Intrusions detection using optimized support vector machine
Abstract
Computer network technologies are evolving fast and the development of internet technology is more quickly, people more aware of the importance of the network security. Network security is main issue of computing because the number attacks are continuously increasing. For these reasons, intrusion detection systems (IDSs) have emerged as a group of methods that combats the unauthorized use of a network’s resources. Recent advances in information technology, specially in data mining, have produced a wide variety of machine learning methods, which can be integrated into an IDS. This study proposes a new method of intrusion detection that uses support vector machine optimizing optimizing by a genetic algorithm. to improve the efficiency of detecting known and unknown attacks, we used a Particle Swarm Optimization algorithm to select the most influential features for learning the classification model.
Full Text:
PDFDOI: http://doi.org/10.11591/ijaas.v9.i1.pp62-66
Refbacks
- There are currently no refbacks.
International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.