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 This study focuses on the behavior of blood flow through diseased artery in 

the presence of porous effects. The laminar, incompressible, fully developed, 

non-Newtonian in an artery having axially non-symmetric but radially 

symmetric stenosis is numerically studied. Here blood is represented as 

Herschel-Bulkley fluid model and flow model is shown by the Navier-Stokes 

and the continuity equations. Using appropriate boundary conditions, 

numerical expression for volumetric flow rate, pressure drop and wall shear 

stress have been derived. The expressions are computed numerically and 

results are presented graphically. The effects of porous parameter on wall 

shear stress, stenosis length, stenosis size and stenosis shape parameter are 

discussed. The wall shear stress increases as the porous parameter, stenosis 

size and stenosis length increases, but as the stenosis shape parameter 

increases, the wall shear stress decreases. The work shows that the results 

obtained from the porous wall model are significantly different from those 

obtained by the rigid wall model. 
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1. INTRODUCTION  

 Atherosclerosis is a slow disease in which arteries become clogged and hardened. It leads to 

cardiovascular disease, which is the leading cause of death in all over the world. Aherosclerotic Figure (1.a) 

artery is very important because of the fact that the cause and development of many cardiovascular diseases 

are related to the nature of blood movement and the mechanical behavior of the blood vessel walls. It is 

defined as a partial occlusion of the blood vessels due to the accumulation of cholesterols and fats and the 

abnormal growth of tissue. Atherosclerosis is one of the most frequently anomaly in blood circulation. Once 

the constriction is formed, the blood flow is significantly altered and fluid dynamical factors play important 

roles. The exact mechanism for the development of this vascular disease is unclear. Various investigators 

emphasized that the formation of the intravascular plaques and the impingement of ligaments and spure on 

the blood vessel wall are some of the major factors for the initiation and development of this vascular 

disease. In 1968 Young analyzed the effect of stenosis in circular tube. Shukla et al. (1980) used several 

different non-Newtonian models for simulations of blood flow in large arteries and they observed that there is 

no effect of the yield stress of blood on either the velocity profiles or the wall shear stress. Cavalcanti (1995) 

has discussed the inadequacies of such studies for the determination of the model for plaque growth. These 

observations provide future direction for research. Quarteroni et al. (2000), Neofytou (2003) founded the 

important hemo- dynamical characteristics like the wall shear stress, pressure drop and frictional resistance in 

catheterized coronary arteries under normal as well as the pathological conditions due to stenosis being 

present. Leuprecht (2001) measured wall shear stress downstream of axi-symmetric stenoses in the presence 

of hemo-dynamics forces acting on the plaque, which may be responsible for plaque rupture. Dwyer et al. 
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(2001) and Abraham et al. (2004) founded the influence of stenosis morphology on flow fields and on 

quantities such as wall shear stress among stenotic vessels with very mild stenosis. Sharma et al. (2001), 

Daripa et al. (2002) considered a mathematical analysis of blood flow through arteries using finite element 

Galerkin approaches. Pontrelli (2000, 2001) and Sharan and Popel (2001) utilized the Brinkman model to 

investigate the two-dimensional interstitial flow through the tunica media of an artery wall in the presence of 

an internal elastic lamina.  

 

 

 
Figure 1a. Atherosclerosis 

 

 

Yakhot (2004) studied the pulsatile flow of blood under the influence of body acceleration treating blood as a 

third grade fluid. Sarojani and Nagarani (2008) studied the flow of a casson fluid in a tube filled with a 

porous medium under periodic body acceleration with application on artificial organs. Johnston (2004), 

Grigioni et al. (2002) studied the effect of body acceleration on pulsatile flow of non-Newtonian fluid 

through a stenosed artery and observed that all the instantaneous flow characteristics are affected by the 

application of body acceleration. Sanjeev et al. (2009) worked on the Pulsatile flow of blood in a constricted 

artery with body acceleration and observed that the velocity and flow rate increases but effective viscosity 

decreases, due to a slip wall. The aim of the present investigation has been to study the effect of porous 

parameter on flow of blood considered as blood as a Herschel-Bulkley fluid model. In this model problem 

has been sorted out numerically. Numerical expressions are shows the variation of the velocity profile 

volumetric flow rate, wall shear stress. 

 

 

2. FORMULATION OF THE PROBLEM: 

Consider the axisymmetric flow of blood in a uniform circular artery with an axially non-symmetric 

but radially symmetric mild stenosis. The geometry of the stenosis as shown in [Figure. (1.b)] Is assumed to 

be manifested as: 

 
R(z) (m 1) m1 A[L (z d) (z d) ], d z d L

0 0R
0

1, otherwise,


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Figure 1b. Stenotic Artery 
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where  

R0  : Radius of normal tube 

R(z)  : Radius of stenotic region 

L   : The length of the artery 

L0   : The length of the stenosis 

d   : Distance between equispaced points 

δ   : Maximum height of stenosis (δ << R0) 

m   : Parameter determining the shape of stenosis (m ≥ 2) 

 

Herschel-Bulkley fluid model: For Herschel-Bulkley fluid model, the relationship between stress and strain 

is given by:   
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where,   

0  = Measure of yield stress 

   = Stress tensor 

e = Strain rate (-du/dr)  

u  = Velocity of fluid 

µ  = Viscosity of blood (Casson’s viscosity coefficient) 

r  = radius of the artery 

 

Darcy flow model: The Darcy model of flow through a porous media is, 

 

kp
U= -

μ

 
 
 

                                                                                                                         (3) 

 

where 

k  = Porous parameter 

µ  = Viscosity of blood 

p  = Pressure gradient 

 

Conservation equations: In the present investigation the flow formulation for Navier-Stokes equations for 

incompressible non-Newtonian fluids in the porous effect has been considered. The basic equations of 

motion in cylindrical polar coordinates are: 
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Boundary conditions: The no slip condition on the stenosis surface gives the following boundary conditions 
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0
u = 0         at r = R

u = 0         at r = R(z)
                                                                                           (7) 

 

 

3. SOLUTION OF THE PROBLEM:  

Solving these equation, the velocity of blood, rate of flow and pressure in (7, 8, 9), 
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c
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= - ( )  [r - R ]
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                                                                                             (8). 

 

now total flow flux 
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by using equation (8) and equation (9), we have, 
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Using equation (8) we have, 
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to  determine  λ,  we  integrate  equation  (11)  for  the  pressure  PL  and  Po  are  the  pressure  at  z = 0  and  

z = L,  respectively,  where  L  is  the  length  of  the  tube.  
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on using equation (12) and (10) gives,   
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The pressure drop, p (= p at z = 0 and – p at z = L) across the stenosis in the tube of length, L is calculated 

from equation (9) as 
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Where     
0

0 0
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The first and third integrals in the expression for obtained above are straight forward whereas evaluation of 

the second integral is a formidable task and therefore will be evaluated numerically. 
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Using equation (1) and equation (3) we have,  
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4. RESULTS AND DISCUSSIONS 

The motivation behind developing this mathematical model has been to study some aspects of blood 

flow through a stenosed artery in the presence of porous parameter having an axially non-symmetric but 

radially symmetric mild stenosis. Most of theoretical result such as velocity, volumetric flow rate, wall shear 

stress and pressure gradient are obtained in this analysis. Out of these results only the numerical solution of 

wall shear stress are shown. Wall shear stress is an important factor in the study of blood flow. Accurate 

predictions of the distribution of wall shear stress are particularly useful for the understanding of the effect of 

blood flow through stenosed artery in the presence of porous effects. In order to estimate the quantitative 

effects of porous parameter, stenosis size, stenosis length and stenosis shape parameter on wall shear stress, 

computer codes were developed and to evaluate the numerical results for wall shear stress for diseased 

system associated with stenosis due to the local deposition of lipids have been determine.  

In order to understand the complete nature of blood flow in the presence of porous parameter, the 

computed numerical results by using the values of parameter based on experimental data in stenosed artery 

(U = 50cm/sec, R0 = 1.2 cm and μ = 0.04 dyne/cm
2
) are plotted in Fig 2-4. In order to analyze the wall shear 

stress along the stenosed arterial segment under study, Fig.2 exhibits the variation of wall shear stress with 

porous parameter for different value of stenosis shape parameter. It is observed that in the stenosed portion of 

the artery, the wall shear stress increases with the increase in porous parameter while decreases as stenosis 

shape parameter increases. The result is consisting with the result of Shukla et al. (1980).  

 
 

 
 

Figure 3. Porous Parameter, Variation of War Shear Stress with Porous Parameter for Different M 
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Figure 4. Stenosis Shape Parameter, Variation of Wall Shear Stress with Stenosis Shape Parameter 

 

 

The graph for variations of wall shear stress with stenosis size for different value of stenosis shape 

parameter is shown in figure 3. It is evident that wall shear stress increases as stenosis size increases and wall 

shear stress decreases as stenosis shape parameter increases. As the stenosis grows, the wall shearing stress 

increases in the stenotic region. Our results are similar to those obtained by Sanjeev (2009). Fig.4 gives a 

comparison of our results with those reported by Johnston et al. (2004). It is shown that the wall shear stress 

decreases with increasing value of stenosis shape parameter and wall shear stress increases as stenosis length 

increases. In Fig.5 the variation of wall shear stress with stenosis shape parameter has been shown. The wall 

shear stress gives the reverse trend of stenosis size and stenosis length for increasing value of shape 

parameter. This figure illustrates that wall shear stress decreases as stenosis shape parameter increases, 

maximum wall shear stress occurs at (m = 2), i. e. in case of symmetric stenosis. These results are similar 

with the results of Pontrelli (2000).  

 

 

5. CONCLUSION 

In this paper we used the laminar, incompressible, fully developed, non-Newtonian flow having 

axially non-symmetric but radially symmetric stenosis in the presence of porous effects. Here the blood is 

represented as Herschel-Bulkley fluid model and flow model is shown by the Navier-Stokes and the 

continuity equations. The advantage of this study is that here we calculated the effect of porous parameter on 

wall shear stress, stenosis shape parameter, stenosis size, stenosis length in an stenosed artery. It has been 

concluded that the wall shear stress increases as porous parameter, stenosis size and stenosis length increases 

but decreases as stenosis shape parameter increases. It has shown that the results were greatly influenced by 

the change of porous parameter and stenosis shape parameter. This model is able to predict the main 

characteristics of the physiological flows and would be helpful for the people working in the field of 

biomedical science as well as to the medical practitioners.    
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