	
		1000000	5	5.726167	1.44E-09	6	14.47488	4.64E-07	
	0.1e	1000	3	0.007335	3.19E-08	3	0.017376	3.45E-06	
		100000	3	0.423481	3.19E-07	3	1.642134	3.45E-05	
		1000000	3	3.699026	1.01E-06	4	12.16758	3.99E-09	
P9	e	1000	23	0.137972	9.38E-05	-	-	-	
		10000	29	1.073695	9.28E-05	-	-	-	
		50000	32	3.617281	8.27E-05	-	-	-	
		100000	28	6.610935	8.65E-05	-	-	-	
		500000	30	24.53221	9.35E-05	-	-	-	

Table 3. Test Results for the Two Methods, where e = ones(n,1)

Figure 1. Performance pro_le of EDF and DFCG conjugate gradient methods as the dimension increases(in term of CPU time)

Figure 2. Performance pro le of EDF and DFCG conjugate gradient methods as the dimension increases(in term of number of iterrations)

5. CONCLUSION

In this paper, we developed an enhanced derivative-free conjugate gradient method with less number of iterations and CPU time compared to the existing methods. It is a fully derivative-free iterative method which possesses global convergence under some reasonable conditions. Numerical comparisons using a set of large-scale test problems show that the proposed method is promising. However to extend the method to general smooth and nonsmooth nonlinear equations will be our further research.

5.1. Conflict of Interests

There is no conflict of interest regarding the publication of this paper.

REFERENCES

- Cheng, W., Chen, Z., Nonmonotone Spectral method for large-Scale sym-metric nonlinear equations. Numer. Algorithms, 62(2013) 149-162.
- [2] Gu, G., Z., Li, D.-H., Qi, L., Zhou, S.-Z., Descent direction of quasi-Newton methods for symmetric nonlinear equations. SIAM J. Numer. Anal. 40(2002), 1763-1774.
- [3] Zhang, L.,Zhou, W., Li, D.-H., Global convergence of a modi_ed Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104(2006), 561-572.
- [4] Li, D.H., Fukushima, A globally and superlinearly convergent Gauss-Newton-based BFGS methods for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1999), 152-172.
- [5] Li, D.-H., Wang, X., A modi_ed Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations. Numer. Algebra Control Optim. 1(2011), 71-82.
- [6] M.V. Solodov, B.F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima, L. Qi (Eds.), Re-formulation: Nonsmooth, Piecewise Smooth, Semismooth and SmoothingMethods, Kluwe rAcademic Publishers, 1998, pp.355369.
- [7] Zhou, W., Shen, D., Convergence properties of an iterative method for solving symmetric nonlinear equations, J. Optim. Theory Appl. (2014) doi: 10. 1007/s10957-014-0547-1.
- [8] Yunhai, X., Chunjie, W., Soon, Y.W., Norm descent conjugate gradient method for solving symmetric nonlinear equations, J. Glo. Optim. (2014) DOI 10.1007/s10898-014-0218-7.
- [9] Yuan, G., Lu, X., Wei, Z., BFGS trust-region method for symmetric non-linear equations, *J. Comput. Appl. Math.* 230(2009), 44-58.
- [10] Zhou, W., Shen, D., An inexact PRP conjugate gradient method for sym-metric nonlinear equations Numer. Functional Anal. Opt. 35(2014), 370-388.
- [11] Dolan, E.D., More, J.J., *Benchmarking Optimization software with Performance pro_les*. Maths. program. 91(2002), 201-213.
- [12] La Cruz, W., Martinez, J.M., Raydan, M., spetral residual method without gradient information for solving largescale nonlinear systems of equations: Theory and experiments, P. optimization 76(2004), 79.1008-00.
- [13] M.Y. Waziri, J. Sabi'u, A derivative-free conjugate gradient method and its global convergence for solving symmetric nonlinear equations. *International J. of mathematics and mathematical science* vol.(2015), doi:10.1155/2015/961487.
- [14] W.W. Hager,H.Zhang, A New conjugate gradient Method with Guaranteed Descent and an efficient line search.SIAM J. Optim. 16(2005), 170-192.