Enhancing artificial neural network performance for energy efficiency in laboratories through principal component analysis

Desmira Desmira, Norazhar Abu Bakar, Mustofa Abi Hamid, Muhammad Hakiki, Affero Ismail, Radinal Fadli

Abstract


This study investigates energy efficiency challenges during laboratory activities. Inefficient energy use in the practicum phase remains a critical issue, prompting the exploration of innovative forecasting models. This research employs artificial neural network (ANN) models integrated with principal component analysis (PCA) to predict energy consumption and optimize usage. The findings reveal that PCA components, including eigenvalues, eigenvectors, and matrix covariance values, significantly influence the ANN model's performance in forecasting energy production. The ANN training achieved a high correlation coefficient (R=1) with a mean squared error (MSE) of 0.045931 after 200,000 epochs, demonstrating the model's robustness. While testing results showed a moderate correlation (R=0.46169), the models demonstrated potential for refinement and scalability. This integration of ANN and PCA models provides a reliable framework for accurately forecasting energy usage, offering an effective strategy to enhance energy efficiency in laboratory settings. By optimizing energy consumption, this approach has the potential to reduce operational costs and environmental impact. The strong performance metrics highlight the practical utility of these models in educational contexts, contributing to sustainable energy management and better resource allocation. Furthermore, the reduction in energy-related environmental impacts underscores the broader applicability of these models for fostering sustainable development in similar contexts.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijaas.v14.i2.pp310-321

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Intelektual Pustaka Media Utama (IPMU)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View the IJAAS Visitor Statistics

International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by Intelektual Pustaka Media Utama (IPMU) in collaboration with the Institute of Advanced Engineering and Science (IAES).