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In this article, an enhanced conjugate gradient approach for solving 

symmetric nonlinear equations is propose without computing the Jaco-bian 

matrix. This approach is completely derivative and matrix free. Using 

classical assumptions the proposed method has global conver-gence with 

nonmonotone line search. Some reported numerical results shows the 

approach is promising. 
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1. INTRODUCTION  

Let us consider the systems of nonlinear equations 

 

F(x) = 0,          (1) 

 

where F : R
n
 → R

n
 is a nonlinear mapping. Often, the mapping, F is assumed to satisfying the following 

assumptions: 

 A1. There exists an x∗ ∈ R
n
 s.t F (x∗) = 0 

 A2. F is a continuously differentiable mapping in a neighborhood of x∗ 

 A3. F′(x∗) is invertible 

 A4. The Jacobian F 
′
(x) is symmetric. 

Monotonicity means 

 

 (F (x) − F (y))
T
 (x − y) ≥ 0, ∀x, y ∈ R

n
      (2) 

 

The prominent method for finding the solution of (1), is the classical Newton’s method which 

generates a sequence of iterates {xk} from a given initial point x0 via 

 

                    
               (3) 

 

where k = 0, 1, 2 … The attractive features of this method are; rapid convergence and easy to implement. 

Nevertheless, Newton’s method requires the computation of the Jacobian matrix, which require the first-

order derivative of the systems. In practice, computations of some functions derivatives are quite costly and 
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sometime they are not available or could not be done precisely. In this case Newton’s method cannot be 

applied directly. In this work, we are interested in handling large-scale problems for which the Jacobian is 

either not available or requires a low amount storage, the best method is CG approach. It is vital to mention 

that, the conjugate gradient methods are among the popular used methods for unconstrained optimization 

problems. They are particularly efficient for handling large-scale problems due to their convergence 

properties, simply to implement and low storage [10]. Not withstanding, the study of conjugate gradient 

methods for large-scale symmetric nonlinear systems of equations is scanty, this is what motivated us to have 

this paper. In general, CG methods for solving nonlinear systems of equations generates an iterative points 

{xk} from initial given point x0 using 

 

                         (4) 

 

where αk > 0 ia attained via line search, and direction dk are obtained using 

 

      (5) 

 

βk is termed as conjugate gradient parameter.  

This problems under study, may arise from an unconstrained optimization problem, a saddle point 

problem, Karush-Kuhn-Tucker (KKT) of equality constrained optimization problem, the discritized two-

point boundary value problem, the discritized elliptic boundary value problem, and etc.  

Equation (1) is the first-order necessary condition for the unconstrained optimization problem when 

F is the gradient mapping of some function f : R
n 
−→ R, 

 

                     (6) 

 

For the equality constrained problem 

 

minf (x), 
s.t h(z) = 0,        (7) 

 

where h is a vector-valued function, the KKT conditions can be represented as the system (1) with x = (z, v), 

and 

 

                                     (8) 

 

where v is the vector of Lagrange multipliers. Notice that the Jacobian ∇F(z, v) is symmetric for all (z, v) 

(see, e.g., [?]). Problem (1) can be converted to the following global optimization problem(5) with our 

function f defined by 

 

         (9) 

 

A large number of efficient solvers for large-scale symmetric nonlinear equations have been 

proposed, analyzed, and tested in the last decade. Among them are [4, 2, 9]. Still the matrix storage and 

solving of n-linear system are required in the BFGS type methods presented in the literature. The recent 

designed nonmonotone spectral gradient algorithm [1] falls within the frame work of matrix-free.  

The conjugate gradient methods for symmetric nonlinear equations has received a good attension 

and take an appropriate progress. However, Li and Wang [5] proposed a modified Flectcher-Reeves 

conjugate gradient method which is based on the work of Zhang et al. [3], and the results illustrate that their 

proposed conjugate gradient method is promising. In line with this development, further studies on conjugate 

gradient are [7, 10, 8, 13]. Extensive numerical experiments showed that each over mentioned method 

performs quite well. 

We organized the paper as follows: In the next section, we present the details of the proposed 

method. Convergence results are presented in Section 3. Some numerical results are reported in Section 4. 

Finally, conclusions are made in Section 5. 
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2. ENHANCED DERIVATIVE-FREE (EDF) 
Given an initial point x0, an iterative scheme for problem (1) generally generates a sequence of 

iterates 

 

                                       (10) 

 

which employs a line search procedure along the direction dk to compute the stepsize αk. Typical line 

searches include Backtracking, Armijo or Wolfe line searches. Let zk = xk + αkdk−1, the hyperplane 

 

      (11) 

 

strictly separates xk from the solution set of (1). Therefore, from this facts Solodov and Svaiter[6] advised to 

let the next iterate xk+1 be the projection of xk onto this hyperplane Hk. That is, xk+1 is defined by 

 

       (12) 

 

In this paper, the direction dk is base on [13], specifically 

 

       (13) 

 

where Fk means F(xk) and βk defined as 

 

        (14) 

 

         (15) 

 

Throughout this paper, ||.|| is the Euclidean norm, sk = xk − xk−1 and yk = Fk − Fk−1 

However, to compute the stepsize αk, nonmonotone line search proposed by [4] is an interesting idea 

that avoids the necessity of descent directions to guarantee that each iteration is well defined. Let ω1 > 0, ω2 

> 0, r ∈ (0, 1) be constants and {ηk} be a given positive sequence such that 

 

         (16) 

 

Let αk = max{1, r
k
}that satisfy 

 

              
           

                
            

             
  (17) 

 

EDF Algorithm 

Step 1 : Given x0, α > 0 , ω ∈ (0, 1), r ∈ (0, 1) and a positive sequence ηk satisfying (16), and set k = 0 . 

Step 2 : Test a stopping criterion. If yes, then stop; otherwise continue with Step 3. 

Step 3 : Compute dk by (13). 

Step 4 : Compute αk by the line search (17). 

Step 5 : Compute        
     

        

         
        

Step 6 : Consider k = k + 1 and go to step 2. 

 

 

3. GLOBAL CONVERGENCE 
This section presents global convergence results of the Enhanced derivativefree conjugate gradient 

method. In order to analyze the convergence of our method, we will make the following assumptions on 

nonlinear systems F. 
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Assumption 

(i) The level set Ω = {x|F(x) ≤ e
n
F(x0)} is bounded 

(ii) In some neighborhood N of Ω, F(x) is Lipschitz continous i.e there exists a positive constant L > 0 such 

that 
 

       (18) 

 

∀x, y ∈ N. Properties (i) and (ii) implies that there exists positive constants M1, M2 such that 
 

      (19) 
 

Lemma 3.1 [4]Let the sequence {xk} be generated by the algorithms above. Then the sequence {||Fk||} 

converges and xk ∈ N for all k ≥ 0. 

Lemma 3.2 Let the properties of (1) above hold. Then we have 
 

 

                                                          (20) 

                                                         (21) 

 

Proof.by (16) and (17) we have for all k > 0, 
 

  (22) 
 

by summing the above k inequality, then we obtain: 
 

      (23) 
 

so, from (19) and the fact that {ηk} satisfies (16) the series ∑         
  

   is convergent. This implies (24). By 

a similar way, we can prove that(21) holds. 

Lemma 3.1 Suppose that {xk} is generated by EDF algorithm. Let sk = xk − xk−1. Then, we have 
 

       (24) 
 

Proof. 
 

 

                               (25) 

                                (26) 
 

The following theorem establishes the global convergence of the EDF algorithm. 

Theorem 3.3 Let {xk} be generated by EDF algorithm. Then, we have 
 

        (27) 
 

Proof. We prove this theorem by contradiction. Suppose that (27) does not hold, then there exists a positive 

constant τ such that 
 

       (28) 
 

Clearly, ∥Fk∥ ≤ ∥dk∥, which implies 
 

        (29) 
 

Observe that, 
 

      (30) 
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        (31) 
 

meaning there exists a constant λ ∈ (0, 1) such that for sufficiently large k 
 

         (32) 
 

Again from the definition of our   
∗ we obtain 

 

     (33) 
 

which implies there exists a constant ρ ∈ (0, 1) such that for sufficiently large k 
 

         (34) 
 

Without lost of generality, 
 

    (35) 
 

which shows that the sequence {dk} is bounded. This together with (28) and (29) yields a contradiction. 

Hence the proof is complete. 
 
 

4. NUMERICAL EXPERIMENT 
In this section, we compare the performance of our method for solving non-linear equation (1) with 

A derivative-free conjugate gradient method and its global convergence for solving symmetric nonlinear 

equations [13]. The two algorithms were implemented with the following parameters; ω1 = ω2 = 10
−4

, αk−1 = 

0.01, r = 0.2 and ηk = 
 

      
. The codes for both methods were written in Matlab 7.4 R2010a and run on a 

personal computer 1.8 GHz CPU processor and 4 GB RAM memory. We stopped the iteration if the toatal 

number of iterations exceeds 2000 or ||Fk|| ≤ 10
−4

. ”-” represent failure due one of the following: 

(i) insufficient memory 

(ii) Number of iteration exceed 2000 

(iii) If ||Fk|| is not a number(NaN) 

Problems 1-5 are from [12] and the rest are artificial problems. 

Problem 1. The strictly convex function: 

 Fi(x) = e
xi 

− 1 ; 1, 2, . . . , n 

Problem 2: .(n is multiple of 3) for i = 1, 2, , n/3, 

 F3i−2(x) = x3i−2x3i−1 −    
 − 1, 

 F3i−1(x) = x3i−2x3i−1x3i −      
 +      

 − 2, 

 F3i(x) = e
−x3i−2

 − e
−x3i−1

. 

Problem 3. The Exponential function: 

 Fi(x) = 
 

  
     

      
 
  ; 1, 2, . . . , n − 1 

 Fn(x) = 
 

  
(      

 
)  

Problem 4.Trigonometric Function: 

 Fi(x) = 2(n+i(1−cosxi)−sinxi−∑       
 
                  for i = 1, 2, , n 

Problem 5. The discretized Chandrasehar's H-equation: 

 Fi(x) = xi − (1 − 
 

  
∑

    

     

 
                      

 wth c ∈ [0, 1) and μ = 
     

 
                (In our experiment we take c = 0.9). 

Problem 6. Arti_cial Problem: 

 F2i−1(x) = x2i−1 + x2i(−x2i + 5)(x2i − 2) − 13 ; 1, 2, . . . , 
 

 
 

 F2i(x) = x2i−1 + x2i(x2i+1x2i − 14) − 29. 

Problem 7.Arti_cial Problem: 

 Fi(x) = 3n −∑           ∑   
 
               

   , for i = 1, 2, . . . , n, 

Problem 8. Arti_cial Problem: 
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 Fi(x) = xi − 0.1    
  ; 1, 2, . . . , n − 1 

 Fn(x) = xn − 0.1  
  

Problem 9.Arti_cial Problem: 

 Fi(x) = ∑   
  

           
       

 , for i = 1, 2, . . . , n, 
 
 

Table 1. Test Results for the Two Methods, where e =ones(n,1) 
    EDF   DFCG  

Problem (P) x0 n Iter Time ||Fk|| Iter Time ||Fk|| 

P1 e 50 7 0.013401 1.01E-07 - - - 
  100 7 0.007188 1.43E-07 - - - 

  500 7 0.010701 3.19E-07 - - - 

  1000 7 0.014594 4.51E-07 - - - 
  10000 7 0.15437 1.43E-06 - - - 

  100000 7 0.505017 4.51E-06 - - - 

  500000 7 2.964011 1.01E-05 - - - 
  1000000 7 6.490167 1.43E-05 - - - 

 0.1e 50 3 0.003589 4.66E-06 4 0.0056 2.71E-06 

  500 3 0.00514 1.47E-05 4 0.010405 0.010405 
  5000 3 0.022715 4.66E-05 4 0.072571 2.71E-05 

  50000 4 0.159338 1.87E-08 4 0.61336 8.58E-05 

  500000 4 1.769383 5.92E-08 5 7.388756 4.32E-08 
P2 e 100 5 0.008126 1.21E-06 5 0.009352 8.32E-08 

  1000 5 0.016368 3.85E-06 5 0.023964 2.64E-07 

  10000 5 0.093909 1.22E-05 5 0.187341 8.36E-07 
  100000 5 0.606995 3.85E-05 5 1.640271 2.64E-06 

 0.1e 500 3 0.00578 1.47E-05 4 0.012256 8.58E-06 

  5000 3 0.02127 4.66E-05 4 0.069252 2.71E-05 
  50000 4 0.161407 1.87E-08 4 0.600705 8.58E-05 

  500000 4 1.790072 5.92E-08 5 7.61203 4.32E-08 

P3 e 500 13 0.011359 6.01E-05 11 0.054786 6.72E-05 
  1000 14 0.035401 5.18E-05 19 0.063617 5.81E-05 

  10000 10 0.179693 4.39E-05 - - - 

  50000 11 0.520165 8.38E-05 - - - 
 0.1e 500 1 0.003457 1.24E-05 7 0.020203 8.87E-05 

  1000 12 0.029657 4.85E-05 - - - 

  5000 13 0.11261 9.26E-05 - - - 
  50000 12 0.597629 7.90E-05 95 6.054463 6.51E-05 

  100000 15 1.652158 9.51E-05 - - - 

  500000 17 8.94895 6.94E-05 23 14.79145 9.00E-05 

 

 

Table 2. Test Results for the Two Methods, where e =ones(n,1) 
    EDF   DFCG  

Problem (P) x0 n Iter Time ||F|| Iter Time ||Fk|| 

P4 e 1000 26 0.149828 6.48E-05 - - - 

  10000 31 5.597554 4.53E-05 - - - 
  50000 37 9.69744 9.73E-07 - - - 

 0.1e 1000 23 0.105184 3.13E-05 - - - 

  100000 34 5.610234 5.63E-06 - - - 
P5 e 1000 24 0.067117 3.47E-05 51 0.223826 5.77E-05 

  5000 28 0.40068 5.09E-05 60 1.123916 8.65E-05 

  10000 29 0.644661 8.39E-05 61 1.916932 8.35E-05 
  50000 29 2.38082 9.88E-05 - - - 

 0.1e 1000 19 0.064227 5.53E-05 215 1.107148 5.42E-05 

  5000 23 0.367682 6.63E-05 48 0.600497 9.04E-05 

  10000 25 0.577474 4.15E-05 51 1.578848 7.46E-05 

  50000 27 2.1800 7.02E-05 56 5.790128 8.08E-05 

P6 e 500 546 0.639782 9.63E-05 - - - 
  1000 558 2.025724 9.86E-05 - - - 

  10000 605 9.510888 9.87E-05 - - - 

  50000 637 42.46983 9.69E-05 - - - 
P7 e 500 8 0.02121 5.14E-09 9 0.034247 1.34E-05 

  5000 8 0.128485 2.69E-07 10 0.226067 2.24E-07 
  50000 8 0.658527 7.36E-05 9 1.520098 5.07E-05 

  100000 8 1.252776 5.68E-05 10 3.480638 1.50E-05 

 0.1e 500 7 0.018371 1.61E-07 10 0.035181 1.08E-08 
  5000 7 0.154703 2.29E-07 10 0.226576 6.92E-07 

  50000 8 0.73483 1.07E-05 13 2.043117 7.45E-05 

  100000 10 1.8931 6.70E-05 10 3.425698 7.75E-05 
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Table 3. Test Results for the Two Methods, where e =ones(n,1) 
    EDF   DFCG  

Problem (P) x0 n Iter Time ||Fk|| Iter Time ||Fk|| 

P8 e 500 4 0.019037 2.85E-06 5 0.013187 5.32E-05 
  5000 4 0.031794 9.00E-06 6 0.139321 3.28E-08 

  50000 4 0.206865 2.85E-05 6 0.803616 1.04E-07 

  500000 4 2.693915 9.00E-05 6 7.289005 3.28E-07 
  1000000 5 5.726167 1.44E-09 6 14.47488 4.64E-07 

 0.1e 1000 3 0.007335 3.19E-08 3 0.017376 3.45E-06 

  100000 3 0.423481 3.19E-07 3 1.642134 3.45E-05 
  1000000 3 3.699026 1.01E-06 4 12.16758 3.99E-09 

P9 e 1000 23 0.137972 9.38E-05 - - - 

  10000 29 1.073695 9.28E-05 - - - 
  50000 32 3.617281 8.27E-05 - - - 

  100000 28 6.610935 8.65E-05 - - - 

  500000 30 24.53221 9.35E-05 - - - 

 

 

 
 

Figure 1. Performance pro_le of EDF and DFCG conjugate gradient 

methods as the dimension increases(in term of CPU time) 

 

 

 
 

Figure 2. Performance pro le of EDF and DFCG conjugate gradient methods as the dimension increases(in 

term of number of iterrations) 

 

 

5. CONCLUSION 

In this paper, we developed an enhanced derivative-free conjugate gradient method with less 

number of iterations and CPU time compared to the existing methods. It is a fully derivative-free iterative 

method which possesses global convergence under some reasonable conditions. Numerical comparisons 

using a set of large-scale test problems show that the proposed method is promising. However to extend the 

method to general smooth and nonsmooth nonlinear equations will be our further research. 
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